Skip to main content

Pathophysiology of Macular Edema: Results from Basic Research

  • Chapter
  • First Online:
Intravitreal Steroids

Abstract

Macular edema is the final common pathway of numerous retinal diseases, and ocular disorders associated with this condition are a major cause of blindness. Fluid and molecular exchanges between the blood and retina are tightly regulated and restricted by the blood-retinal barrier (BRB), which is mainly composed of intercellular junctions both at the levels of capillary endothelial cells (inner BRB) and at the retinal pigment epithelium (outer BRB). When a break occurs in the BRB, whether caused by pathological changes in the intervening cells, by imbalance in hydrostatic/oncotic pressure, or by other mechanical forces, fluid and macromolecules enter the retinal intercellular space, causing retinal edema. When this barrier break occurs at or near the macula, fluid accumulation induces formation of macular edema and vision loss ensues. Common diseases associated with macular edema include diabetic retinopathy, age-related macular edema, retinal venous occlusion, retinopathy of prematurity, intraocular inflammation (uveitis, postsurgical, traumatic), anatomical disturbances of retinal vasculature (macular telangiectasias, macroaneurysms), drug-induced break, and tumors. In this chapter, we review and discuss the cellular and molecular mechanisms of BRB integrity and breakdown.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pascolini D, Mariotti SP. Global estimates of visual impairment: 2010. Br J Ophthalmol. 2012;96:614–8.

    Article  PubMed  Google Scholar 

  2. Trieschmann M, van Kuijk FJ, Alexander R, et al. Macular pigment in the human retina: histological evaluation of localization and distribution. Eye (Lond). 2008;22:132–7.

    Article  CAS  Google Scholar 

  3. Dowling JE, Boycott BB. Organization of the primate retina: electron microscopy. Proc R Soc Lond B Biol Sci. 1966;166:80–111.

    Article  CAS  PubMed  Google Scholar 

  4. Scholl S, Kirchhof J, Augustin AJ. Pathophysiology of macular edema. Ophthalmol J Int Ophtalmol Int J Ophthalmol Z Augenheilkd. 2010;224 Suppl 1:8–15.

    Article  CAS  Google Scholar 

  5. Wurm A, Pannicke T, Iandiev I, et al. Purinergic signaling involved in Muller cell function in the mammalian retina. Prog Retin Eye Res. 2011;30:324–42.

    Article  CAS  PubMed  Google Scholar 

  6. Aroca PR, Salvat M, Fernandez J, Mendez I. Risk factors for diffuse and focal macular edema. J Diabetes Complications. 2004;18:211–5.

    Article  PubMed  Google Scholar 

  7. Cunha-Vaz JG, Travassos A. Breakdown of the blood-retinal barriers and cystoid macular edema. Surv Ophthalmol. 1984;28(Suppl):485–92.

    Article  PubMed  Google Scholar 

  8. Burggraaff MC, Trieu J, de Vries-Knoppert WA, Balk L, Petzold A. The clinical spectrum of microcystic macular edema. Invest Ophthalmol Vis Sci. 2014;55:952–61.

    Article  PubMed  Google Scholar 

  9. Coscas G, Cunha-Vaz J, Soubrane G. Macular edema: definition and basic concepts. Dev Ophthalmol. 2010;47:1–9.

    Article  PubMed  Google Scholar 

  10. Cunha-Vaz JG. The blood-ocular barriers: past, present, and future. Doc Ophthalmol Adv Ophthalmol. 1997;93:149–57.

    Article  CAS  Google Scholar 

  11. Rizzolo LJ, Peng S, Luo Y, Xiao W. Integration of tight junctions and claudins with the barrier functions of the retinal pigment epithelium. Prog Retin Eye Res. 2011;30:296–323.

    Article  CAS  PubMed  Google Scholar 

  12. Gariano RF, Iruela-Arispe ML, Hendrickson AE. Vascular development in primate retina: comparison of laminar plexus formation in monkey and human. Invest Ophthalmol Vis Sci. 1994;35:3442–55.

    CAS  PubMed  Google Scholar 

  13. Kur J, Newman EA, Chan-Ling T. Cellular and physiological mechanisms underlying blood flow regulation in the retina and choroid in health and disease. Prog Retin Eye Res. 2012;31:377–406.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Davson H, Duke-Elder WS, Maurice DM, Ross EJ, Woodin AM. The penetration of some electrolytes and non-electrolytes into the aqueous humour and vitreous body of the cat. J Physiol. 1949;108:203–17.

    Article  PubMed Central  CAS  Google Scholar 

  15. Toda R, Kawazu K, Oyabu M, Miyazaki T, Kiuchi Y. Comparison of drug permeabilities across the blood-retinal barrier, blood-aqueous humor barrier, and blood-brain barrier. J Pharm Sci. 2011;100:3904–11.

    Article  CAS  PubMed  Google Scholar 

  16. Cunha-Vaz JG. The blood-retinal barriers. Doc Ophthalmol Adv Ophthalmol. 1976;41:287–327.

    Article  CAS  Google Scholar 

  17. Klaassen I, Van Noorden CJ, Schlingemann RO. Molecular basis of the inner blood-retinal barrier and its breakdown in diabetic macular edema and other pathological conditions. Prog Retin Eye Res. 2013;34:19–48.

    Article  CAS  PubMed  Google Scholar 

  18. Dejana E. Endothelial cell-cell junctions: happy together. Nat Rev Mol Cell Biol. 2004;5:261–70.

    Article  CAS  PubMed  Google Scholar 

  19. Giannotta M, Trani M, Dejana E. VE-cadherin and endothelial adherens junctions: active guardians of vascular integrity. Dev Cell. 2013;26:441–54.

    Article  CAS  PubMed  Google Scholar 

  20. Russ PK, Davidson MK, Hoffman LH, Haselton FR. Partial characterization of the human retinal endothelial cell tight and adherens junction complexes. Invest Ophthalmol Vis Sci. 1998;39:2479–85.

    CAS  PubMed  Google Scholar 

  21. Klaassen I, Hughes JM, Vogels IM, Schalkwijk CG, Van Noorden CJ, Schlingemann RO. Altered expression of genes related to blood-retina barrier disruption in streptozotocin-induced diabetes. Exp Eye Res. 2009;89:4–15.

    Article  CAS  PubMed  Google Scholar 

  22. Luo Y, Xiao W, Zhu X, et al. Differential expression of claudins in retinas during normal development and the angiogenesis of oxygen-induced retinopathy. Invest Ophthalmol Vis Sci. 2011;52:7556–64.

    Article  CAS  PubMed  Google Scholar 

  23. Antonetti DA, Barber AJ, Khin S, Lieth E, Tarbell JM, Gardner TW. Vascular permeability in experimental diabetes is associated with reduced endothelial occludin content: vascular endothelial growth factor decreases occludin in retinal endothelial cells. Penn State Retina Research Group. Diabetes. 1998;47:1953–9.

    Article  CAS  PubMed  Google Scholar 

  24. Barber AJ, Antonetti DA, Gardner TW. Altered expression of retinal occludin and glial fibrillary acidic protein in experimental diabetes. The Penn State Retina Research Group. Invest Ophthalmol Vis Sci. 2000;41:3561–8.

    CAS  PubMed  Google Scholar 

  25. Saker S, Stewart EA, Browning AC, Allen CL, Amoaku WM. The effect of hyperglycaemia on permeability and the expression of junctional complex molecules in human retinal and choroidal endothelial cells. Exp Eye Res. 2014;121:161–7.

    Article  CAS  PubMed  Google Scholar 

  26. Antonetti DA, Barber AJ, Hollinger LA, Wolpert EB, Gardner TW. Vascular endothelial growth factor induces rapid phosphorylation of tight junction proteins occludin and zonula occluden 1. A potential mechanism for vascular permeability in diabetic retinopathy and tumors. J Biol Chem. 1999;274:23463–7.

    Article  CAS  PubMed  Google Scholar 

  27. Antonetti DA, Wolpert EB, DeMaio L, Harhaj NS, Scaduto Jr RC. Hydrocortisone decreases retinal endothelial cell water and solute flux coincident with increased content and decreased phosphorylation of occludin. J Neurochem. 2002;80:667–77.

    Article  CAS  PubMed  Google Scholar 

  28. McAllister IL, Vijayasekaran S, Chen SD, Yu DY. Effect of triamcinolone acetonide on vascular endothelial growth factor and occludin levels in branch retinal vein occlusion. Am J Ophthalmol. 2009;147:838–46. 46.e1–2.

    Article  CAS  PubMed  Google Scholar 

  29. Taddei A, Giampietro C, Conti A, et al. Endothelial adherens junctions control tight junctions by VE-cadherin-mediated upregulation of claudin-5. Nat Cell Biol. 2008;10:923–34.

    Article  CAS  PubMed  Google Scholar 

  30. Kerr NM, Johnson CS, de Souza CF, et al. Immunolocalization of gap junction protein connexin43 (GJA1) in the human retina and optic nerve. Invest Ophthalmol Vis Sci. 2010;51:4028–34.

    Article  PubMed  Google Scholar 

  31. Nagasawa K, Chiba H, Fujita H, et al. Possible involvement of gap junctions in the barrier function of tight junctions of brain and lung endothelial cells. J Cell Physiol. 2006;208:123–32.

    Article  CAS  PubMed  Google Scholar 

  32. Keech AC, Mitchell P, Summanen PA, et al. Effect of fenofibrate on the need for laser treatment for diabetic retinopathy (FIELD study): a randomised controlled trial. Lancet. 2007;370:1687–97.

    Article  CAS  PubMed  Google Scholar 

  33. Chen Y, Hu Y, Lin M, et al. Therapeutic effects of PPARalpha agonists on diabetic retinopathy in type 1 diabetes models. Diabetes. 2013;62:261–72.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Hosoya K, Tachikawa M. Inner blood-retinal barrier transporters: role of retinal drug delivery. Pharm Res. 2009;26:2055–65.

    Article  CAS  PubMed  Google Scholar 

  35. Kumagai AK. Glucose transport in brain and retina: implications in the management and complications of diabetes. Diabetes Metab Res Rev. 1999;15:261–73.

    Article  CAS  PubMed  Google Scholar 

  36. Badr GA, Tang J, Ismail-Beigi F, Kern TS. Diabetes downregulates GLUT1 expression in the retina and its microvessels but not in the cerebral cortex or its microvessels. Diabetes. 2000;49:1016–21.

    Article  CAS  PubMed  Google Scholar 

  37. Fernandes R, Carvalho AL, Kumagai A, et al. Downregulation of retinal GLUT1 in diabetes by ubiquitinylation. Mol Vis. 2004;10:618–28.

    CAS  PubMed  Google Scholar 

  38. Kumagai AK, Glasgow BJ, Pardridge WM. GLUT1 glucose transporter expression in the diabetic and nondiabetic human eye. Invest Ophthalmol Vis Sci. 1994;35:2887–94.

    CAS  PubMed  Google Scholar 

  39. Takata K, Kasahara T, Kasahara M, Ezaki O, Hirano H. Ultracytochemical localization of the erythrocyte/HepG2-type glucose transporter (GLUT1) in cells of the blood-retinal barrier in the rat. Invest Ophthalmol Vis Sci. 1992;33:377–83.

    CAS  PubMed  Google Scholar 

  40. Hosoya K, Kondo T, Tomi M, Takanaga H, Ohtsuki S, Terasaki T. MCT1-mediated transport of L-lactic acid at the inner blood-retinal barrier: a possible route for delivery of monocarboxylic acid drugs to the retina. Pharm Res. 2001;18:1669–76.

    Article  CAS  PubMed  Google Scholar 

  41. Nakashima T, Tomi M, Katayama K, et al. Blood-to-retina transport of creatine via creatine transporter (CRT) at the rat inner blood-retinal barrier. J Neurochem. 2004;89:1454–61.

    Article  CAS  PubMed  Google Scholar 

  42. de Souza CF, Kalloniatis M, Christie DL, Polkinghorne PJ, McGhee CN, Acosta ML. Creatine transporter immunolocalization in aged human and detached retinas. Invest Ophthalmol Vis Sci. 2012;53:1936–45.

    Article  PubMed  CAS  Google Scholar 

  43. Tomi M, Mori M, Tachikawa M, Katayama K, Terasaki T, Hosoya K. L-type amino acid transporter 1-mediated L-leucine transport at the inner blood-retinal barrier. Invest Ophthalmol Vis Sci. 2005;46:2522–30.

    Article  PubMed  Google Scholar 

  44. Hosoya K, Saeki S, Terasaki T. Activation of carrier-mediated transport of L-cystine at the blood-brain and blood-retinal barriers in vivo. Microvasc Res. 2001;62:136–42.

    Article  CAS  PubMed  Google Scholar 

  45. Tomi M, Kitade N, Hirose S, et al. Cationic amino acid transporter 1-mediated L-arginine transport at the inner blood-retinal barrier. J Neurochem. 2009;111:716–25.

    Article  CAS  PubMed  Google Scholar 

  46. Kubo Y. Inner blood-retinal barrier transporters: relevance to diabetic retinopathy. In: Ola MS, editor. Diabetic retinopathy. Intech; 2012. p. 91–108 http://www.intechopen.com/books/diabetic-retinopathy

  47. Frank PG, Woodman SE, Park DS, Lisanti MP. Caveolin, caveolae, and endothelial cell function. Arterioscler Thromb Vasc Biol. 2003;23:1161–8.

    Article  CAS  PubMed  Google Scholar 

  48. Feng Y, Venema VJ, Venema RC, Tsai N, Caldwell RB. VEGF induces nuclear translocation of Flk-1/KDR, endothelial nitric oxide synthase, and caveolin-1 in vascular endothelial cells. Biochem Biophys Res Commun. 1999;256:192–7.

    Article  CAS  PubMed  Google Scholar 

  49. Hofman P, Blaauwgeers HG, Tolentino MJ, et al. VEGF-A induced hyperpermeability of blood-retinal barrier endothelium in vivo is predominantly associated with pinocytotic vesicular transport and not with formation of fenestrations. Vascular endothelial growth factor-A. Curr Eye Res. 2000;21:637–45.

    Article  CAS  PubMed  Google Scholar 

  50. Hofman P, Blaauwgeers HG, Vrensen GF, Schlingemann RO. Role of VEGF-A in endothelial phenotypic shift in human diabetic retinopathy and VEGF-A-induced retinopathy in monkeys. Ophthalmic Res. 2001;33:156–62.

    Article  CAS  PubMed  Google Scholar 

  51. Lightman S, Greenwood J. Effect of lymphocytic infiltration on the blood-retinal barrier in experimental autoimmune uveoretinitis. Clin Exp Immunol. 1992;88:473–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  52. Ben-Zvi A, Lacoste B, Kur E, et al. Mfsd2a is critical for the formation and function of the blood-brain barrier. Nature. 2014;509:507–11.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  53. Cunha-Vaz J. The blood–retinal barrier in retinal disease. Eur Ophthalmic Rev. 2009;3:105–8.

    Google Scholar 

  54. Hall CN, Reynell C, Gesslein B, et al. Capillary pericytes regulate cerebral blood flow in health and disease. Nature. 2014;508:55–60.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  55. Frank RN, Turczyn TJ, Das A. Pericyte coverage of retinal and cerebral capillaries. Invest Ophthalmol Vis Sci. 1990;31:999–1007.

    CAS  PubMed  Google Scholar 

  56. Chan-Ling T, Koina ME, McColm JR, et al. Role of CD44+ stem cells in mural cell formation in the human choroid: evidence of vascular instability due to limited pericyte ensheathment. Invest Ophthalmol Vis Sci. 2011;52:399–410.

    Article  CAS  PubMed  Google Scholar 

  57. Shepro D, Morel NM. Pericyte physiology. FASEB J Off Publ Fed Am Soc Exp Biol. 1993;7:1031–8.

    CAS  Google Scholar 

  58. Wisniewska-Kruk J, Hoeben KA, Vogels IM, et al. A novel co-culture model of the blood-retinal barrier based on primary retinal endothelial cells, pericytes and astrocytes. Exp Eye Res. 2012;96:181–90.

    Article  CAS  PubMed  Google Scholar 

  59. Kim JH, Kim JH, Yu YS, Kim DH, Kim KW. Recruitment of pericytes and astrocytes is closely related to the formation of tight junction in developing retinal vessels. J Neurosci Res. 2009;87:653–9.

    Article  CAS  PubMed  Google Scholar 

  60. Mizutani M, Kern TS, Lorenzi M. Accelerated death of retinal microvascular cells in human and experimental diabetic retinopathy. J Clin Invest. 1996;97:2883–90.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  61. Daneman R, Zhou L, Kebede AA, Barres BA. Pericytes are required for blood-brain barrier integrity during embryogenesis. Nature. 2010;468:562–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  62. Enge M, Bjarnegard M, Gerhardt H, et al. Endothelium-specific platelet-derived growth factor-B ablation mimics diabetic retinopathy. EMBO J. 2002;21:4307–16.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  63. Davis S, Aldrich TH, Jones PF, et al. Isolation of angiopoietin-1, a ligand for the TIE2 receptor, by secretion-trap expression cloning. Cell. 1996;87:1161–9.

    Article  CAS  PubMed  Google Scholar 

  64. Jones N, Iljin K, Dumont DJ, Alitalo K. Tie receptors: new modulators of angiogenic and lymphangiogenic responses. Nat Rev Mol Cell Biol. 2001;2:257–67.

    Article  CAS  PubMed  Google Scholar 

  65. Hori S, Ohtsuki S, Hosoya K, Nakashima E, Terasaki T. A pericyte-derived angiopoietin-1 multimeric complex induces occludin gene expression in brain capillary endothelial cells through Tie-2 activation in vitro. J Neurochem. 2004;89:503–13.

    Article  CAS  PubMed  Google Scholar 

  66. Zhang ZG, Zhang L, Croll SD, Chopp M. Angiopoietin-1 reduces cerebral blood vessel leakage and ischemic lesion volume after focal cerebral embolic ischemia in mice. Neuroscience. 2002;113:683–7.

    Article  CAS  PubMed  Google Scholar 

  67. Gavard J, Patel V, Gutkind JS. Angiopoietin-1 prevents VEGF-induced endothelial permeability by sequestering Src through mDia. Dev Cell. 2008;14:25–36.

    Article  CAS  PubMed  Google Scholar 

  68. Suri C, Jones PF, Patan S, et al. Requisite role of angiopoietin-1, a ligand for the TIE2 receptor, during embryonic angiogenesis. Cell. 1996;87:1171–80.

    Article  CAS  PubMed  Google Scholar 

  69. Patel JI, Hykin PG, Gregor ZJ, Boulton M, Cree IA. Angiopoietin concentrations in diabetic retinopathy. Br J Ophthalmol. 2005;89:480–3.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  70. Park SW, Yun JH, Kim JH, Kim KW, Cho CH, Kim JH. Angiopoietin 2 induces pericyte apoptosis via alpha3beta1 integrin signaling in diabetic retinopathy. Diabetes. 2014;63:3057–68.

    Article  PubMed  Google Scholar 

  71. Rangasamy S, Srinivasan R, Maestas J, McGuire PG, Das A. A potential role for angiopoietin 2 in the regulation of the blood-retinal barrier in diabetic retinopathy. Invest Ophthalmol Vis Sci. 2011;52:3784–91.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  72. Tout S, Chan-Ling T, Hollander H, Stone J. The role of Muller cells in the formation of the blood-retinal barrier. Neuroscience. 1993;55:291–301.

    Article  CAS  PubMed  Google Scholar 

  73. Tretiach M, Madigan MC, Wen L, Gillies MC. Effect of Muller cell co-culture on in vitro permeability of bovine retinal vascular endothelium in normoxic and hypoxic conditions. Neurosci Lett. 2005;378:160–5.

    Article  CAS  PubMed  Google Scholar 

  74. Nishikiori N, Osanai M, Chiba H, et al. Glial cell-derived cytokines attenuate the breakdown of vascular integrity in diabetic retinopathy. Diabetes. 2007;56:1333–40.

    Article  CAS  PubMed  Google Scholar 

  75. Eichler W, Yafai Y, Keller T, Wiedemann P, Reichenbach A. PEDF derived from glial Muller cells: a possible regulator of retinal angiogenesis. Exp Cell Res. 2004;299:68–78.

    Article  CAS  PubMed  Google Scholar 

  76. Yafai Y, Lange J, Wiedemann P, Reichenbach A, Eichler W. Pigment epithelium-derived factor acts as an opponent of growth-stimulatory factors in retinal glial-endothelial cell interactions. Glia. 2007;55:642–51.

    Article  PubMed  Google Scholar 

  77. Nagelhus EA, Horio Y, Inanobe A, et al. Immunogold evidence suggests that coupling of K+ siphoning and water transport in rat retinal Muller cells is mediated by a coenrichment of Kir4.1 and AQP4 in specific membrane domains. Glia. 1999;26:47–54.

    Article  CAS  PubMed  Google Scholar 

  78. Reichenbach A, Wurm A, Pannicke T, Iandiev I, Wiedemann P, Bringmann A. Muller cells as players in retinal degeneration and edema. Graefe’s archive for clinical and experimental ophthalmology. Albrecht Von Graefes Arch Klin Exp Ophthalmol. 2007;245:627–36.

    Article  Google Scholar 

  79. Pannicke T, Iandiev I, Wurm A, et al. Diabetes alters osmotic swelling characteristics and membrane conductance of glial cells in rat retina. Diabetes. 2006;55:633–9.

    Article  CAS  PubMed  Google Scholar 

  80. Pannicke T, Uckermann O, Iandiev I, Wiedemann P, Reichenbach A, Bringmann A. Ocular inflammation alters swelling and membrane characteristics of rat Muller glial cells. J Neuroimmunol. 2005;161:145–54.

    Article  CAS  PubMed  Google Scholar 

  81. Zhao M, Bousquet E, Valamanesh F, et al. Differential regulations of AQP4 and Kir4.1 by triamcinolone acetonide and dexamethasone in the healthy and inflamed retina. Invest Ophthalmol Vis Sci. 2011;52:6340–7.

    Article  CAS  PubMed  Google Scholar 

  82. Rehak M, Hollborn M, Iandiev I, et al. Retinal gene expression and Muller cell responses after branch retinal vein occlusion in the rat. Invest Ophthalmol Vis Sci. 2009;50:2359–67.

    Article  PubMed  Google Scholar 

  83. Pannicke T, Wurm A, Iandiev I, et al. Deletion of aquaporin-4 renders retinal glial cells more susceptible to osmotic stress. J Neurosci Res. 2010;88:2877–88.

    CAS  PubMed  Google Scholar 

  84. Xin X, Rodrigues M, Umapathi M, et al. Hypoxic retinal Muller cells promote vascular permeability by HIF-1-dependent up-regulation of angiopoietin-like 4. Proc Natl Acad Sci U S A. 2013;110:E3425–34.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  85. Rajasekaran SA, Hu J, Gopal J, et al. Na,K-ATPase inhibition alters tight junction structure and permeability in human retinal pigment epithelial cells. Am J Physiol Cell Physiol. 2003;284:C1497–507.

    Article  CAS  PubMed  Google Scholar 

  86. Weinberger D, Fink-Cohen S, Gaton DD, Priel E, Yassur Y. Non-retinovascular leakage in diabetic maculopathy. Br J Ophthalmol. 1995;79:728–31.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  87. Vinores SA, Gadegbeku C, Campochiaro PA, Green WR. Immunohistochemical localization of blood-retinal barrier breakdown in human diabetics. Am J Pathol. 1989;134:231–5.

    PubMed Central  CAS  PubMed  Google Scholar 

  88. Vinores SA, Derevjanik NL, Ozaki H, Okamoto N, Campochiaro PA. Cellular mechanisms of blood-retinal barrier dysfunction in macular edema. Doc Ophthalmol Adv Ophthalmol. 1999;97:217–28.

    Article  CAS  Google Scholar 

  89. Xu HZ, Le YZ. Significance of outer blood-retina barrier breakdown in diabetes and ischemia. Invest Ophthalmol Vis Sci. 2011;52:2160–4.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  90. Sun R, Peng S, Chen X, Zhang H, Rizzolo LJ. Diffusible retinal secretions regulate the expression of tight junctions and other diverse functions of the retinal pigment epithelium. Mol Vis. 2008;14:2237–62.

    PubMed Central  CAS  PubMed  Google Scholar 

  91. Tsukita S, Furuse M, Itoh M. Multifunctional strands in tight junctions. Nat Rev Mol Cell Biol. 2001;2:285–93.

    Article  CAS  PubMed  Google Scholar 

  92. Angelow S, Yu AS. Claudins and paracellular transport: an update. Curr Opin Nephrol Hypertens. 2007;16:459–64.

    Article  CAS  PubMed  Google Scholar 

  93. Wang FE, Zhang C, Maminishkis A, et al. MicroRNA-204/211 alters epithelial physiology. FASEB J Off Publ Fed Am Soc Exp Biol. 2010;24:1552–71.

    CAS  Google Scholar 

  94. Peng S, Rao VS, Adelman RA, Rizzolo LJ. Claudin-19 and the barrier properties of the human retinal pigment epithelium. Invest Ophthalmol Vis Sci. 2011;52:1392–403.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  95. Saitou M, Fujimoto K, Doi Y, et al. Occludin-deficient embryonic stem cells can differentiate into polarized epithelial cells bearing tight junctions. J Cell Biol. 1998;141:397–408.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  96. Shen L, Weber CR, Turner JR. The tight junction protein complex undergoes rapid and continuous molecular remodeling at steady state. J Cell Biol. 2008;181:683–95.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  97. Villarroel M, Garcia-Ramirez M, Corraliza L, Hernandez C, Simo R. High glucose concentration leads to differential expression of tight junction proteins in human retinal pigment epithelial cells. Endocrinol Nutr Organo Soc Esp Endocrinol Nutr. 2009;56:53–8.

    Google Scholar 

  98. Villarroel M, Garcia-Ramirez M, Corraliza L, Hernandez C, Simo R. Effects of high glucose concentration on the barrier function and the expression of tight junction proteins in human retinal pigment epithelial cells. Exp Eye Res. 2009;89:913–20.

    Article  CAS  PubMed  Google Scholar 

  99. Bailey TA, Kanuga N, Romero IA, Greenwood J, Luthert PJ, Cheetham ME. Oxidative stress affects the junctional integrity of retinal pigment epithelial cells. Invest Ophthalmol Vis Sci. 2004;45:675–84.

    Article  PubMed  Google Scholar 

  100. Yoshikawa T, Ogata N, Izuta H, Shimazawa M, Hara H, Takahashi K. Increased expression of tight junctions in ARPE-19 cells under endoplasmic reticulum stress. Curr Eye Res. 2011;36:1153–63.

    Article  CAS  PubMed  Google Scholar 

  101. Abe T, Sugano E, Saigo Y, Tamai M. Interleukin-1beta and barrier function of retinal pigment epithelial cells (ARPE-19): aberrant expression of junctional complex molecules. Invest Ophthalmol Vis Sci. 2003;44:4097–104.

    Article  PubMed  Google Scholar 

  102. Peng S, Gan G, Rao VS, Adelman RA, Rizzolo LJ. Effects of proinflammatory cytokines on the claudin-19 rich tight junctions of human retinal pigment epithelium. Invest Ophthalmol Vis Sci. 2012;53:5016–28.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  103. Jin M, Barron E, He S, Ryan SJ, Hinton DR. Regulation of RPE intercellular junction integrity and function by hepatocyte growth factor. Invest Ophthalmol Vis Sci. 2002;43:2782–90.

    PubMed  Google Scholar 

  104. Peng S, Adelman RA, Rizzolo LJ. Minimal effects of VEGF and anti-VEGF drugs on the permeability or selectivity of RPE tight junctions. Invest Ophthalmol Vis Sci. 2010;51:3216–25.

    Article  PubMed Central  PubMed  Google Scholar 

  105. Ghassemifar R, Lai CM, Rakoczy PE. VEGF differentially regulates transcription and translation of ZO-1alpha+ and ZO-1alpha- and mediates trans-epithelial resistance in cultured endothelial and epithelial cells. Cell Tissue Res. 2006;323:117–25.

    Article  CAS  PubMed  Google Scholar 

  106. Ablonczy Z, Crosson CE. VEGF modulation of retinal pigment epithelium resistance. Exp Eye Res. 2007;85:762–71.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  107. Hartnett ME, Lappas A, Darland D, McColm JR, Lovejoy S, D’Amore PA. Retinal pigment epithelium and endothelial cell interaction causes retinal pigment epithelial barrier dysfunction via a soluble VEGF-dependent mechanism. Exp Eye Res. 2003;77:593–9.

    Article  CAS  PubMed  Google Scholar 

  108. Miyamoto N, de Kozak Y, Jeanny JC, et al. Placental growth factor-1 and epithelial haemato-retinal barrier breakdown: potential implication in the pathogenesis of diabetic retinopathy. Diabetologia. 2007;50:461–70.

    Article  CAS  PubMed  Google Scholar 

  109. Villarroel M, Garcia-Ramirez M, Corraliza L, Hernandez C, Simo R. Fenofibric acid prevents retinal pigment epithelium disruption induced by interleukin-1beta by suppressing AMP-activated protein kinase (AMPK) activation. Diabetologia. 2011;54:1543–53.

    Article  CAS  PubMed  Google Scholar 

  110. Trudeau K, Roy S, Guo W, et al. Fenofibric acid reduces fibronectin and collagen type IV overexpression in human retinal pigment epithelial cells grown in conditions mimicking the diabetic milieu: functional implications in retinal permeability. Invest Ophthalmol Vis Sci. 2011;52:6348–54.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  111. West KA, Yan L, Shadrach K, et al. Protein database, human retinal pigment epithelium. Mol Cell Proteome MCP. 2003;2:37–49.

    Article  CAS  Google Scholar 

  112. Takagi H, Tanihara H, Seino Y, Yoshimura N. Characterization of glucose transporter in cultured human retinal pigment epithelial cells: gene expression and effect of growth factors. Invest Ophthalmol Vis Sci. 1994;35:170–7.

    CAS  PubMed  Google Scholar 

  113. Stamer WD, Bok D, Hu J, Jaffe GJ, McKay BS. Aquaporin-1 channels in human retinal pigment epithelium: role in transepithelial water movement. Invest Ophthalmol Vis Sci. 2003;44:2803–8.

    Article  PubMed  Google Scholar 

  114. Hollborn M, Dukic-Stefanovic S, Pannicke T, et al. Expression of aquaporins in the retina of diabetic rats. Curr Eye Res. 2011;36:850–6.

    Article  CAS  PubMed  Google Scholar 

  115. Baetz NW, Stamer WD, Yool AJ. Stimulation of aquaporin-mediated fluid transport by cyclic GMP in human retinal pigment epithelium in vitro. Invest Ophthalmol Vis Sci. 2012;53:2127–32.

    Article  PubMed Central  PubMed  Google Scholar 

  116. Hollborn M, Rehak M, Iandiev I, et al. Transcriptional regulation of aquaporins in the ischemic rat retina: upregulation of aquaporin-9. Curr Eye Res. 2012;37:524–31.

    Article  CAS  PubMed  Google Scholar 

  117. Strauss O. The retinal pigment epithelium in visual function. Physiol Rev. 2005;85:845–81.

    Article  CAS  PubMed  Google Scholar 

  118. Miller SS, Edelman JL. Active ion transport pathways in the bovine retinal pigment epithelium. J Physiol. 1990;424:283–300.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  119. DiMattio J, Degnan KJ, Zadunaisky JA. A model for transepithelial ion transport across the isolated retinal pigment epithelium of the frog. Exp Eye Res. 1983;37:409–20.

    Article  CAS  PubMed  Google Scholar 

  120. MacGregor LC, Matschinsky FM. Altered retinal metabolism in diabetes. II. Measurement of sodium-potassium ATPase and total sodium and potassium in individual retinal layers. J Biol Chem. 1986;261:4052–8.

    CAS  PubMed  Google Scholar 

  121. MacGregor LC, Matschinsky FM. Experimental diabetes mellitus impairs the function of the retinal pigmented epithelium. Metab Clin Exp. 1986;35:28–34.

    Article  CAS  PubMed  Google Scholar 

  122. Crider JY, Yorio T, Sharif NA, Griffin BW. The effects of elevated glucose on Na+/K(+)-ATPase of cultured bovine retinal pigment epithelial cells measured by a new nonradioactive rubidium uptake assay. J Ocul Pharmacol Ther Off J Assoc Ocul Pharmacol Ther. 1997;13:337–52.

    Article  CAS  Google Scholar 

  123. Rehak M, Drechsler F, Koferl P, et al. Effects of intravitreal triamcinolone acetonide on retinal gene expression in a rat model of central retinal vein occlusion. Graefe’s archive for clinical and experimental ophthalmology. Albrecht Von Graefes Arch Klin Exp Ophthalmol. 2011;249:1175–83.

    Article  CAS  Google Scholar 

  124. Li X, McClellan ME, Tanito M, et al. Loss of caveolin-1 impairs retinal function due to disturbance of subretinal microenvironment. J Biol Chem. 2012;287:16424–34.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  125. Omri S, Behar-Cohen F, de Kozak Y, et al. Microglia/macrophages migrate through retinal epithelium barrier by a transcellular route in diabetic retinopathy: role of PKCzeta in the Goto Kakizaki rat model. Am J Pathol. 2011;179:942–53.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  126. Starling EH. On the absorption of fluids from the connective tissue spaces. J Physiol. 1896;19:312–26.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  127. Fatt I, Shantinath K. Flow conductivity of retina and its role in retinal adhesion. Exp Eye Res. 1971;12:218–26.

    Article  CAS  PubMed  Google Scholar 

  128. Moseley H, Foulds WS, Allan D, Kyle PM. Routes of clearance of radioactive water from the rabbit vitreous. Br J Ophthalmol. 1984;68:145–51.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  129. Marmor MF. Mechanisms of fluid accumulation in retinal edema. Doc Ophthalmol Adv Ophthalmol. 1999;97:239–49.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Flávia Carvalho for designing the illustrations and S. Lee Ware for the constructive suggestions on the text.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana Bastos-Carvalho MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Bastos-Carvalho, A., Ambati, J. (2015). Pathophysiology of Macular Edema: Results from Basic Research. In: Augustin, A. (eds) Intravitreal Steroids. Springer, Cham. https://doi.org/10.1007/978-3-319-14487-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-14487-0_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-14486-3

  • Online ISBN: 978-3-319-14487-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics