Skip to main content

Metabolism of Glucosinolates and Their Hydrolysis Products in Insect Herbivores

  • Chapter
The Formation, Structure and Activity of Phytochemicals

Part of the book series: Recent Advances in Phytochemistry ((RAPT,volume 45))

Abstract

The glucosinolates produced by plants of the order Brassicales are part of a potent activated chemical defense system. These nitrogen- and sulfur-containing glucosides are hydrolyzed by myrosinases upon tissue damage, forming a toxic mixture of compounds consisting mostly of the corresponding isothiocyanates and nitriles. While humans find these compounds pleasantly spicy and beneficial to health, many of them are noxious and deterrent towards microorganisms and insect herbivores. Nonetheless, ingenious and efficient biochemical mechanisms employed by several insect herbivores enable these to feed on glucosinolate-producing plants, circumventing the effects of these plant defenses. Here, we summarize some of the counteradaptations utilized by insects to overcome the defense imposed by these compounds and their hydrolysis products. Insects can divert hydrolysis to less toxic products or desulfate the parent glucosinolates to preclude them from being hydrolyzed by myrosinases. Once hydrolysis occurs, toxic electrophilic hydrolysis products can be conjugated to glutathione and various amino acids. Another insect strategy is the rapid sequestration of ingested glucosinolates to prevent hydrolysis and allow them to be used in their own defense.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kliebenstein DJ (2004) Secondary metabolites and plant/environment interactions: a view through Arabidopsis thaliana tinged glasses. Plant Cell Environ 27:675–684

    Article  CAS  Google Scholar 

  2. Kliebenstein DJ, Rowe HC, Denby KJ (2005) Secondary metabolites influence Arabidopsis/Botrytis interactions: variation in host production and pathogen sensitivity. Plant J 44:25–36

    Article  CAS  PubMed  Google Scholar 

  3. Wink M (1988) Plant-breeding—importance of plant secondary metabolites for protection against pathogens and herbivores. Theor Appl Genet 75:225–233

    Article  CAS  Google Scholar 

  4. Hartmann T (2007) From waste products to ecochemicals: fifty years research of plant secondary metabolism. Phytochemistry 68:2831–2846

    Article  CAS  PubMed  Google Scholar 

  5. Fränkel GS (1959) Raison d’être of secondary plant substances. Science 129:1466–1470

    Article  Google Scholar 

  6. Wittstock U, Kliebenstein DJ, Lambrix V, Reichelt M, Gershenzon J (2003) Glucosinolate hydrolysis and its impact on generalist and specialist insect herbivores. Recent Adv Phytochem 37:101–125

    Article  CAS  Google Scholar 

  7. Fahey JW, Zalcmann AT, Talalay P (2001) The chemical diversity and distribution of glucosinolates and isothiocyanates among plants. Phytochemistry 56:5–51

    Article  CAS  PubMed  Google Scholar 

  8. Agerbirk N, Olsen CE (2012) Glucosinolate structures in evolution. Phytochemistry 77:16–45

    Article  CAS  PubMed  Google Scholar 

  9. Clarke DB (2010) Glucosinolates, structures and analysis in food. Anal Methods 2:310–325

    Article  CAS  Google Scholar 

  10. Halkier BA, Gershenzon J (2006) Biology and biochemistry of glucosinolates. Annu Rev Plant Biol 57:303–333

    Article  CAS  PubMed  Google Scholar 

  11. Sønderby IE, Geu-Flores F, Halkier BA (2010) Biosynthesis of glucosinolates—gene discovery and beyond. Trends Plant Sci 15:283–290

    Article  PubMed  CAS  Google Scholar 

  12. Halkier BA, Du LC (1997) The biosynthesis of glucosinolates. Trends Plant Sci 2:425–431

    Article  Google Scholar 

  13. Benderoth M, Pfalz M, Kroymann J (2009) Methylthioalkylmalate synthases: genetics, ecology and evolution. Phytochem Rev 8:255–268

    Article  CAS  Google Scholar 

  14. Geu-Flores F, Olsen CE, Halkier BA (2009) Towards engineering glucosinolates into non-cruciferous plants. Planta 229:261–270

    Article  CAS  PubMed  Google Scholar 

  15. Beekwilder J, van Leeuwen W, van Dam NM, Bertossi M, Grandi V, Mizzi L, Soloviev M, Szabados L, Molthoff JW, Schipper B, Verbocht H, de Vos RCH, Morandini P, Aarts MGM, Bovy A (2008) The impact of absence of aliphatic glucosinolates on insect herbivory in Arabidopsis. PLoS One 3, e2068

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  16. Müller R, de Vos M, Sun JY, Sønderby IE, Halkier BA, Wittstock U, Jander G (2010) Differential effects of indole and aliphatic glucosinolates on lepidopteran herbivores. J Chem Ecol 36:905–913

    Article  PubMed  CAS  Google Scholar 

  17. Brader G, Mikkelsen MD, Halkier BA, Palva ET (2006) Altering glucosinolate profiles modulates disease resistance in plants. Plant J 46:758–767

    Article  CAS  PubMed  Google Scholar 

  18. Schramm K, Vassão DG, Reichelt M, Gershenzon J, Wittstock U (2012) Metabolism of glucosinolate-derived isothiocyanates to glutathione conjugates in generalist lepidopteran herbivores. Insect Biochem Mol Biol 42:174–182

    Article  CAS  PubMed  Google Scholar 

  19. Rodman JE, Soltis PS, Soltis DE, Sytsma KJ, Karol KG (1998) Parallel evolution of glucosinolate biosynthesis inferred from congruent nuclear and plastid gene phylogenies. Am J Bot 85:997–1006

    Article  CAS  PubMed  Google Scholar 

  20. Mithen R, Bennett R, Marquez J (2010) Glucosinolate biochemical diversity and innovation in the Brassicales. Phytochemistry 71:2074–2086

    Article  CAS  PubMed  Google Scholar 

  21. Pedras MSC, Okinyo DPO (2008) Remarkable incorporation of the first sulfur containing indole derivative: another piece in the biosynthetic puzzle of crucifer phytoalexins. Org Biomol Chem 6:51–54

    Article  CAS  PubMed  Google Scholar 

  22. Pedras MSC, Yaya EE, Glawischnig E (2011) The phytoalexins from cultivated and wild crucifers: chemistry and biology. Nat Prod Rep 28:1381–1405

    Article  CAS  PubMed  Google Scholar 

  23. Pedras MSC, Yaya EE, Hossain S (2010) Unveiling the phytoalexin biosynthetic puzzle in salt cress: unprecedented incorporation of glucobrassicin into wasalexins A and B. Org Biomol Chem 8:5150–5158

    Article  CAS  PubMed  Google Scholar 

  24. Brown PD, Tokuhisa JG, Reichelt M, Gershenzon J (2003) Variation of glucosinolate accumulation among different organs and developmental stages of Arabidopsis thaliana. Phytochemistry 62:471–481

    Article  CAS  PubMed  Google Scholar 

  25. Hopkins RJ, van Dam NM, van Loon JJ (2009) Role of glucosinolates in insect-plant relationships and multitrophic interactions. Annu Rev Entomol 54:57–83

    Article  CAS  PubMed  Google Scholar 

  26. Kliebenstein DJ, Kroymann J, Brown P, Figuth A, Pedersen D, Gershenzon J, Mitchell-Olds T (2001) Genetic control of natural variation in Arabidopsis glucosinolate accumulation. Plant Physiol 126:811–825

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Textor S, Gershenzon J (2009) Herbivore induction of the glucosinolate-myrosinase defense system: major trends, biochemical bases and ecological significance. Phytochem Rev 8:149–170

    Article  CAS  Google Scholar 

  28. De Vos M, Jander G (2009) Myzus persicae (green peach aphid) salivary components induce defence responses in Arabidopsis thaliana. Plant Cell Environ 32:1548–1560

    Article  PubMed  CAS  Google Scholar 

  29. Kim JH, Jander G (2007) Myzus persicae (green peach aphid) feeding on Arabidopsis induces the formation of a deterrent indole glucosinolate. Plant J 49:1008–1019

    Article  CAS  PubMed  Google Scholar 

  30. Koritsas VM, Lewis JA, Fenwick GR (1991) Glucosinolate responses of oilseed rape, mustard and kale to mechanical wounding and infestation by cabbage stem flea beetle (Psylliodes chrysocephala). Ann Appl Biol 118:209–221

    Article  Google Scholar 

  31. Shroff R, Vergara F, Muck A, Svatoš A, Gershenzon J (2008) Nonuniform distribution of glucosinolates in Arabidopsis thaliana leaves has important consequences for plant defense. Proc Natl Acad Sci U S A 105:6196–6201

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Städler E, Renwick JAA, Radke CD, Sachdevgupta K (1995) Tarsal contact chemoreceptor response to glucosinolates and cardenolides mediating oviposition in Pieris rapae. Physiol Entomol 20:175–187

    Article  Google Scholar 

  33. Marazzi C, Patrian B, Städler E (2004) Secondary metabolites of the leaf surface affected by sulphur fertilisation and perceived by the diamondback moth. Chemoecology 14:81–86

    Article  CAS  Google Scholar 

  34. Marazzi C, Städler E (2004) Arabidopsis thaliana leaf-surface extracts are detected by the cabbage root fly (Delia radicum) and stimulate oviposition. Physiol Entomol 29:192–198

    Article  CAS  Google Scholar 

  35. Renwick JA, Radke C, Sachdev-Gupta K, Städler E (1992) Leaf surface chemicals stimulating oviposition by Pieris rapae (Lepidoptera: Pieridae) on cabbage. Chemoecology 3:33–38

    Article  CAS  Google Scholar 

  36. Badenes-Perez FR, Reichelt M, Gershenzon J, Heckel DG (2013) Interaction of glucosinolate content of Arabidopsis thaliana mutant lines and feeding and oviposition by generalist and specialist lepidopterans. Phytochemistry 86:36–43

    Article  CAS  PubMed  Google Scholar 

  37. Huang XP, Renwick JAA (1993) Differential selection of host plants by two Pieris species—the role of oviposition stimulants and deterrents. Entomol Exp Appl 68:59–69

    Article  Google Scholar 

  38. Hicks KL (1974) Mustard oil glucosides—feeding stimulants for adult cabbage flea beetles, Phyllotreta cruciferae (Coleoptera-Chrysomelidae). Ann Entomol Soc Am 67:261–264

    Article  CAS  Google Scholar 

  39. David WAL, Gardiner BO (1966) Mustard oil glucosides as feeding stimulants for Pieris brassicae larvae in a semi-synthetic diet. Entomol Exp Appl 9:247–255

    Article  CAS  Google Scholar 

  40. Perkins LE, Cribb BW, Brewer PB, Hanan J, Grant M, de Torres M, Zalucki MP (2013) Generalist insects behave in a jasmonate-dependent manner on their host plants, leaving induced areas quickly and staying longer on distant parts. Proc R Soc Lond B 280:20122646

    Article  CAS  Google Scholar 

  41. Bones AM, Rossiter JT (1996) The myrosinase-glucosinolate system, its organisation and biochemistry. Physiol Plantarum 97:194–208

    Article  CAS  Google Scholar 

  42. Matile P (1980) The mustard oil bomb—compartmentation of the myrosinase system. Biochem Physiol Pflanz 175:722–731

    Article  CAS  Google Scholar 

  43. Koroleva OA, Davies A, Deeken R, Thorpe MR, Tomos AD, Hedrich R (2000) Identification of a new glucosinolate-rich cell type in Arabidopsis flower stalk. Plant Physiol 124:599–608

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Zhao ZX, Zhang W, Stanley BA, Assmann SM (2008) Functional proteomics of Arabidopsis thaliana guard cells uncovers new stomatal signaling pathways. Plant Cell 20:3210–3226

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Andreasson E, Jorgensen LB (2003) Localization of plant myrosinases and glucosinolates. Recent Adv Phytochem 37:79–99

    Article  CAS  Google Scholar 

  46. Wittstock U, Burow M (2010) Glucosinolate breakdown in Arabidopsis: mechanism, regulation and biological significance. Arabidopsis Book 8, e0134

    Article  PubMed Central  PubMed  Google Scholar 

  47. Wittstock U, Burow M (2007) Tipping the scales—specifier proteins in glucosinolate hydrolysis. IUBMB Life 59:744–751

    Article  CAS  PubMed  Google Scholar 

  48. Burow M, Rice M, Hause B, Gershenzon J, Wittstock U (2007) Cell- and tissue-specific localization and regulation of the epithiospecifier protein in Arabidopsis thaliana. Plant Mol Biol 64:173–185

    Article  CAS  PubMed  Google Scholar 

  49. Burow M, Bergner A, Gershenzon J, Wittstock U (2007) Glucosinolate hydrolysis in Lepidium sativum—identification of the thiocyanate-forming protein. Plant Mol Biol 63:49–61

    Article  CAS  PubMed  Google Scholar 

  50. Burow M, Losansky A, Müller R, Plock A, Kliebenstein DJ, Wittstock U (2009) The genetic basis of constitutive and herbivore-induced ESP-independent nitrile formation in Arabidopsis. Plant Physiol 149:561–574

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Lambrix V, Reichelt M, Mitchell-Olds T, Kliebenstein DJ, Gershenzon J (2001) The Arabidopsis epithiospecifier protein promotes the hydrolysis of glucosinolates to nitriles and influences Trichoplusia ni herbivory. Plant Cell 13:2793–2807

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  52. Wentzell AM, Kliebenstein DJ (2008) Genotype, age, tissue, and environment regulate the structural outcome of glucosinolate activation. Plant Physiol 147:415–428

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  53. Kissen R, Bones AM (2009) Nitrile-specifier proteins involved in glucosinolate hydrolysis in Arabidopsis thaliana. J Biol Chem 284:12057–12070

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  54. Kissen R, Rossiter JT, Bones AM (2009) The ‘mustard oil bomb’: not so easy to assemble? Localization, expression and distribution of the components of the myrosinase enzyme system. Phytochem Rev 8:69–86

    Article  CAS  Google Scholar 

  55. Tookey HL (1973) Crambe thioglucoside glucohydrolase (EC3.2.3.1)—separation of a protein required for epithiobutane formation. Can J Biochem 51:1654–1660

    Article  CAS  PubMed  Google Scholar 

  56. Mithen R, Raybould AF, Giamoustaris A (1995) Divergent selection for secondary metabolites between wild populations of Brassica oleracea and its implications for plant-herbivore interactions. Heredity 75:472–484

    Article  CAS  Google Scholar 

  57. Mewis I, Appel HM, Hom A, Raina R, Schultz JC (2005) Major signaling pathways modulate Arabidopsis glucosinolate accumulation and response to both phloem-feeding and chewing insects. Plant Physiol 138:1149–1162

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  58. Schlaeppi K, Bodenhausen N, Buchala A, Mauch F, Reymond P (2008) The glutathione-deficient mutant pad2-1 accumulates lower amounts of glucosinolates and is more susceptible to the insect herbivore Spodoptera littoralis. Plant J 55:774–786

    Article  CAS  PubMed  Google Scholar 

  59. Blau PA, Feeny P, Contardo L, Robson DS (1978) Allylglucosinolate and herbivorous caterpillars—contrast in toxicity and tolerance. Science 200:1296–1298

    Article  CAS  PubMed  Google Scholar 

  60. Lipka V, Dittgen J, Bednarek P, Bhat R, Wiermer M, Stein M, Landtag J, Brandt W, Rosahl S, Scheel D, Llorente F, Molina A, Parker J, Sommerville S, Schulze-Lefert P (2005) Pre- and postinvasion defenses both contribute to nonhost resistance in Arabidopsis. Science 310:1180–1183

    Article  CAS  PubMed  Google Scholar 

  61. Lipka U, Fuchs R, Lipka V (2008) Arabidopsis non-host resistance to powdery mildews. Curr Opin Plant Biol 11:404–411

    Article  CAS  PubMed  Google Scholar 

  62. Bednarek P, Piślewska-Bednarek M, Svatoš A, Schneider B, Doubský J, Mansurova M, Humphry M, Consonni C, Panstruga R, Sanchez-Vallet A, Molina A, Schulze-Lefert P (2009) A glucosinolate metabolism pathway in living plant cells mediates broad-spectrum antifungal defense. Science 323:101–106

    Article  CAS  PubMed  Google Scholar 

  63. Tierens KFMJ, Thomma BPHJ, Brouwer M, Schmidt J, Kistner K, Porzel A, Mauch-Mani B, Cammue BPA, Broekaert WF (2001) Study of the role of antimicrobial glucosinolate-derived isothiocyanates in resistance of Arabidopsis to microbial pathogens. Plant Physiol 125:1688–1699

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  64. Li Q, Eigenbrode SD, Stringham GR, Thiagarajah MR (2000) Feeding and growth of Plutella xylostella and Spodoptera eridania on Brassica juncea with varying glucosinolate concentrations and myrosinase activities. J Chem Ecol 26:2401–2419

    Article  CAS  Google Scholar 

  65. Lichtenstein EP, Morgan DG, Strong FM (1962) Naturally occurring insecticides—identification of 2-phenylethylisothiocyanate as an insecticide occurring naturally in edible part of turnips. J Agric Food Chem 10:30–33

    Article  Google Scholar 

  66. Seo ST, Tang CS (1982) Hawaiian fruit-flies (Diptera: Tephritidae)—toxicity of benzyl isothiocyanate against eggs or 1st instars of three species. J Econ Entomol 75:1132–1135

    Article  Google Scholar 

  67. Agrawal AA, Kurashige NS (2003) A role for isothiocyanates in plant resistance against the specialist herbivore Pieris rapae. J Chem Ecol 29:1403–1415

    Article  CAS  PubMed  Google Scholar 

  68. Wadleigh RW, Yu SJ (1988) Detoxification of isothiocyanate allelochemicals by glutathione transferase in three lepidopterous species. J Chem Ecol 14:1279–1288

    Article  CAS  PubMed  Google Scholar 

  69. Hanschen FS, Brüggemann N, Brodehl A, Mewis I, Schreiner M, Rohn S, Kroh LW (2012) Characterization of products from the reaction of glucosinolate-derived isothiocyanates with cysteine and lysine derivatives formed in either model systems or broccoli sprouts. J Agric Food Chem 60:7735–7745

    Article  CAS  PubMed  Google Scholar 

  70. Kawakishi S, Namiki M (1982) Oxidative cleavage of the disulfide bond of cysteine by allyl isothiocyanate. J Agric Food Chem 30:620–622

    Article  Google Scholar 

  71. Xiao Z, Mi L, Chung FL, Veenstra TD (2012) Proteomic analysis of covalent modifications of tubulin by isothiocyanates. J Nutr 142:1377–1381

    Article  CAS  Google Scholar 

  72. Kawakishi S, Kaneko T (1987) Interaction of proteins with allyl isothiocyanate. J Agric Food Chem 35:85–88

    Article  CAS  Google Scholar 

  73. Cross JV, Rady JM, Foss FW, Lyons C, Macdonald TL, Templeton DJ (2009) Nutrient isothiocyanates covalently modify and inhibit the inflammatory cytokine macrophage migration inhibitory factor (MIF). Biochem J 423:315–321

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  74. Hu CQ, Eggler AL, Mesecar AD, van Breemen RB (2011) Modification of Keap1 cysteine residues by sulforaphane. Chem Res Toxicol 24:515–521

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  75. Mi L, Di Pasqua AJ, Chung FL (2011) Proteins as binding targets of isothiocyanates in cancer prevention. Carcinogenesis 32:1405–1413

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  76. Burow M, Müller R, Gershenzon J, Wittstock U (2006) Altered glucosinolate hydrolysis in genetically engineered Arabidopsis thaliana and its influence on the larval development of Spodoptera littoralis. J Chem Ecol 32:2333–2349

    Article  CAS  PubMed  Google Scholar 

  77. Mumm R, Burow M, Bukovinszkine’Kiss G, Kazantzidou E, Wittstock U, Dicke M, Gershenzon J (2008) Formation of simple nitriles upon glucosinolate hydrolysis affects direct and indirect defense against the specialist herbivore, Pieris rapae. J Chem Ecol 34:1311–1321

    Article  CAS  PubMed  Google Scholar 

  78. Kissen R, Pope TW, Grant M, Pickett JA, Rossiter JT, Powell G (2009) Modifying the alkylglucosinolate profile in Arabidopsis thaliana alters the tritrophic interaction with the herbivore Brevicoryne brassicae and parasitoid Diaeretiella rapae. J Chem Ecol 35:958–969

    Article  CAS  PubMed  Google Scholar 

  79. Pope TW, Kissen R, Grant M, Pickett JA, Rossiter JT, Powell G (2008) Comparative innate responses of the aphid parasitoid Diaeretiella rapae to alkenyl glucosinolate derived isothiocyanates, nitriles, and epithionitriles. J Chem Ecol 34:1302–1310

    Article  CAS  PubMed  Google Scholar 

  80. Bidart-Bouzat MG, Kliebenstein DJ (2008) Differential levels of insect herbivory in the field associated with genotypic variation in glucosinolates in Arabidopsis thaliana. J Chem Ecol 34:1026–1037

    Article  CAS  PubMed  Google Scholar 

  81. Lüthy J, Benn MH (1977) Thiocyanate formation from glucosinolates: a study of autolysis of allylglucosinolate in Thlaspi arvense L. seed flour extracts. Can J Biochem 55:1028–1031

    Article  PubMed  Google Scholar 

  82. Kim JH, Lee BW, Schroeder FC, Jander G (2008) Identification of indole glucosinolate breakdown products with antifeedant effects on Myzus persicae (green peach aphid). Plant J 54:1015–1026

    Article  CAS  PubMed  Google Scholar 

  83. Mauricio R (1998) Costs of resistance to natural enemies in field populations of the annual plant Arabidopsis thaliana. Am Nat 151:20–28

    Article  CAS  PubMed  Google Scholar 

  84. Siemens DH, Mitchell-Olds T (1996) Glucosinolates and herbivory by specialists (Coleoptera: Chrysomelidae, Lepidoptera: Plutellidae): consequences of concentration and induced resistance. Environ Entomol 25:1344–1353

    Article  CAS  Google Scholar 

  85. Holzinger F, Frick C, Wink M (1992) Molecular basis for the insensitivity of the monarch (Danaus plexippus) to cardiac glycosides. FEBS Lett 314:477–480

    Article  CAS  PubMed  Google Scholar 

  86. Self LS, Hodgson E, Guthrie FE (1964) Metabolism of nicotine by tobacco-feeding insects. Nature 204:300–301

    Article  CAS  PubMed  Google Scholar 

  87. Ivie GW, Bull DL, Beier RC, Pryor NW, Oertli EH (1983) Metabolic detoxification: mechanism of insect resistance to plant psoralens. Science 221:374–376

    Article  CAS  PubMed  Google Scholar 

  88. Hartmann T (1999) Chemical ecology of pyrrolizidine alkaloids. Planta 207:483–495

    Article  CAS  Google Scholar 

  89. Dussourd DE, Eisner T (1987) Vein-cutting behavior: insect counterploy to the latex defense of plants. Science 237:898–901

    Article  CAS  PubMed  Google Scholar 

  90. Yu SJ (1984) Interactions of allelochemicals with detoxication enzymes of insecticide-susceptible and resistant fall armyworms. Pest Biochem Physiol 22:60–68

    Article  CAS  Google Scholar 

  91. Iqbal M, Wright DJ (1997) Evaluation of resistance, cross-resistance and synergism of abamectin and teflubenzuron in a multi-resistant field population of Plutella xylostella (Lepidoptera: Plutellidae). Bull Entomol Res 87:481–486

    Article  CAS  Google Scholar 

  92. Furlong MJ, Wright DJ (1994) Examination of stability of resistance and cross-resistance patterns to acylurea insect growth-regulators in-field populations of the diamondback moth, Plutella xylostella, from Malaysia. Pestic Sci 42:315–326

    Article  CAS  Google Scholar 

  93. Bartlet E, Parsons D, Williams IH, Clark SJ (1994) The influence of glucosinolates and sugars on feeding by the cabbage stem flea beetle, Psylliodes chrysocephala. Entomol Exp Appl 73:77–83

    Article  CAS  Google Scholar 

  94. Nault LR, Styer WE (1972) Effects of sinigrin on host selection by aphids. Entomol Exp Appl 15:423–437

    Article  CAS  Google Scholar 

  95. Lankau RA (2007) Specialist and generalist herbivores exert opposing selection on a chemical defense. New Phytol 175:176–184

    Article  PubMed  Google Scholar 

  96. Nishida R (2002) Sequestration of defensive metabolites from plants by lepidoptera. Annu Rev Entomol 47:57–92

    Article  CAS  PubMed  Google Scholar 

  97. Francis F, Lognay G, Wathelet JP, Haubruge E (2001) Effects of allelochemicals from first (Brassicaceae) and second (Myzus persicae and Brevicoryne brassicae) trophic levels on Adalia bipunctata. J Chem Ecol 27:243–256

    Article  CAS  PubMed  Google Scholar 

  98. Müller C, Agerbirk N, Olsen CE, Boevé JL, Schaffner U, Brakefield PM (2001) Sequestration of host plant glucosinolates in the defensive hemolymph of the sawfly Athalia rosae. J Chem Ecol 27:2505–2516

    Article  PubMed  Google Scholar 

  99. Aliabadi A, Renwick JAA, Whitman DW (2002) Sequestration of glucosinolates by harlequin bug Murgantia histrionica. J Chem Ecol 28:1749–1762

    Article  CAS  PubMed  Google Scholar 

  100. Winde I, Wittstock U (2011) Insect herbivore counteradaptations to the plant glucosinolate-myrosinase system. Phytochemistry 72:1566–1575

    Article  CAS  PubMed  Google Scholar 

  101. Giamoustaris A, Mithen R (1995) The effect of modifying the glucosinolate content of leaves of oilseed rape (Brassica napus ssp. oleifera) on its interaction with specialist and generalist pests. Ann Appl Biol 126:347–363

    Article  CAS  Google Scholar 

  102. Hilker M, Meiners T (2002) Induction of plant responses to oviposition and feeding by herbivorous arthropods: a comparison. Entomol Exp Appl 104:181–192

    Article  CAS  Google Scholar 

  103. Isidoro N, Bartlet E, Ziesmann J, Williams IH (1998) Antennal contact chemosensilla in Psylliodes chrysocephala responding to cruciferous allelochemicals. Physiol Entomol 23:131–138

    Article  Google Scholar 

  104. Roessingh P, Städler E, Baur R, Hurter J, Ramp T (1997) Tarsal chemoreceptors and oviposition behaviour of the cabbage root fly (Delia radicum) sensitive to fractions and new compounds of host-leaf surface extracts. Physiol Entomol 22:140–148

    Article  CAS  Google Scholar 

  105. Nielsen JK, Hansen ML, Agerbirk N, Petersen BL, Halkier BA (2001) Responses of the flea beetles Phyllotreta nemorum and P. cruciferae to metabolically engineered Arabidopsis thaliana with an altered glucosinolate profile. Chemoecology 11:75–83

    Article  CAS  Google Scholar 

  106. Sarfraz M, Dosdall LM, Keddie BA (2006) Diamondback moth-host plant interactions: implications for pest management. Crop Prot 25:625–639

    Article  CAS  Google Scholar 

  107. Åhman I (1986) Toxicities of host secondary compounds to eggs of the Brassica specialist Dasineura brassicae. J Chem Ecol 12:1481–1488

    Article  PubMed  Google Scholar 

  108. Wittstock U, Agerbirk N, Stauber EJ, Olsen CE, Hippler M, Mitchell-Olds T, Gershenzon J, Vogel H (2004) Successful herbivore attack due to metabolic diversion of a plant chemical defense. Proc Natl Acad Sci U S A 101:4859–4864

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  109. Ratzka A, Vogel H, Kliebenstein DJ, Mitchell-Olds T, Kroymann J (2002) Disarming the mustard oil bomb. Proc Natl Acad Sci U S A 99:11223–11228

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  110. Wheat CW, Vogel H, Wittstock U, Braby MF, Underwood D, Mitchell-Olds T (2007) The genetic basis of a plant-insect coevolutionary key innovation. Proc Natl Acad Sci U S A 104:20427–20431

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  111. Falk KL, Gershenzon J (2007) The desert locust, Schistocerca gregaria, detoxifies the glucosinolates of Schouwia purpurea by desulfation. J Chem Ecol 33:1542–1555

    Article  CAS  PubMed  Google Scholar 

  112. Ehrlich PR, Raven PH (1964) Butterflies and plants—a study in coevolution. Evolution 18:586–608

    Article  Google Scholar 

  113. Beilstein MA, Nagalingum NS, Clements MD, Manchester SR, Mathews S (2010) Dated molecular phylogenies indicate a Miocene origin for Arabidopsis thaliana. Proc Natl Acad Sci U S A 107:18724–18728

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  114. Vergara F, Svatoš A, Schneider B, Reichelt M, Gershenzon J, Wittstock U (2006) Glycine conjugates in a lepidopteran insect herbivore—the metabolism of benzylglucosinolate in the cabbage white butterfly, Pieris rapae. Chembiochem 7:1982–1989

    Article  CAS  PubMed  Google Scholar 

  115. Agerbirk N, Olsen CE, Topbjerg HB, Sørensen JC (2007) Host plant-dependent metabolism of 4-hydroxybenzylglucosinolate in Pieris rapae: Substrate specificity and effects of genetic modification and plant nitrile hydratase. Insect Biochem Mol Biol 37:1119–1130

    Article  CAS  PubMed  Google Scholar 

  116. Agerbirk N, Olsen CE, Poulsen E, Jacobsen N, Hansen PR (2010) Complex metabolism of aromatic glucosinolates in Pieris rapae caterpillars involving nitrile formation, hydroxylation, demethylation, sulfation, and host plant dependent carboxylic acid formation. Insect Biochem Mol Biol 40:126–137

    Article  CAS  PubMed  Google Scholar 

  117. Agerbirk N, Müller C, Olsen CE, Chew FS (2006) A common pathway for metabolism of 4-hydroxybenzylglucosinolate in Pieris and Anthocaris (Lepidoptera: Pieridae). Biochem Syst Ecol 34:189–198

    Article  CAS  Google Scholar 

  118. Winde IB (2011) Entgiftung des Glucosinolat-Myrosinase-systems durch generalistische Herbivoren der Lepidoptera. Doctoral Thesis, Technical University Braunschweig

    Google Scholar 

  119. Stauber EJ, Kuczka P, van Ohlen M, Vogt B, Janowitz T, Piotrowski M, Beuerle T, Wittstock U (2012) Turning the ‘mustard oil bomb’ into a ‘cyanide bomb’: aromatic glucosinolate metabolism in a specialist insect herbivore. PLoS One 7, e35545

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  120. Ballhorn DJ, Kautz S, Heil M, Hegeman A (2009) Cyanogenesis of wild lima bean (Phaseolus lunatus L.) is an efficient direct defence in nature. PLoS One 4, e5450

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  121. Gleadow RM, Woodrow IE (2002) Constraints on effectiveness of cyanogenic glycosides in herbivore defense. J Chem Ecol 28:1301–1313

    Article  CAS  PubMed  Google Scholar 

  122. Conn EE (1980) Cyanogenic compounds. Annu Rev Plant Phys 31:433–451

    Article  CAS  Google Scholar 

  123. Petroski RJ, Kwolek WF (1985) Interactions of a fungal thioglucoside glucohydrolase and cruciferous plant epithiospecifier protein to form 1-cyanoepithioalkanes: implications of an allosteric mechanism. Phytochemistry 24:213–216

    Article  CAS  Google Scholar 

  124. Foo HL, Grønning LM, Goodenough L, Bones AM, Danielsen BE, Whiting DA, Rossiter JT (2000) Purification and characterisation of epithiospecifier protein from Brassica napus: Enzymic intramolecular sulphur addition within alkenyl thiohydroximates derived from alkenyl glucosinolate hydrolysis. FEBS Lett 468:243–246

    Article  CAS  PubMed  Google Scholar 

  125. Burow M, Markert J, Gershenzon J (2006) Comparative biochemical characterization of nitrile-forming proteins from plants and insects that alter myrosinase-catalysed hydrolysis of glucosinolates. FEBS J 273:2432–2446

    Article  CAS  PubMed  Google Scholar 

  126. Rothschild M, Schoonhoven LM (1977) Assessment of egg load by Pieris brassicae (Lepidoptera: Pieridae). Nature 266:352–355

    Article  Google Scholar 

  127. Mewis I, Tokuhisa JG, Schultz JC, Appel HM, Ulrichs C, Gershenzon J (2006) Gene expression and glucosinolate accumulation in Arabidopsis thaliana in response to generalist and specialist herbivores of different feeding guilds and the role of defense signaling pathways. Phytochemistry 67:2450–2462

    Article  CAS  PubMed  Google Scholar 

  128. Barth C, Jander G (2006) Arabidopsis myrosinases TGG1 and TGG2 have redundant function in glucosinolate breakdown and insect defense. Plant J 46:549–562

    Article  CAS  PubMed  Google Scholar 

  129. Fatouros NE, Broekgaarden C, Bukovinszkine’Kiss G, van Loon JJA, Mumm R, Huigens ME, Dicke M, Hilker M (2008) Male-derived butterfly anti-aphrodisiac mediates induced indirect plant defense. Proc Natl Acad Sci U S A 105:10033–10038

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  130. Fatouros NE, Huigens ME, van Loon JJA, Dicke M, Hilker M (2005) Chemical communication—butterfly anti-aphrodisiac lures parasitic wasps. Nature 433:704

    Article  CAS  PubMed  Google Scholar 

  131. Andersson J, Borg-Karlson AK, Wiklund C (2003) Antiaphrodisiacs in pierid butterflies: a theme with variation! J Chem Ecol 29:1489–1499

    Article  CAS  PubMed  Google Scholar 

  132. Thies W (1979) Detection and utilization of a glucosinolate sulfohydrolase in the edible snail, Helix pomatia. Naturwissenschaften 66:364–365

    Article  CAS  Google Scholar 

  133. Shikita M, Fahey JW, Golden TR, Holtzclaw WD, Talalay P (1999) An unusual case of ‘uncompetitive activation’ by ascorbic acid: purification and kinetic properties of a myrosinase from Raphanus sativus seedlings. Biochem J 341:725–732

    CAS  PubMed Central  PubMed  Google Scholar 

  134. Sarosh BR, Wittstock U, Halkier BA, Ekbom B (2010) The influence of metabolically engineered glucosinolates profiles in Arabidopsis thaliana on Plutella xylostella preference and performance. Chemoecology 20:1–9

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  135. Kliebenstein D, Pedersen D, Barker B, Mitchell-Olds T (2002) Comparative analysis of quantitative trait loci controlling glucosinolates, myrosinase and insect resistance in Arabidopsis thaliana. Genetics 161:325–332

    CAS  PubMed Central  PubMed  Google Scholar 

  136. Falk KL, Kästner J, Bodenhausen N, Schramm K, Paetz C, Vassão DG, Reichelt M, von Knorre D, Bergelson J, Erb M, Gershenzon J, Meldau S (2014) The role of glucosinolates and the jasmonic acid pathway in resistance of Arabidopsis thaliana against molluscan herbivores. Mol Ecol 23:1188–1203

    Article  CAS  PubMed  Google Scholar 

  137. Ghaout S, Louveaux A, Mainguet AM, Deschamps M, Rahal Y (1991) What defense does Schouwia purpurea (Cruciferae) have against the desert locust—secondary compounds and nutritive value. J Chem Ecol 17:1499–1515

    Article  CAS  PubMed  Google Scholar 

  138. Mainguet AM, Louveaux A, El Sayed G, Rollin P (2000) Ability of a generalist insect, Schistocerca gregaria, to overcome thioglucoside defense in desert plants: Tolerance or adaptation? Entomol Exp Appl 94:309–317

    Article  CAS  Google Scholar 

  139. Terriere LC (1984) Induction of detoxification enzymes in insects. Annu Rev Entomol 29:71–88

    Article  CAS  PubMed  Google Scholar 

  140. Yu SJ, Hsu EL (1993) Induction of detoxification enzymes in phytophagous insects: roles of insecticide synergists, larval age, and species. Arch Insect Biochem Physiol 24:21–32

    Article  CAS  Google Scholar 

  141. Hoy CW, Head GP, Hall FR (1998) Spatial heterogeneity and insect adaption to toxins. Annu Rev Entomol 43:571–594

    Article  CAS  PubMed  Google Scholar 

  142. Noctor G, Queval G, Mhamdi A, Chaouch S, Foyer CH (2011) Glutathione. Arabidopsis Book 9, e0142

    Article  PubMed Central  PubMed  Google Scholar 

  143. Gloss AD, Vassão DG, Hailey AL, Dittrich ACN, Schramm K, Reichelt M, Rast TJ, Weichsel A, Cravens MG, Gershenzon J, Montfort WR, Whiteman NK (2014) Evolution in an ancient detoxification pathway is coupled with a transition to herbivory in the Drosophilidae. Mol Biol Evol 31:2441–2456

    Article  PubMed Central  PubMed  Google Scholar 

  144. Al Janobi AA, Mithen RF, Gasper AV, Shaw PN, Middleton RJ, Ortori CA, Barrett DA (2006) Quantitative measurement of sulforaphane, iberin and their mercapturic acid pathway metabolites in human plasma and urine using liquid chromatography-tandem electrospray ionisation mass spectrometry. J Chromatogr B 844:223–234

    Article  CAS  Google Scholar 

  145. Kassahun K, Davis M, Hu P, Martin B, Baillie T (1997) Biotransformation of the naturally occurring isothiocyanate sulforaphane in the rat: Identification of phase I metabolites and glutathione conjugates. Chem Res Toxicol 10:1228–1233

    Article  CAS  PubMed  Google Scholar 

  146. Eklind KI, Morse MA, Chung FL (1990) Distribution and metabolism of the natural anticarcinogen phenethyl isothiocyanate in A/J mice. Carcinogenesis 11:2033–2036

    Article  CAS  PubMed  Google Scholar 

  147. Francis F, Vanhaelen N, Haubruge E (2005) Glutathione S-transferases in the adaptation to plant secondary metabolites in the Myzus persicae aphid. Arch Insect Biochem Physiol 58:166–174

    Article  CAS  PubMed  Google Scholar 

  148. Tjallingii WF, Hogen Esch T (1993) Fine structure of aphid stylet routes in plant-tissues in correlation with EPG signals. Physiol Entomol 18:317–328

    Article  Google Scholar 

  149. Husebye H, Chadchawan S, Winge P, Thangstad OP, Bones AM (2002) Guard cell- and phloem idioblast-specific expression of thioglucoside glucohydrolase 1 (myrosinase) in Arabidopsis. Plant Physiol 128:1180–1188

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  150. Thangstad OP, Gilde B, Chadchawan S, Seem M, Husebye H, Bradley D, Bones AM (2004) Cell specific, cross-species expression of myrosinases in Brassica napus, Arabidopsis thaliana and Nicotiana tabacum. Plant Mol Biol 54:597–611

    Article  CAS  PubMed  Google Scholar 

  151. Pedras MS, Nycholat CM, Montaut S, Xu Y, Khan AQ (2002) Chemical defenses of crucifers: elicitation and metabolism of phytoalexins and indole-3-acetonitrile in brown mustard and turnip. Phytochemistry 59:611–625

    Article  CAS  PubMed  Google Scholar 

  152. Bodnaryk RP (1994) Potent effect of jasmonates on indole glucosinolates in oilseed rape and mustard. Phytochemistry 35:301–305

    Article  CAS  Google Scholar 

  153. Ramsey JS, Wilson ACC, de Vos M, Sun Q, Tamborindeguy C, Winfield A, Malloch G, Smith DM, Fenton B, Gray SM, Jander G (2007) Genomic resources for Myzus persicae: EST sequencing, SNP identification, and microarray design. BMC Genomics 8:423

    Article  PubMed Central  PubMed  Google Scholar 

  154. Agerbirk N, Olsen CE, Sørensen H (1998) Initial and final products, nitriles, and ascorbigens produced in myrosinase-catalyzed hydrolysis of indole glucosinolates. J Agric Food Chem 46:1563–1571

    Article  CAS  Google Scholar 

  155. Pfalz M, Vogel H, Kroymann J (2009) The gene controlling the indole glucosinolate modifier1 quantitative trait locus alters indole glucosinolate structures and aphid resistance in Arabidopsis. Plant Cell 21:985–999

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  156. Opitz S, Müller C (2009) Plant chemistry and insect sequestration. Chemoecology 19:117–154

    Article  CAS  Google Scholar 

  157. Duffey SS (1980) Sequestration of plant natural-products by insects. Annu Rev Entomol 25:447–477

    Article  CAS  Google Scholar 

  158. Abe F, Yamauchi T, Honda K, Omura H, Hayashi N (2001) Sequestration of phenanthroindolizidine alkaloids by an Asclepiadaceae-feeding danaid butterfly, Ideopsis similis. Phytochemistry 56:697–701

    Article  CAS  PubMed  Google Scholar 

  159. Dobler S, Daloze D, Pasteels JM (1998) Sequestration of plant compounds in a leaf beetle’s defensive secretion: cardenolides in Chrysochus. Chemoecology 8:111–118

    Article  CAS  Google Scholar 

  160. Dobler S, Haberer W, Witte L, Hartmann T (2000) Selective sequestration of pyrrolizidine alkaloids from diverse host plants by Longitarsus flea beetles. J Chem Ecol 26:1281–1298

    Article  CAS  Google Scholar 

  161. Schittko U, Burghardt F, Fiedler K (1999) Sequestration and distribution of flavonoids in the common blue butterfly Polyommatus icarus reared on Trifolium repens. Phytochemistry 51:609–614

    Article  CAS  Google Scholar 

  162. Scudder GGE, Moore LV, Isman MB (1986) Sequestration of cardenolides in Oncopeltus fasciatus: morphological and physiological adaptations. J Chem Ecol 12:1171–1187

    Article  CAS  PubMed  Google Scholar 

  163. Rothschild M, Edgar JA (1978) Pyrrolizidine alkaloids from Senecio vulgaris sequestered and stored by Danaus plexippus. J Zool 186:347–349

    Article  Google Scholar 

  164. Trigo JR (2000) The chemistry of antipredator defense by secondary compounds in neotropical lepidoptera: facts, perspectives and caveats. J Brazil Chem Soc 11:551–561

    Article  CAS  Google Scholar 

  165. Francis F, Lognay G, Wathelet JP, Haubruge E (2002) Characterisation of aphid myrosinase and degradation studies of glucosinolates. Arch Insect Biochem Physiol 50:173–182

    Article  CAS  PubMed  Google Scholar 

  166. Müller C (2009) Interactions between glucosinolate- and myrosinase-containing plants and the sawfly Athalia rosae. Phytochem Rev 8:121–134

    Article  CAS  Google Scholar 

  167. Francis F, Haubruge E, Gaspar C (2000) Influence of host plants on specialist/generalist aphids and on the development of Adalia bipunctata (Coleoptera: Coccinellidae). Eur J Entomol 97:481–485

    Article  CAS  Google Scholar 

  168. Bridges M, Jones AME, Bones AM, Hodgson C, Cole R, Bartlet E, Wallsgrove R, Karapapa VK, Watts N, Rossiter JT (2002) Spatial organization of the glucosinolate-myrosinase system in brassica specialist aphids is similar to that of the host plant. Proc R Soc Lond B 269:187–191

    Article  CAS  Google Scholar 

  169. Müller C, Brakefield PM (2003) Analysis of a chemical defense in sawfly larvae: easy bleeding targets predatory wasps in late summer. J Chem Ecol 29:2683–2694

    Article  PubMed  Google Scholar 

  170. Boevé JL, Schaffner U (2003) Why does the larval integument of some sawfly species disrupt so easily? The harmful hemolymph hypothesis. Oecologia 134:104–111

    Article  PubMed  Google Scholar 

  171. Ohara Y, Nagasaka K, Ohsaki N (1993) Warning coloration in sawfly Athalia rosae larva and concealing coloration in butterfly Pieris rapae larva feeding on similar plants evolved through individual selection. Res Popul Ecol 35:223–230

    Article  Google Scholar 

  172. Schaffner U, Boevé JL, Gfeller H, Schlunegger UP (1994) Sequestration of Veratrum alkaloids by specialist Rhadinoceraea nodicornis Konow (Hymenoptera, Tenthredinidae) and its ecoethological implications. J Chem Ecol 20:3233–3250

    Article  CAS  PubMed  Google Scholar 

  173. Heads PA, Lawton JH (1985) Bracken, ants and extrafloral nectaries. III. How insect herbivores avoid ant predation. Ecol Entomol 10:29–42

    Article  Google Scholar 

  174. Müller C, Wittstock U (2005) Uptake and turn-over of glucosinolates sequestered in the sawfly Athalia rosae. Insect Biochem Mol Biol 35:1189–1198

    Article  PubMed  CAS  Google Scholar 

  175. Müller C, Zwaan BJ, de Vos H, Brakefield PM (2003) Chemical defence in a sawfly: genetic components of variation in relevant life-history traits. Heredity 90:468–475

    Article  PubMed  CAS  Google Scholar 

  176. Opitz SEW, Mix A, Winde IB, Müller C (2011) Desulfation followed by sulfation: metabolism of benzylglucosinolate in Athalia rosae (Hymenoptera: Tenthredinidae). Chembiochem 12:1252

    Google Scholar 

  177. Abdalsamee MK, Giampà M, Niehaus K, Müller C (2014) Rapid incorporation of glucosinolates as a strategy used by a herbivore to prevent activation by myrosinases. Insect Biochem Mol Biol 52:115–123

    Google Scholar 

  178. Yang RSH, Wilkinson CF (1973) Sulfotransferases and phosphotransferases in insects. Comp Biochem Physiol 46:717–726

    CAS  Google Scholar 

  179. Smith JN (1955) Comparative detoxication. 4. Ethereal sulphate and glucoside conjugations in insects. Biochem J 60:436–442

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  180. Homolya L, Váradi A, Sarkadi B (2003) Multidrug resistance-associated proteins: export pumps for conjugates with glutathione, glucuronate or sulfate. Biofactors 17:103–114

    Article  CAS  PubMed  Google Scholar 

  181. Liu S, Zhou S, Tian L, Guo E, Luan Y, Zhang J, Li S (2011) Genome-wide identification and characterization of ATP-binding cassette transporters in the silkworm, Bombyx mori. BMC Genomics 12:491

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  182. Discher S, Burse A, Tolzin-Banasch K, Heinemann SH, Pasteels JM, Boland W (2009) A versatile transport network for sequestering and excreting plant glycosides in leaf beetles provides an evolutionary flexible defense strategy. Chembiochem 10:2223–2229

    Article  CAS  PubMed  Google Scholar 

  183. Kuhn J, Pettersson EM, Feld BK, Burse A, Termonia A, Pasteels JM, Boland W (2004) Selective transport systems mediate sequestration of plant glucosides in leaf beetles: a molecular basis for adaptation and evolution. Proc Natl Acad Sci U S A 101:13808–13813

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  184. Strauss AS, Peters S, Boland W, Burse A (2013) ABC transporter functions as a pacemaker for sequestration of plant glucosides in leaf beetles. eLife 2, e01096

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  185. Kazana E, Pope TW, Tibbles L, Bridges M, Pickett JA, Bones AM, Powell G, Rossiter JT (2007) The cabbage aphid: a walking mustard oil bomb. Proc R Soc Lond B 274:2271–2277

    Article  CAS  Google Scholar 

  186. Vanhaelen N, Haubruge E, Lognay G, Francis F (2001) Hoverfly glutathione S-transferases and effect of Brassicaceae secondary metabolites. Pest Biochem Physiol 71:170–177

    Article  CAS  Google Scholar 

  187. Pratt C, Pope TW, Powell G, Rossiter JT (2008) Accumulation of glucosinolates by the cabbage aphid Brevicoryne brassicae as a defense against two coccinellid species. J Chem Ecol 34:323–329

    Article  CAS  PubMed  Google Scholar 

  188. Chaplin-Kramer R, Kliebenstein DJ, Chiem A, Morrill E, Mills NJ, Kremen C (2011) Chemically mediated tritrophic interactions: opposing effects of glucosinolates on a specialist herbivore and its predators. J Appl Ecol 48:880–887

    Article  CAS  Google Scholar 

  189. Bayhan SÖ, Ulusoy MR, Bayhan E (2007) Is the parasitization rate of Diaeretiella rapae influenced when Brevicoryne brassicae feeds on Brassica plants? Phytoparasitica 35:146–149

    Article  Google Scholar 

  190. Husebye H, Arzt S, Burmeister WP, Härtel FV, Brandt A, Rossiter JT, Bones AM (2005) Crystal structure at 1.1Å resolution of an insect myrosinase from Brevicoryne brassicae shows its close relationship to ß-glucosidases. Insect Biochem Mol Biol 35:1311–1320

    Article  CAS  PubMed  Google Scholar 

  191. Jones AME, Bridges M, Bones AM, Cole R, Rossiter JT (2001) Purification and characterisation of a non-plant myrosinase from the cabbage aphid Brevicoryne brassicae (L.). Insect Biochem Mol Biol 31:1–5

    Article  CAS  PubMed  Google Scholar 

  192. Pontoppidan B, Ekbom B, Eriksson S, Meijer J (2001) Purification and characterization of myrosinase from the cabbage aphid (Brevicoryne brassicae), a brassica herbivore. Eur J Biochem 268:1041–1048

    Article  CAS  PubMed  Google Scholar 

  193. Agerbirk N, Vos M, Kim JH, Jander G (2008) Indole glucosinolate breakdown and its biological effects. Phytochem Rev 8:101–120

    Article  CAS  Google Scholar 

  194. Aldrich JR, Avery JW, Lee CJ, Graf JC, Harrisons DJ, Bin F (1996) Semiochemistry of cabbage bugs (Heteroptera: Pentatomidae: Eurydema and Murgantia). J Entomol Sci 31:172–182

    CAS  Google Scholar 

  195. Dawson GW, Griffiths DC, Pickett JA, Wadhams LJ, Woodcock CM (1987) Plant-derived synergists of alarm pheromone from turnip aphid, Lipaphis (Hyadaphis) erysimi (Homoptera, Aphididae). J Chem Ecol 13:1663–1671

    Article  CAS  PubMed  Google Scholar 

  196. Beran F, Mewis I, Srinivasan R, Svoboda J, Vial C, Mosimann H, Boland W, Büttner C, Ulrichs C, Hansson BS, Reinecke A (2011) Male Phyllotreta striolata (F.) produce an aggregation pheromone: identification of male-specific compounds and interaction with host plant volatiles. J Chem Ecol 37:85–97

    Article  CAS  PubMed  Google Scholar 

  197. Beran F, Pauchet Y, Kunert G, Reichelt M, Wielsch N, Vogel H, Reinecke A, Svatoš A, Mewis I, Schmid D, Ramasamy S, Ulrichs C, Hansson BS, Gershenzon J, Heckel DG (2014) Phyllotreta striolata flea beetles use host plant defense compounds to create their own glucosinolate-myrosinase system. Proc Natl Acad Sci U S A 111:7349–7354

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Giddings Vassão .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Jeschke, V., Gershenzon, J., Vassão, D.G. (2015). Metabolism of Glucosinolates and Their Hydrolysis Products in Insect Herbivores. In: Jetter, R. (eds) The Formation, Structure and Activity of Phytochemicals. Recent Advances in Phytochemistry, vol 45. Springer, Cham. https://doi.org/10.1007/978-3-319-20397-3_7

Download citation

Publish with us

Policies and ethics