Skip to main content
Log in

Glucosinolate hydrolysis in Lepidium sativum––identification of the thiocyanate-forming protein

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Glucosinolates are a class of thioglycosides found predominantly in plants of the order Brassicales whose function in anti-herbivore defense has been attributed to the products formed by myrosinase-catalyzed hydrolysis upon plant tissue damage. The most common type of hydrolysis products, the isothiocyanates, are toxic to a wide range of organisms. Depending on the glucosinolate side-chain structure and the presence of certain protein factors, other types of hydrolysis products, such as simple nitriles, epithionitriles and organic thiocyanates, can be formed whose biological functions are not well understood. Of the proteins controlling glucosinolate hydrolysis, only epithiospecifier proteins (ESPs) that promote the formation of simple nitriles and epithionitriles have been identified on a molecular level. We investigated glucosinolate hydrolysis in Lepidium sativum and identified a thiocyanate-forming protein (TFP) that shares 63-68% amino acid sequence identity with known ESPs and up to 55% identity with myrosinase-binding proteins from Arabidopsis thaliana, but differs from ESPs in its biochemistry. TFP does not only catalyze thiocyanate and simple nitrile formation from benzylglucosinolate but also the formation of simple nitriles and epithionitriles from aliphatic glucosinolates. Analyses of glucosinolate hydrolysis products in L. sativum autolysates and TFP transcript accumulation revealed an organ-specific regulation of thiocyanate formation. The identification of TFP defines a new family of proteins that control glucosinolate hydrolysis and challenges the previously proposed reaction mechanism of epithionitrile formation. As a protein that promotes the formation of a wide variety of hydrolysis products, its identification provides an important tool for further elucidating the mechanisms of glucosinolate hydrolysis as well as the ecological role and the evolutionary origin of the glucosinolate-myrosinase system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

ESP:

Epithiospecifier protein

TFP:

Thiocyanate-forming protein

References

  • Andreasson E, Taipalensuu J et al (1999) Age-dependent wound induction of a myrosinase-associated protein from oilseed rape (Brassica napus). Plant Mol Biol 41:171–180

    Article  CAS  PubMed  Google Scholar 

  • Bernardi R, Negri A et al (2000) Isolation of the epithiospecifier protein from oil-rape (Brassica napus ssp oleifera) seed and its characterization. FEBS Lett 467:296–298

    Article  CAS  PubMed  Google Scholar 

  • Burow M, Markert J et al (2006) Comparative biochemical characterization of nitrile-forming proteins from plants and insects that alter myrosinase-catalyzed hydrolysis of glucosinolates. FEBS J 273:2432–2446

    Article  CAS  PubMed  Google Scholar 

  • Chew FS (1988) Biological effects of glucosinolates. In: Cutler HG (ed) Biologically active natural products. American Chemical Society, Washington DC, pp 155–181

    Google Scholar 

  • Cole R (1976) Isothiocyanates, nitriles and thiocyanates as products of autolysis of glucosinolates in Cruciferae. Phytochemistry 15:759–762

    Article  CAS  Google Scholar 

  • Fahey JW, Zalcmann AT et al (2001) The chemical diversity and distribution of glucosinolates and isothiocyanates among plants. Phytochemistry 56:5–51

    Article  CAS  PubMed  Google Scholar 

  • Fenwick GR, Heaney RK et al (1983) Glucosinolates and their breakdown products in food and food plants. Crit Rev Food Sci Nutr 18:123–201

    Article  CAS  PubMed  Google Scholar 

  • Foo HL, Gronning LM et al (2000) Purification and characterisation of epithiospecifier protein from Brassica napus: enzymic intramolecular sulphur addition within alkenyl thiohydroximates derived from alkenyl glucosinolate hydrolysis. FEBS Lett 468:243–246

    Article  CAS  PubMed  Google Scholar 

  • Gmelin R, Virtanen AI (1959) A new type of enzymatic cleavage of mustard oil glucosides. Formation of allylthiocyanate in Thlaspi arvense L. and benzylthiocyanate in Lepidium ruderale L. and Lepidium sativum L. Acta Chem Scand 13:1474–1475

    Article  CAS  Google Scholar 

  • Grubb CD, Abel S (2006) Glucosinolate metabolism and its control. Trends Plant Sci 11:89–100

    Article  CAS  PubMed  Google Scholar 

  • Hasapis X, MacLeod AJ (1982) Benzylglucosinolate degradation in heat-treated Lepidium sativum seeds and detection of a thiocyanate-forming factor. Phytochemistry 21:1009–1013

    Article  CAS  Google Scholar 

  • Hasapis X, MacLeod AJ (1982) Effects of metal ions on benzylglucosinolate degradation in Lepidium sativum seed autolysates. Phytochemistry 21:559–563

    Article  CAS  Google Scholar 

  • Hogge LR, Reed DW et al (1988) HPLC Separation of glucosinolates from leaves and seeds of Arabidopsis thaliana and their identification using thermospray liquid-chromatography mass-spectrometry. J Chromatogr Sci 26:551–556

    CAS  Google Scholar 

  • Kliebenstein DJ, Lambrix VM et al (2001) Gene duplication in the diversification of secondary metabolism: tandem 2-oxoglutarate-dependent dioxygenases control glucosinolate biosynthesis in Arabidopsis. Plant Cell 13:681–693

    Article  CAS  PubMed  Google Scholar 

  • Lambrix VM, Reichelt M et al (2001) The Arabidopsis epithiospecifier protein promotes the hydrolysis of glucosinolates to nitriles and influences Trichoplusia ni Herbivory. Plant Cell 13:2793–2807

    Article  CAS  PubMed  Google Scholar 

  • Louda S, Mole S (1991) Glucosinolates: chemistry and ecology. In: Rosenthal GA, Berenbaum MR (eds) Herbivores: their interaction with secondary plant metabolites. Academic Press, Inc., San Diego, pp 123–164

    Google Scholar 

  • Lüthy J, Benn MH (1977) Thiocyanate formation from glucosinolates: a study of the autolysis of allylglucosinolate in Thlaspi arvense L. seed flour extracts. Can J Biochem 55:1028–1031

    Article  PubMed  Google Scholar 

  • MacLeod AJ, Rossiter JT (1985) The occurrence and activity of epithiospecifier protein in some Cruciferae seeds. Phytochemistry 24:1895–1898

    Article  CAS  Google Scholar 

  • Matile P (1980) The mustard oil bomb – compartmentation of the myrosinase system. Biochem Physiol Pflanzen 175:722–731

    CAS  Google Scholar 

  • Matusheski NV, Swarup R et al (2006) Epithiospecifier protein from broccoli (Brassica oleracea L. ssp italica) inhibits formation of the anticancer agent sulforaphane. J Agric Food Chem 54:2069–2076

    Article  CAS  PubMed  Google Scholar 

  • Peterson CJ, Tsao R et al (1998) Glucosinolate aglucones and analogues: insecticidal properties and a QSAR. Pestic Sci 54:35–42

    Article  CAS  Google Scholar 

  • Petroski RJ, Kwolek WF (1985) Interaction of a fungal thioglucoside glucohydrolase and cruciferous plant epithiospecifier protein to form 1-cyanoepithioalkanes: implications of an allosteric mechanism. Phytochemistry 24:213–216

    Article  CAS  Google Scholar 

  • Pontoppidan B, Hopkins R et al (2003) Infestation by cabbage aphid (Brevicoryne brassicae) on oilseed rape (Brassica napus) causes a long lasting induction of the myrosinase system. Entomol Exp Appl 109:55–62

    Article  Google Scholar 

  • Rask L, Andreasson E et al (2000) Myrosinase: gene family evolution and herbivore defense in Brassicaceae. Plant Mol Biol 42:93–113

    Article  CAS  PubMed  Google Scholar 

  • Reichelt M, Brown PD et al (2002) Benzoic acid glucosinolate esters and other glucosinolates from Arabidopsis thaliana. Phytochemistry 59:663–671

    Article  CAS  PubMed  Google Scholar 

  • Schlüter M, Gmelin R (1972) Abnormale enzymatische Spaltung von 4-methylthiobutylglucosinolat in Frischpflanzen von Eruca sativa. Phytochemistry 11:3427–3431

    Article  Google Scholar 

  • Spencer GF, Daxenbichler ME (1980) Gas chromatography-mass spectrometry of nitriles, isothiocyanates and oxazolidinethiones derived from cruciferous glucosinolates. J Sci Food Agric 31:359–367

    Article  CAS  Google Scholar 

  • Thies W (1979) Detection and utilization of a glucosinolate sulfohydrolase in the edible snail, Helix pomatia. Naturwissenschaften 66:364–365

    Article  CAS  Google Scholar 

  • Tookey HL (1973) Crambe thioglucoside glucohydrolase (ec 3.2.3.1) – separation of a protein required for epithiobutane formation. Can J Biochem 51:1654–1660

    Article  CAS  PubMed  Google Scholar 

  • Töpfer R, Matzeit V et al (1987) A set of plant expression vectors for transcriptional and translational fusions. Nucl Acids Res 15:5890–5890

    PubMed  Google Scholar 

  • Virtanen AI (1962) On enzymic and chemical reactions in crushed plants. Arch Biochem Biophys.: 200–208

    Google Scholar 

  • Virtanen AI, Saarivirta M (1962) The formation of benzyl thiocyanate in the seeds of Lepidium sativum. S Kemistilehti B 35:102–104

    Google Scholar 

  • Wadleigh RW, Yu SJ (1988) Metabolism of an organothiocyanate allelochemical by glutathione transferase in 3 lepidopterous insects. J Econ Entomol 81:776–780

    CAS  Google Scholar 

  • Wittstock U, Agerbirk N et al (2004) Successful herbivore attack due to metabolic diversion of a plant chemical defense. Proc Natl Acad Sci USA 101:4859–4864

    Article  CAS  PubMed  Google Scholar 

  • Wittstock U, Halkier BA (2002) Glucosinolate research in the Arabidopsis era. Trends Plant Sci 7:263–270

    Article  CAS  PubMed  Google Scholar 

  • Wittstock U, Kliebenstein D et al (2003) Glucosinolate hydrolysis and its impact on generalist and specialist insect herbivores. In: Romeo JT (ed) Recent advances in phytochemistry – integrative phytochemistry: from ethnobotany to molecular ecology. Elsevier, Amsterdam, pp 101–126

    Google Scholar 

  • Zabala MD, Grant M et al (2005) Characterisation of recombinant epithiospecifier protein and its over-expression in Arabidopsis thaliana. Phytochemistry 66:859–867

    Article  CAS  Google Scholar 

  • Zhang Z-Y, Ober JA et al (2006) The gene controlling the quantitative trait locus epithiospecifier modifier 1 alters glucosinolate hydrolysis and insect resistence in Arabidopsis. Plant Cell 18:1524–1536

    Article  CAS  PubMed  Google Scholar 

  • Zrybko CL, Fukuda EK et al (1997) Determination of glucosinolates in domestic and wild mustard by high-performance liquid chromatography with confirmation by electrospray mass spectrometry and photodiode-array detection. J Chromatogr A 767:43–52

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Michael Reichelt for providing intact glucosinolates and the Max Planck Society for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ute Wittstock.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Burow, M., Bergner, A., Gershenzon, J. et al. Glucosinolate hydrolysis in Lepidium sativum––identification of the thiocyanate-forming protein. Plant Mol Biol 63, 49–61 (2007). https://doi.org/10.1007/s11103-006-9071-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-006-9071-5

Keywords

Navigation