Skip to main content

18F-FDG-Directed Surgery and 18F-FDG-Directed Interventional Procedures

  • Chapter
  • First Online:
Radioguided Surgery

Abstract

The use of positron-emitting and high-energy gamma photon-emitting radiopharmaceuticals, like fluorine-18 fluorodeoxyglucose (18F-FDG), for real-time cancer detection and surgical guidance within the operating room and for real-time guidance of diagnostic and therapeutic interventional procedures within the interventional radiology suite, has great clinical potential. This technology may allow for (1) real-time intraoperative staging of the extent of disease; (2) real-time intraoperative surgical planning and execution of the necessary and most appropriate operation, determination of the extent of surgical resection, and determination of the completeness of surgical resection; (3) real-time pathologic evaluation of intact surgical resected specimens for the confirmation of completeness of surgical resection and for surgical margin assessment; (4) real-time pathologic evaluation of diagnostically biopsied tissues for confirmation of correctness of tissue diagnosis; and (5) real-time guidance of diagnostic and therapeutic interventional procedures within the interventional radiology suite. This chapter discusses (1) the history and development of positron imaging and detection, (2) the fundamental basis for the use of 18F-FDG in positron imaging and detection strategies, (3) the inherent limitations of 18F-FDG in positron imaging and detection strategies, (4) radiation detection devices utilized during 18F-FDG-directed surgery, (5) the clinical applications of real-time 18F-FDG-directed surgery and real-time 18F-FDG-directed interventional procedures, (6) timing issues related to 18F-FDG-directed surgery, (7) the inherent challenge of in situ detection of 18F-FDG with a gamma photon detection device, and (8) occupational radiation exposure during 18F-FDG radioguided surgical procedures.

Portions of the contents of this chapter are adapted from 5 prior Open Access articles:

1. Povoski et al.: A comprehensive overview of radioguided surgery using gamma detection probe technology. World Journal of Surgical Oncology, 2009, 7:11.; doi:10.1186/1477-7819-7-11; http://www.wjso.com/content/pdf/1477-7819-7-11.pdf; © 2009 Povoski et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

2. Povoski et al.: Multimodal imaging and detection approach to 18F-FDG-directed surgery for patients with known or suspected malignancies: a comprehensive description of the specific methodology utilized in a single-institution cumulative retrospective experience. World Journal of Surgical Oncology, 2011, 9:152.; doi:10.1186/1477-7819-9-152; http://www.wjso.com/content/pdf/1477-7819-9-152.pdf; © 2011 Povoski et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

3. Povoski et al.: 18F-FDG PET/CT oncologic imaging at extended injection-to-scan acquisition time intervals derived from a single institution 18F-FDG-directed surgery experience: feasibility and quantification of 18F-FDG accumulation within 18F-FDG-avid lesions and background tissues. BMC Cancer 2014 14:453.; doi:10.1186/1471-2407-14-453; http://www.biomedcentral.com/content/pdf/1471-2407-14-453.pdf; © 2014 Povoski et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

4. Chapman et al.: Comparison of two threshold detection criteria methodologies for determination of probe positivity for intraoperative in situ identification of presumed abnormal 18F-FDG avid tissue sites during radioguided oncologic surgery. BMC Cancer. 2014 14:667.; doi:10.1186/1471-2407-14-667; http://www.biomedcentral.com/content/pdf/1471-2407-14-667.pdf; © 2014 Chapman et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

5. Povoski et al.: Feasibility of a multimodal 18F-FDG-directed lymph node surgical excisional biopsy approach for appropriate diagnostic tissue sampling in patients with suspected lymphoma. BMC Cancer 2015 15:378.; doi: 10.1186/s12885-015-1381-z; http://www.biomedcentral.com/content/pdf/s12885-015-1381-z.pdf; © 2015 Povoski et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Joliot F. Preuve expérimentale de lʹannihilation des electrons positifs. CR Acad Sci. 1933;197:1622–5.

    CAS  Google Scholar 

  2. Thibaud J. Lʹannihilation des positrons au contact de la matière et la radiation quʹen resulte. CR Acad Sci. 1933;197:1629–32.

    CAS  Google Scholar 

  3. Klemperer O. On the annihilation radiation of the positron. Math Proc Camb Phil Soc. 1934;30:347–54.

    Article  CAS  Google Scholar 

  4. Berriger R, Montgomery CG. The angular distribution of positron annihilation radiation. Phys Rev. 1942;61:222–4.

    Article  Google Scholar 

  5. Wrenn Jr FR, Good ML, Handler P. The use of positron-emitting radioisotopes for the localization of brain tumors. Science. 1951;113(2940):525–7.

    Article  CAS  PubMed  Google Scholar 

  6. Povoski SP, Neff RL, Mojzisik CM, O’Malley DM, Hinkle GH, Hall NC, Murrey Jr DA, Knopp MV, Martin Jr EW. A comprehensive overview of radioguided surgery using gamma detection probe technology. World J Surg Oncol. 2009;7:11.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Brownell GL. A history of positron imaging. October 15, 1999. http://neurosurgery.mgh.harvard.edu/docs/PEThistory.pdf.

  8. Brownell GL, Sweet WH. Localization of brain tumors with positron emitters. Nucleonics. 1953;11:40–5.

    Google Scholar 

  9. Gallagher BM, Ansari A, Atkins H, Casella V, Christman DR, Fowler JS, Ido T, MacGregor RR, Som P, Wan CN, Wolf AP, Kuhl DE, Radiopharmaceuticals RM, XXVII. 18F-labeled 2-deoxy-2-fluoro-d-glucose as a radiopharmaceutical for measuring regional myocardial glucose metabolism in vivo: tissue distribution and imaging studies in animals. J Nucl Med. 1977;18:990–6.

    CAS  PubMed  Google Scholar 

  10. Ido T, Wan CN, Casella V, Fowler JS, Wolf AP, Reivich M, Kuhl DE. Labeled 2-deoxy-D-glucose analogs: 18F-labeled 2-deoxy-2-fluoro-D-glucose, 2-deoxy-2-fluoro-D-mannose and 14C-2-deoxy-2-fluoro-D-glucose. J Label Compd Radiopharm. 1978;24:174–83.

    Google Scholar 

  11. Chesler DA. Three-dimensional activity distribution from multiple positron scintigraphs. J Nucl Med. 1971;12:347–8 [Abstract].

    Google Scholar 

  12. Chesler DA. Positron tomography and three-dimensional reconstruction technique. In: Freedman GS, editor. Tomographic imaging in nuclear medicine. 1st ed. New York, NY: Society of Nuclear Medicine; 1973. p. 176–83.

    Google Scholar 

  13. Ter-Pogossian MM, Phelps ME, Hoffman EJ, Mullani NA. A positron-emission transaxial tomograph for nuclear imaging (PETT). Radiology. 1975;114:89–98.

    Article  CAS  PubMed  Google Scholar 

  14. Hoffmann EJ, Phelps ME, Mullani NA, Higgins CS, Ter-Pogossian MM. Design and performance characteristics of a whole-body positron transaxial tomograph. J Nucl Med. 1976;17:493–502.

    CAS  PubMed  Google Scholar 

  15. Hillner BE, Siegel BA, Liu D, Shields AF, Gareen IF, Hanna L, Stine SH, Coleman RE. Impact of positron emission tomography/computed tomography and positron emission tomography (PET) alone on expected management of patients with cancer: initial results from the National Oncologic PET Registry. J Clin Oncol. 2008;26:2155–61.

    Article  PubMed  Google Scholar 

  16. Hillner BE, Siegel BA, Shields AF, Liu D, Gareen IF, Hanna L, Stine SH, Coleman RE. The impact of positron emission tomography (PET) on expected management during cancer treatment: findings of the National Oncologic PET Registry. Cancer. 2009;115:410–8.

    Article  PubMed  Google Scholar 

  17. Poeppel TD, Krause BJ, Heusner TA, Boy C, Bockisch A, Antoch G. PET/CT for the staging and follow-up of patients with malignancies. Eur J Radiol. 2009;70:382–92.

    Article  CAS  PubMed  Google Scholar 

  18. Stroobants S. To PET or not to PET: what are the indications? Eur J Cancer. 2011;47 Suppl 3:S304–5.

    Article  PubMed  Google Scholar 

  19. Czernin J, Allen-Auerbach M, Nathanson D, Herrmann K. PET/CT in oncology: current status and perspectives. Curr Radiol Rep. 2013;1:177–90.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Schöder H, Gönen M. Screening for cancer with PET and PET/CT: potential and limitations. J Nucl Med. 2007;48 Suppl 1:4S–18.

    PubMed  Google Scholar 

  21. Kojima S, Zhou B, Teramukai S, Hara A, Kosaka N, Matsuo Y, Suzuki H, Torigoe S, Suzuki T, Uno K, Fukushima M. Cancer screening of healthy volunteers using whole-body 18F-FDG-PET scans: The Nishidai clinic study. Eur J Cancer. 2007;43:1842–8.

    Article  PubMed  Google Scholar 

  22. Minamimoto R, Senda M, Uno K, Jinnouchi S, Iinuma T, Ito K, Okuyama C, Oguchi K, Kawamoto M, Suzuki Y, Tsukamoto E, Terauchi T, Nakashima R, Nishio M, Nishizawa S, Fukuda H, Yoshida T, Inoue T. Performance profile of FDG-PET and PET/CT for cancer screening on the basis of a Japanese Nationwide Survey. Ann Nucl Med. 2007;21:481–98.

    Article  PubMed  Google Scholar 

  23. Terauchi T, Murano T, Daisaki H, Kanou D, Shoda H, Kakinuma R, Hamashima C, Moriyama N, Kakizoe T. Evaluation of whole-body cancer screening using 18F-2-deoxy-2-fluoro-D-glucose positron emission tomography: a preliminary report. Ann Nucl Med. 2008;22:379–85.

    Article  PubMed  Google Scholar 

  24. Lee JW, Kang KW, Paeng JC, Lee SM, Jang SJ, Chung JK, Lee MC, Lee DS. Cancer screening using 18F-FDG PET/CT in Korean asymptomatic volunteers: a preliminary report. Ann Nucl Med. 2009;23:685–91.

    Article  PubMed  Google Scholar 

  25. Nishizawa S, Kojima S, Teramukai S, Inubushi M, Kodama H, Maeda Y, Okada H, Zhou B, Nagai Y, Fukushima M. Prospective evaluation of whole-body cancer screening with multiple modalities including [18F]fluorodeoxyglucose positron emission tomography in a healthy population: a preliminary report. J Clin Oncol. 2009;27:1767–73.

    Article  PubMed  Google Scholar 

  26. Desai D, Arnold M, Saha S, Hinkle G, Soble D, Frye J, DePalatis L, Mantil J, Satter M, Martin E. Intraoperative gamma detection of FDG distribution in colorectal cancer. Clin Positron Imaging. 1999;2:325.

    Article  PubMed  Google Scholar 

  27. Desai DC, Arnold M, Saha S, Hinkle G, Soble D, Fry J, DePalatis LR, Mantil J, Satter M, Martin EW. Correlative whole-body FDG-PET and intraoperative gamma detection of FDG distribution in colorectal cancer. Clin Positron Imaging. 2000;3:189–96.

    Article  PubMed  Google Scholar 

  28. Zervos EE, Desai DC, DePalatis LR, Soble D, Martin EW. 18F-labeled fluorodeoxyglucose positron emission tomography-guided surgery for recurrent colorectal cancer: a feasibility study. J Surg Res. 2001;97:9–13.

    Article  CAS  PubMed  Google Scholar 

  29. Essner R, Hsueh EC, Haigh PI, Glass EC, Huynh Y, Daghighian F. Application of an [(18)F]fluorodeoxyglucose-sensitive probe for the intraoperative detection of malignancy. J Surg Res. 2001;96:120–6.

    Article  CAS  PubMed  Google Scholar 

  30. Essner R, Daghighian F, Giuliano AE. Advances in FDG PET probes in surgical oncology. Cancer J. 2002;8:100–8.

    Article  PubMed  Google Scholar 

  31. Higashi T, Saga T, Ishimori T, Mamede M, Ishizu K, Fujita T, Mukai T, Sato S, Kato H, Yamaoka Y, Matsumoto K, Senda M, Konishi J. What is the most appropriate scan timing for intraoperative detection of malignancy using 18F-FDG-sensitive gamma probe? Preliminary phantom and preoperative patient study. Ann Nucl Med. 2004;18:105–14.

    Article  PubMed  Google Scholar 

  32. Yen TC, See LC, Lai CH, Yah-Huei CW, Ng KK, Ma SY, Lin WJ, Chen JT, Chen WJ, Lai CR, Hsueh S. 18F-FDG uptake in squamous cell carcinoma of the cervix is correlated with glucose transporter 1 expression. J Nucl Med. 2004;45:22–9.

    CAS  PubMed  Google Scholar 

  33. Yap JT, Carney JP, Hall NC, Townsend DW. Image-guided cancer therapy using PET/CT. Cancer J. 2004;10:221–33.

    Article  PubMed  Google Scholar 

  34. Barranger E, Kerrou K, Petegnief Y, David-Montefiore E, Cortez A, Daraï E. Laparoscopic resection of occult metastasis using the combination of FDG-positron emission tomography/computed tomography image fusion with intraoperative probe guidance in a woman with recurrent ovarian cancer. Gynecol Oncol. 2005;96:241–4.

    Article  PubMed  Google Scholar 

  35. Carrera D, Fernandez A, Estrada J, Martin-Comin J, Gamez C. [Detection of occult malignant melanoma by 18F-FDG PET-CT and gamma probe]. Rev Esp Med Nucl. 2005;24:410–3. [Spanish].

    Article  CAS  PubMed  Google Scholar 

  36. Franc BL, Mari C, Johnson D, Leong SP. The role of a positron- and high-energy gamma photon probe in intraoperative localization of recurrent melanoma. Clin Nucl Med. 2005;30:787–91.

    Article  PubMed  Google Scholar 

  37. Kraeber-Bodéré F, Cariou B, Curtet C, Bridji B, Rousseau C, Dravet F, Charbonnel B, Carnaille B, Le Néel JC, Mirallié E. Feasibility and benefit of fluorine 18-fluoro-2-deoxyglucose-guided surgery in the management of radioiodine-negative differentiated thyroid carcinoma metastases. Surgery. 2005;138:1176–82.

    Article  PubMed  Google Scholar 

  38. Gulec SA, Daghighian F, Essner R. PET-Probe. Evaluation of technical performance and clinical utility of a handheld high-energy gamma probe in oncologic surgery. Ann Surg Oncol. 2006 [Epub ahead of print].

    Google Scholar 

  39. Meller B, Sommer K, Gerl J, von Hof K, Surowiec A, Richter E, Wollenberg B, Baehre M. High energy probe for detecting lymph node metastases with 18F-FDG in patients with head and neck cancer. Nuklearmedizin. 2006;45:153–9.

    CAS  PubMed  Google Scholar 

  40. Nwogu C, Fischer G, Tan D, Glinianski M, Lamonica D, Demmy T. Radioguided detection of lymph node metastasis in non-small cell lung cancer. Ann Thorac Surg. 2006;82:1815–20; discussion 1820.

    Article  PubMed  Google Scholar 

  41. Curtet C, Carlier T, Mirallié E, Bodet-Milin C, Rousseau C, Barbet J, Kraeber-Bodéré F. Prospective comparison of two gamma probes for intraoperative detection of 18F-FDG: in vitro assessment and clinical evaluation in differentiated thyroid cancer patients with iodine-negative recurrence. Eur J Nucl Med Mol Imaging. 2007;34:1556–62.

    Article  PubMed  Google Scholar 

  42. Gulec SA, Hoenie E, Hostetter R, Schwartzentruber D. PET probe-guided surgery: applications and clinical protocol. World J Surg Oncol. 2007;5:65.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Gulec SA. PET probe-guided surgery. J Surg Oncol. 2007;96:353–7.

    Article  PubMed  Google Scholar 

  44. Hall NC, Povoski SP, Murrey DA, Knopp MV, Martin EW. Combined approach of perioperative 18F-FDG PET/CT imaging and intraoperative 18F-FDG handheld gamma probe detection for tumor localization and verification of complete tumor resection in breast cancer. World J Surg Oncol. 2007;5:143.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Piert M, Burian M, Meisetschlager G, Stein HJ, Ziegler S, Nahrig J, Picchio M, Buck A, Siewert JR, Schwaiger M. Positron detection for the intraoperative localisation of cancer deposits. Eur J Nucl Med Mol Imaging. 2007;34:1534–44.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Sarikaya I, Povoski SP, Al-Saif OH, Kocak E, Bloomston M, Marsh S, Cao Z, Murrey DA, Zhang J, Hall NC, Knopp MV, Martin EW. Combined use of preoperative 18F FDG-PET imaging and intraoperative gamma probe detection for accurate assessment of tumor recurrence in patients with colorectal cancer. World J Surg Oncol. 2007;5:80.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Sun D, Bloomston M, Hinkle G, Al-Saif OH, Hall NC, Povoski SP, Arnold MW, Martin EW. Radioimmunoguided surgery (RIGS), PET/CT image-guided surgery, and fluorescence image-guided surgery: past, present, and future. J Surg Oncol. 2007;96:297–308.

    Article  CAS  PubMed  Google Scholar 

  48. Agrawal A, Hall NC, Ringel MD, Povoski SP, Martin Jr EW. Combined use of perioperative TSH-stimulated 18F-FDG PET/CT imaging and gamma probe radioguided surgery to localize and verify resection of iodine scan-negative recurrent thyroid carcinoma. Laryngoscope. 2008;118:2190–4.

    Article  PubMed  Google Scholar 

  49. Cohn DE, Hall NC, Povoski SP, Seamon LG, Farrar WB, Martin Jr EW. Novel perioperative imaging with 18F-FDG PET/CT and intraoperative 18F-FDG detection using a handheld gamma probe in recurrent ovarian cancer. Gynecol Oncol. 2008;110:152–7.

    Article  CAS  PubMed  Google Scholar 

  50. Hall NC, Povoski SP, Murrey DA, Knopp MV, Martin EW. Bringing advanced medical imaging into the operative arena could revolutionize the surgical care of cancer patients. Expert Rev Med Devices. 2008;5:663–7.

    Article  PubMed  Google Scholar 

  51. Moffatt-Bruce SD, Povoski SP, Sharif S, Hall NC, Ross Jr P, Johnson MA, Martin Jr EW. A novel approach to positron emission tomography in lung cancer. Ann Thorac Surg. 2008;86:1355–7.

    Article  PubMed  Google Scholar 

  52. Piert M, Carey J, Clinthorne N. Probe-guided localization of cancer deposits using [(18)F]fluorodeoxyglucose. Q J Nucl Med Mol Imaging. 2008;52:37–49.

    CAS  PubMed  Google Scholar 

  53. Povoski SP, Hall NC, Martin EW, Walker MJ. Multimodality approach of perioperative 18F-FDG PET/CT imaging, intraoperative 18F-FDG handheld gamma probe detection, and intraoperative ultrasound for tumor localization and verification of resection of all sites of hypermetabolic activity in a case of occult recurrent metastatic melanoma. World J Surg Oncol. 2008;6:1.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Povoski SP, Sarikaya I, White WC, Marsh SG, Hall NC, Hinkle GH, Martin Jr EW, Knopp MV. Comprehensive evaluation of occupational radiation exposure to intraoperative and perioperative personnel from 18F-FDG radioguided surgical procedures. Eur J Nucl Med Mol Imaging. 2008;35:2026–34.

    Article  CAS  PubMed  Google Scholar 

  55. van Baardwijk A, Bosmans G, van Suylen RJ, van Kroonenburgh M, Hochstenbag M, Geskes G, Lambin P, De Ruysscher D. Correlation of intra-tumour heterogeneity on 18F-FDG PET with pathologic features in non-small cell lung cancer: a feasibility study. Radiother Oncol. 2008;87:55–8.

    Article  PubMed  Google Scholar 

  56. Murrey Jr DA, Bahnson EE, Hall NC, Povoski SP, Mojzisik CM, Young DC, Sharif S, Johnson MA, Abdel-Misih S, Martin Jr EW, Knopp MV. Perioperative (18)F-fluorodeoxyglucose-guided imaging using the becquerel as a quantitative measure for optimizing surgical resection in patients with advanced malignancy. Am J Surg. 2009;198:834–40.

    Article  PubMed  Google Scholar 

  57. Gollub MJ, Akhurst TJ, Williamson MJ, Shia J, Humm JL, Wong WD, Paty PB, Guillem JG, Weiser MR, Temple LK, Dauer LT, Jhanwar SC, Kronman RE, Montalvo CV, Miller AR, Larson SM, Margulis AR. Feasibility of ex vivo FDG PET of the colon. Radiology. 2009;252:232–9.

    Article  PubMed  Google Scholar 

  58. Molina MA, Goodwin WJ, Moffat FL, Serafini AN, Sfakianakis GN, Avisar E. Intra-operative use of PET probe for localization of FDG avid lesions. Cancer Imaging. 2009;9:59–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Hall NC, Povoski SP, Murrey DA, Martin Jr EW, Knopp MV. Ex vivo specimen FDG PET/CT imaging for oncology. Radiology. 2010;255:663–4.

    Article  PubMed  Google Scholar 

  60. Nalley C, Wiebeck K, Bartel TB, Bodenner D, Stack Jr BC. Intraoperative radiation exposure with the use of (18)F-FDG-guided thyroid cancer surgery. Otolaryngol Head Neck Surg. 2010;142:281–3.

    Article  PubMed  Google Scholar 

  61. de Jong JS, van Ginkel RJ, Slart RH, Lemstra CL, Paans AM, Mulder NH, Hoekstra HJ. FDG-PET probe-guided surgery for recurrent retroperitoneal testicular tumor recurrences. Eur J Surg Oncol. 2010;36:1092–5.

    Article  PubMed  Google Scholar 

  62. Lee GO, Costouro NG, Groome T, Kashani-Sabet M, Leong SPL. The use of intraoperative PET probe to resect metastatic melanoma. BMJ Case Reports. 2010. doi:10.1136/bcr.12.2009.2593.

    Google Scholar 

  63. Hartemink KJ, Muller S, Smulders YM, Petrousjkavandentol M, Comans EF. [Fluorodeoxyglucose F18(FDG)-probe guided biopsy]. Ned Tijdschr Geneeskd. 2010;154:A1884. [Dutch].

    PubMed  Google Scholar 

  64. García JR, Fraile M, Soler M, Bechini J, Ayuso JR, Lomeña F. [PET/CT-guided salvage surgery protocol. Results with ROLL Technique and PET probe]. Rev Esp Med Nucl. 2011;30:217–22. [Spanish].

    Article  PubMed  Google Scholar 

  65. Kim WW, Kim JS, Hur SM, Kim SH, Lee SK, Choi JH, Kim S, Choi JY, Lee JE, Kim JH, Nam SJ, Yang JH, Choe JH. Radioguided surgery using an intraoperative PET probe for tumor localization and verification of complete resection in differentiated thyroid cancer: A pilot study. Surgery. 2011;149:416–24.

    Article  PubMed  Google Scholar 

  66. Manca G, Biggi E, Lorenzoni A, Boni G, Roncella M, Ghilli M, Volterrani D, Mariani G. Simultaneous detection of breast tumor resection margins and radioguided sentinel node biopsy using an intraoperative electronically collimated probe with variable energy window: a case report. Clin Nucl Med. 2011;36:e196–8.

    Article  PubMed  Google Scholar 

  67. Povoski SP, Hall NC, Murrey Jr DA, Chow AZ, Gaglani JR, Bahnson EE, Mojzisik CM, Kuhrt MP, Hitchcock CL, Knopp MV, Martin Jr EW. Multimodal imaging and detection approach to 18F-FDG-directed surgery for patients with known or suspected malignancies: a comprehensive description of the specific methodology utilized in a single-institution cumulative retrospective experience. World J Surg Oncol. 2011;9:152.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Francis CL, Nalley C, Fan C, Bodenner D, Stack Jr BC. 18F-fluorodeoxyglucose and 131I Radioguided Surgical Management of Thyroid Cancer. Otolaryngol Head Neck Surg. 2012;146:26–32.

    Article  PubMed  Google Scholar 

  69. Bains S, Reimert M, Win AZ, Khan S, Aparici CM. A patient with psoriatic arthritis imaged with FDG-PET/CT demonstrated an unusual imaging pattern with muscle and fascia involvement: a case report. Nucl Med Mol Imaging. 2012;46:138–43.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Vos CG, Hartemink KJ, Muller S, Oosterhuis JW, Meijer S, van den Tol MP, Comans EF. Clinical applications of FDG-probe guided surgery. Acta Chir Belg. 2012;112:414–8.

    CAS  PubMed  Google Scholar 

  71. Hall N, Murrey D, Povoski S, Barker D, Zhang J, Bahnson E, Chow A, Martin EW, Knopp MV. Evaluation of 18FDG PET/CT image quality with prolonged injection-to-scan times. Mol Imaging Biol. 2012;14(2, supplement):P610.

    Google Scholar 

  72. Hall NC, Povoski SP, Zhang J, Knopp MV, Martin Jr EW. Use of intraoperative nuclear medicine imaging technology: strategy for improved patient management. Expert Rev Med Devices. 2013;10:149–52.

    Article  CAS  PubMed  Google Scholar 

  73. Povoski SP, Chapman GJ, Murrey Jr DA, Lee R, Martin Jr EW, Hall NC. Intraoperative detection of 18F-FDG-avid tissue sites using the increased probe counting efficiency of the K-alpha probe design and variance-based statistical analysis with the three-sigma criteria. BMC Cancer. 2013;13:98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Povoski SP, Murrey Jr DA, Smith SM, Martin Jr EW, Hall NC. 18F-FDG PET/CT oncologic imaging at extended injection-to-scan acquisition time intervals derived from a single-institution 18F-FDG-directed surgery experience: feasibility and quantification of 18F-FDG accumulation within 18F-FDG-avid lesions and background tissues. BMC Cancer. 2014;14:453.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Chapman GJ, Povoski SP, Hall NC, Murrey Jr DA, Lee R, Martin Jr EW. Comparison of two threshold detection criteria methodologies for determination of probe positivity for intraoperative in situ identification of presumed abnormal 18F-FDG-avid tissue sites during radioguided oncologic surgery. BMC Cancer. 2014;14:667.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Povoski SP, Hall NC, Murrey Jr DA, Wright CL, Martin Jr EW. Feasibility of a multimodal 18F-FDG-directed lymph node surgical excisional biopsy approach for appropriate diagnostic tissue sampling in patients with suspected lymphoma. BMC Cancer. 2015;15:378.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Prior JO, Kosinski M, Delaloye AB, Denys A. Initial report of PET/CT-guided radiofrequency ablation of liver metastases. J Vasc Interv Radiol. 2007;18:801–3.

    Article  PubMed  Google Scholar 

  78. Mallarajapatna GJ, Kallur KG, Ramanna NK, Susheela SP, Ramachandra PG. PET/CT-guided percutaneous biopsy of isolated intramuscular metastases from postcricoid cancer. J Nucl Med Technol. 2009;37:220–2.

    Article  PubMed  Google Scholar 

  79. Klaeser B, Mueller MD, Schmid RA, Guevara C, Krause T, Wiskirchen J. PET-CT-guided interventions in the management of FDG-positive lesions in patients suffering from solid malignancies: initial experiences. Eur Radiol. 2009;19:1780–5.

    Article  PubMed  Google Scholar 

  80. Klaeser B, Wiskirchen J, Wartenberg J, Weitzel T, Schmid RA, Mueller MD, Krause T. PET/CT-guided biopsies of metabolically active bone lesions: applications and clinical impact. Eur J Nucl Med Mol Imaging. 2010;37:2027–36.

    Article  PubMed  Google Scholar 

  81. Tatli S, Gerbaudo VH, Feeley CM, Shyn PB, Tuncali K, Silverman SG. PET/CT-guided percutaneous biopsy of abdominal masses: initial experience. J Vasc Interv Radiol. 2011;22:507–14.

    Article  PubMed  Google Scholar 

  82. Shyn PB, Tatli S, Sainani NI, Morrison PR, Habbab F, Catalano P, Silverman SG. Minimizing image misregistration during PET/CT-guided percutaneous interventions with monitored breath-hold PET and CT acquisitions. J Vasc Interv Radiol. 2011;22:1287–92.

    Article  PubMed  Google Scholar 

  83. Sainani NI, Shyn PB, Tatli S, Morrison PR, Tuncali K, Silverman SG. PET/CT-guided radiofrequency and cryoablation: is tumor fluorine-18 fluorodeoxyglucose activity dissipated by thermal ablation? J Vasc Interv Radiol. 2011;22:354–60.

    Article  PubMed  Google Scholar 

  84. Werner MK, Aschoff P, Reimold M, Pfannenberg C. FDG-PET/CT-guided biopsy of bone metastases sets a new course in patient management after extensive imaging and multiple futile biopsies. Br J Radiol. 2011;84:e65–7.

    Article  CAS  PubMed  Google Scholar 

  85. Schoellnast H, Larson SM, Nehmeh SA, Carrasquillo JA, Thornton RH, Solomon SB. Radiofrequency ablation of non-small-cell carcinoma of the lung under real-time FDG PET CT guidance. Cardiovasc Intervent Radiol. 2011;34 Suppl 2:S182–5.

    Article  PubMed  Google Scholar 

  86. Ryan ER, Sofocleous CT, Schöder H, Carrasquillo JA, Nehmeh S, Larson SM, Thornton R, Siegelbaum RH, Erinjeri JP, Solomon SB. Split-dose technique for FDG PET/CT-guided percutaneous ablation: a method to facilitate lesion targeting and to provide immediate assessment of treatment effectiveness. Radiology. 2013;268:288–95.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Cerci JJ, Pereira Neto CC, Krauzer C, Sakamoto DG, Vitola JV. The impact of coaxial core biopsy guided by FDG PET/CT in oncological patients. Eur J Nucl Med Mol Imaging. 2013;40:98–103.

    Article  PubMed  Google Scholar 

  88. Win AZ, Aparici CM. Real-time FDG PET/CT-guided bone biopsy in a patient with two primary malignancies. Eur J Nucl Med Mol Imaging. 2013;40:1787–8.

    Article  PubMed  Google Scholar 

  89. Shyn PB. Interventional positron emission tomography/computed tomography: state-of-the-art. Tech Vasc Interv Radiol. 2013;16:182–90.

    Article  PubMed  Google Scholar 

  90. Shyn PB, Tatli S, Sahni VA, Sadow CA, Forgione K, Mauri G, Morrison PR, Catalano PJ, Silverman SG. PET/CT-guided percutaneous liver mass biopsies and ablations: targeting accuracy of a single 20 s breath-hold PET acquisition. Clin Radiol. 2014;69:410–5.

    Article  CAS  PubMed  Google Scholar 

  91. Cerci JJ, Huber FZT, Bogoni M. PET/CT-guided biopsy of liver lesions. Clin Transl Imaging. 2014;2:157–63.

    Article  Google Scholar 

  92. Aparici CM, Win AZ. Use of positron emission tomography/CT to perform biopsy of a mesenteric mass. J Vasc Interv Radiol. 2014;25:1609.

    Article  PubMed  Google Scholar 

  93. Aparici CM, Aslam R, Win AZ. Initial experience of utilizing real-time intra-procedural PET/CT biopsy. J Clin Imaging Sci. 2014:4:54.

    Google Scholar 

  94. Chakraborty PS, Dhull VS, Karunanithi S, Verma S, Kumar R. Malignant melanoma with cavitary pulmonary metastasis: Diagnostic dilemma resolved by FDG PET/CT guided biopsy. Indian J Nucl Med. 2014;29:196–7.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Cornelis F, Silk M, Schoder H, Takaki H, Durack JC, Erinjeri JP, Sofocleous CT, Siegelbaum RH, Maybody M, Solomon SB. Performance of intra-procedural 18-fluorodeoxyglucose PET/CT-guided biopsies for lesions suspected of malignancy but poorly visualized with other modalities. Eur J Nucl Med Mol Imaging. 2014;41:2265–72.

    Article  CAS  PubMed  Google Scholar 

  96. Syder SE, Kilbourne MR. Chemistry of fluorine-18 radiopharmaceuticals. In: Welch MJ, Redvanly CS, editors. Handbook of radiopharmaceuticals: radiochemistry and applications. 1st ed. Hoboken: John Wiley and Sons, Ltd; 2003. p. 195–228.

    Google Scholar 

  97. Fowler JS, Fowler JS, Ido T. Design and synthesis of 2-deoxy-2-[18F] fluoro-D-glucose (18FDG). In: Welch MJ, Redvanly CS, editors. Handbook of radiopharmaceuticals: radiochemistry and applications. 1st ed. Hoboken: John Wiley and Sons, Ltd; 2003. p. 307–22.

    Google Scholar 

  98. Warburg O, Posener K, Negelein E. The metabolism of the carcinoma cell. In: Warburg O, editor. The mechanism of tumors. 1st ed. New York: Richard R. Smith, Inc; 1931. p. 129–69.

    Google Scholar 

  99. Warburg O. On the origin of cancer cells. Science. 1956;123(3191):309–14.

    Article  CAS  PubMed  Google Scholar 

  100. Weber G. Enzymology of cancer cells. N Engl J Med. 1977;296:486–93.

    Article  CAS  PubMed  Google Scholar 

  101. Merrall NW, Plevin R, Gould GW. Growth factors, mitogens, oncogenes and the regulation of glucose transport. Cell Signal. 1993;5:667–75.

    Article  CAS  PubMed  Google Scholar 

  102. Pauwels EK, Ribeiro MJ, Stoot JH, McCready VR, Bourguignon M, Mazière B. FDG accumulation and tumor biology. Nucl Med Biol. 1998;25:317–22.

    Article  CAS  PubMed  Google Scholar 

  103. Gambhir SS. Molecular imaging of cancer with positron emission tomography. Nat Rev Cancer. 2002;2:683–93.

    Article  CAS  PubMed  Google Scholar 

  104. Buck AK, Reske SN. Cellular origin and molecular mechanisms of 18F-FDG uptake: is there a contribution of the endothelium? J Nucl Med. 2004;45:461–3.

    CAS  PubMed  Google Scholar 

  105. Otsuka H, Graham M, Kubo A, Nishitani H. Clinical utility of FDG PET. J Med Invest. 2004;51:14–9.

    Article  PubMed  Google Scholar 

  106. Otsuka H, Morita N, Yamashita K, Nishitani H. FDG-PET/CT for cancer management. J Med Invest. 2007;54:195–9.

    Article  PubMed  Google Scholar 

  107. Büsing KA, Schönberg SO, Brade J, Wasser K. Impact of blood glucose, diabetes, insulin, and obesity on standardized uptake values in tumors and healthy organs on 18F-FDG PET/CT. Nucl Med Biol. 2013;40:206–13.

    Article  PubMed  CAS  Google Scholar 

  108. Heller S, Zanzonico P. Nuclear probes and intraoperative gamma cameras. Semin Nucl Med. 2011;41:166–81.

    Article  PubMed  Google Scholar 

  109. Martin EW, Chapman GJ, Subramaniam VV, Povoski SP. Intraoperative detection of gamma emissions using K-alpha X-ray fluorescence. Expert Rev Med Devices. 2010;7:431–4.

    Article  PubMed  Google Scholar 

  110. GFE Gesellschaft für Forschungs und Entwicklungsservice mbH; Gamma Locator DXI. http://www.gfe-service.de/en/ylocator.php.

  111. Gerl J, Ameil F, Kojouharov Z, Surowiec D. High energy gamma probe with position sensing capability. European Patent EP 1 596 223 B1; Filed May 10, 2005; Published January 21, 2009.

    Google Scholar 

  112. Gerl J. Kojouharov Z, Ameil E, Surowiec D. High energy gamma probe with position sensing capability. United States Patent US 7,312,460 B2; Filed May 10, 2005; Published December 25, 2007.

    Google Scholar 

  113. Lecomte R, Schmitt D, Lamoureux G. Geometry study of a high resolution PET detection system using small detectors. IEEE Trans Nucl Sci. 1984;31:556–61.

    Article  Google Scholar 

  114. Levin CS. New imaging technologies to enhance the molecular sensitivity of positron emission tomography. Proc IEEE. 2008;96:439–67.

    Article  CAS  Google Scholar 

  115. Raylman RR, Wahl RL. A fiber-optically coupled positron-sensitive surgical probe. J Nucl Med. 1994;35:909–13.

    CAS  PubMed  Google Scholar 

  116. Daghighian F, Mazziotta JC, Hoffman EJ, Shenderov P, Eshaghian B, Siegel S, Phelps ME. Intraoperative beta probe: a device for detecting tissue labeled with positron or electron emitting isotopes during surgery. Med Phys. 1994;21:153–7.

    Article  CAS  PubMed  Google Scholar 

  117. Raylman RR, Fisher SJ, Brown RS, Ethier SP, Wahl RL. Fluorine-18-fluorodeoxyglucose-guided breast cancer surgery with a positron-sensitive probe: validation in preclinical studies. J Nucl Med. 1995;36:1869–74.

    CAS  PubMed  Google Scholar 

  118. Raylman RR, Wahl RL. Evaluation of ion-implanted-silicon detectors for use in intraoperative positron-sensitive probes. Med Phys. 1996;23:1889–95.

    Article  CAS  PubMed  Google Scholar 

  119. Raylman RR. A solid-state intraoperative beta probe system. (Nuclear Science) IEEE Trans Nucl Sci. 2000;47:1696–703.

    Article  CAS  Google Scholar 

  120. Yasuda S, Makuuchi H, Fujii H, Nakasaki H, Mukai M, Sadahiro S, Tajima T, Ide M, Shohtsu A, Suzuki Y. Evaluation of a surgical gamma probe for detection of 18F-FDG. Tokai J Exp Clin Med. 2000;25:93–9.

    CAS  PubMed  Google Scholar 

  121. Raylman RR. Performance of a dual, solid-state intraoperative probe system with 18F, 99mTc, and (111)In. J Nucl Med. 2001;42:352–60.

    CAS  PubMed  Google Scholar 

  122. Raylman RR, Srinivasan A. Endoprobe: a system for radionuclide-guided endoscopy. Med Phys. 2004;31:3306–13.

    Article  PubMed  Google Scholar 

  123. Yamamoto S, Matsumoto K, Senda M. Optimum threshold setting for a positron-sensitive probe with background rejection capability. Ann Nucl Med. 2004;18:251–6.

    Article  PubMed  Google Scholar 

  124. Yamamoto S, Matsumoto K, Sakamoto S, Tarutani K, Minato K, Senda M. An intra-operative positron probe with background rejection capability for FDG-guided surgery. Ann Nucl Med. 2005;19:23–8.

    Article  PubMed  Google Scholar 

  125. Yamamoto S, Higashi T, Matsumoto K, Senda M. Development of a positron-imaging detector with background rejection capability. Ann Nucl Med. 2006;20:655–62.

    Article  PubMed  Google Scholar 

  126. Strong VE, Galanis CJ, Riedl CC, Longo VA, Daghighian F, Humm JL, Larson SM, Fong Y. Portable PET probes are a novel tool for intraoperative localization of tumor deposits. Ann Surg Innov Res. 2009;3:2.

    Article  PubMed  PubMed Central  Google Scholar 

  127. Singh B, Stack Jr BC, Thacker S, Gaysinskiy V, Bartel T, Lowe V, Cool S, Entine G, Nagarkar V. A hand-held beta imaging probe for FDG. Ann Nucl Med. 2013;27:203–8.

    Article  PubMed  PubMed Central  Google Scholar 

  128. Delbeke D, Coleman RE, Guiberteau MJ, Brown ML, Royal HD, Siegel BA, Townsend DW, Berland LL, Parker JA, Hubner K, Stabin MG, Zubal G, Kachelriess M, Cronin V, Holbrook S. Procedure guideline for tumor imaging with 18F-FDG PET/CT 1.0. J Nucl Med. 2006;47:885–95.

    PubMed  Google Scholar 

  129. American College of Radiology (ACR) and the Society for Pediatric Radiology (SPR) Practice Parameter for Performing FDG-PET/CT in Oncology, Res. 24 – 2012, Amended 2014 (Res. 39). http://www.acr.org/~/media/ACR/Documents/PGTS/guidelines/FDG_PET_CT.pdf.

  130. Lodge MA, Lucas JD, Marsden PK, Cronin BF, O’Doherty MJ, Smith MA. A PET study of 18FDG uptake in soft tissue masses. Eur J Nucl Med. 1999;26:22–30.

    Article  CAS  PubMed  Google Scholar 

  131. Spence AM, Muzi M, Mankoff DA, O’Sullivan SF, Link JM, Lewellen TK, Lewellen B, Pham P, Minoshima S, Swanson K, Krohn KA. 18F-FDG PET of gliomas at delayed intervals: improved distinction between tumor and normal gray matter. J Nucl Med. 2004;45:1653–9.

    PubMed  Google Scholar 

  132. Basu S, Kung J, Houseni M, Zhuang H, Tidmarsh GF, Alavi A. Temporal profile of fluorodeoxyglucose uptake in malignant lesions and normal organs over extended time periods in patients with lung carcinoma: implications for its utilization in assessing malignant lesions. Q J Nucl Med Mol Imaging. 2009;53:9–19.

    CAS  PubMed  Google Scholar 

  133. Horky LL, Hsiao EM, Weiss SE, Drappatz J, Gerbaudo VH. Dual phase FDG-PET imaging of brain metastases provides superior assessment of recurrence versus post-treatment necrosis. J Neurooncol. 2011;103:137–46.

    Article  PubMed  Google Scholar 

  134. Prieto E, Martí-Climent JM, Domínguez-Prado I, Garrastachu P, Díez-Valle R, Tejada S, Aristu JJ, Peñuelas I, Arbizu J. Voxel-based analysis of dual-time-point 18F-FDG PET images for brain tumor identification and delineation. J Nucl Med. 2011;52:865–72.

    Article  PubMed  Google Scholar 

  135. Heckathorne E, Dimock C, Dahlbom M. Radiation dose to surgical staff from positron-emitter-based localization and radiosurgery of tumors. Health Phys. 2008;95:220–6.

    Article  CAS  PubMed  Google Scholar 

  136. Heckathorne E, Dimock C, Dahlbom M, Daghighian F. Radiation dose to surgical staff from PET-based localization and radiosurgery of tumors. Health Phys. 2007;93:S45.

    Google Scholar 

  137. Andersen PA, Chakera AH, Klausen TL, Binderup T, Grossjohann HS, Friis E, Palnaes Hansen C, Schmidt G, Kjaer A, Hesse B. Radiation exposure to surgical staff during F-18-FDG-guided cancer surgery. Eur J Nucl Med Mol Imaging. 2008;35:624–9.

    Article  CAS  PubMed  Google Scholar 

  138. United States Nuclear Regulatory Commission (1991). Section 20.1201 – occupational dose limits for adults, subpart C – occupational dose limits, part 20 – Standards for Protection Against Radiation, Chapter I – Nuclear Regulatory Commission, NRC Regulations Title 10 of the Code of Federal Regulations. http://www.nrc.gov/reading-rm/doc-collections/cfr/part020/full-text.html.

  139. ICRP. Publication 60. The 1990 recommendations of the international commission on radiological protection. Ann ICRP. 1991;21(1–3):1–201.

    Google Scholar 

  140. ICRP. Publication 103. The 2007 recommendations of the international commission on radiological protection (chapters 5 and 6). Ann ICRP. 2007;37(2-4):81–123.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen P. Povoski MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Povoski, S.P., Murrey, D.A., Hall, N.C. (2016). 18F-FDG-Directed Surgery and 18F-FDG-Directed Interventional Procedures. In: Herrmann, K., Nieweg, O., Povoski, S. (eds) Radioguided Surgery. Springer, Cham. https://doi.org/10.1007/978-3-319-26051-8_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-26051-8_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-26049-5

  • Online ISBN: 978-3-319-26051-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics