Skip to main content

Advertisement

Log in

Inner Blood-Retinal Barrier Transporters: Role of Retinal Drug Delivery

  • Expert Review
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

The inner blood-retinal barrier (inner BRB) forms complex tight junctions of retinal capillary endothelial cells to prevent the free diffusion of substances between the circulating blood and the neural retina. Thus, understanding of the inner BRB transport mechanisms could provide a basis for the development of strategies for drug delivery to the retina. Recent progress in inner BRB research has revealed that retinal endothelial cells express a variety of unique transporters which play a role in the influx transport of essential molecules and the efflux transport of xenobiotics. In this review we focus on the transport mechanism at the inner BRB in relation to its importance in influencing the inner BRB permeability of drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

REFERENCES

  1. Lee VHL, Hosoya K. Drug delivery to the posterior segment. In: Ryan SJ, editor. Retina 3rd edition. St. Louis: Mosby; 2001. p. 2270–85.

    Google Scholar 

  2. Christie JG, Kompella UB. Ophthalmic light sensitive nanocarrier systems. Drug Discov Today. 2008;13:124–34.

    Article  PubMed  CAS  Google Scholar 

  3. Jager RD, Aiello LP, Patel SC, Cunningham ET Jr. Risks of intravitreous injection: a comprehensive review. Retina 2004;24:676–98.

    Article  PubMed  Google Scholar 

  4. Cunha-Vaz JG. The blood-retinal barriers system. Basic concepts and clinical evaluation. Exp Eye Res. 2004;78:715–21.

    Article  PubMed  CAS  Google Scholar 

  5. Hosoya K, Tomi M. Advances in the cell biology of transport via the inner blood-retinal barrier: establishment of cell lines and transport functions. Biol Pharm Bull. 2005;28:1–8.

    Article  PubMed  CAS  Google Scholar 

  6. Brown NA, Bron AJ, Harding JJ, Dewar HM. Nutrition supplements and the eye. Eye 1998;12:127–33.

    PubMed  Google Scholar 

  7. Shitara Y, Horie T, Sugiyama Y. Transporters as a determinant of drug clearance and tissue distribution. Eur J Pharm Sci. 2006;27:425–46.

    Article  PubMed  CAS  Google Scholar 

  8. Kitamura S, Maeda K, Sugiyama Y. Recent progresses in the experimental methods and evaluation strategies of transporter functions for the prediction of the pharmacokinetics in humans. Naunyn Schmiedebergs Arch Pharmacol. 2008;377:617–28.

    Article  PubMed  CAS  Google Scholar 

  9. Kamal MA, Keep RF, Smith DE. Role and relevance of PEPT2 in drug disposition, dynamics, and toxicity. Drug Metab Pharmacokinet. 2008;23:236–42.

    Article  PubMed  CAS  Google Scholar 

  10. Niemeyer G. Glucose concentration and retinal function. Clin Neurosci. 1997;4:327–35.

    PubMed  CAS  Google Scholar 

  11. Tachikawa M, Hosoya K, Ohtsuki S, Terasaki T. A novel relationship between creatine transport at the blood-brain and blood-retinal barriers, creatine biosynthesis, and its use for brain and retinal energy homeostasis. Subcell Biochem. 2007;46:83–98.

    Article  PubMed  Google Scholar 

  12. Hosoya K, Tomi M. Inner blood-retinal barrier: transport biology and methodology. In: Ehrhardt C, Kim KJ, editors. Drug absorption studies-in situ, in vitro and in silico models. New York: AAPS Press-Springer; 2008. p. 321–38.

    Chapter  Google Scholar 

  13. Vera JC, Rivas CI, Fischbarg J, Golde DW. Mammalian facilitative hexose transporters mediate the transport of dehydroascorbic acid. Nature 1993;364:79–82.

    Article  PubMed  CAS  Google Scholar 

  14. Takata K, Kasahara T, Kasahara M, Ezaki O, Hirano H. Ultracytochemical localization of the erythrocyte/HepG2-type glucose transporter (GLUT1) in cells of the blood-retinal barrier in the rat. Invest Ophthalmol Vis Sci. 1992;33:377–83.

    PubMed  CAS  Google Scholar 

  15. Fernandes R, Suzuki K, Kumagai AK. Inner blood-retinal barrier GLUT1 in long-term diabetic rats: an immunogold electron microscopic study. Invest Ophthalmol Vis Sci. 2003;44:3150–4.

    Article  PubMed  Google Scholar 

  16. Puchowicz MA, Xu K, Magness D, Miller C, Lust WD, Kern TS, et al. Comparison of glucose influx and blood flow in retina and brain of diabetic rats. J Cereb Blood Flow Metab. 2004;24:449–57.

    Article  PubMed  Google Scholar 

  17. Hosoya K, Minamizono A, Katayama K, Terasaki T, Tomi M. Vitamin C transport in oxidized form across the rat blood-retinal barrier. Invest Ophthalmol Vis Sci. 2004;45:1232–9.

    Article  PubMed  Google Scholar 

  18. Hosoya K, Nakamura G, Akanuma S, Tomi M, Tachikawa M. Dehydroascorbic acid uptake and intracellular ascorbic acid accumulation in cultured Müller glial cells (TR-MUL). Neurochem Int. 2008;52:1351–7.

    Article  PubMed  CAS  Google Scholar 

  19. Lightman SL, Palestine AG, Rapoport SI, Rechthand E. Quantitative assessment of the permeability of the rat blood-retinal barrier to small water-soluble non-electrolytes. J Physiol. 1987;389:483–90.

    PubMed  CAS  Google Scholar 

  20. Ennis SR, Johnson JE, Pautler EL. In situ kinetics of glucose transport across the blood-retinal barrier in normal rats and rats with streptozocin-induced diabetes. Invest Ophthalmol Vis Sci. 1982;23:447–56.

    PubMed  CAS  Google Scholar 

  21. Minamizono A, Tomi M, Hosoya K. Inhibition of dehydroascorbic acid transport across the rat blood-retinal and -brain barriers in experimental diabetes. Biol Pharm Bull. 2006;29:2148–50.

    Article  PubMed  CAS  Google Scholar 

  22. Polt R, Porreca F, Szabò LZ, Bilsky EJ, Davis P, Abbruscato TJ, et al. Glycopeptide enkephalin analogues produce analgesia in mice: evidence for penetration of the blood-brain barrier. Proc Natl Acad Sci USA. 1994;91:7114–8.

    Article  PubMed  CAS  Google Scholar 

  23. Tomi M, Mori M, Tachikawa M, Katayama K, Terasaki T, Hosoya K. L-type amino acid transporter 1-mediated L-leucine transport at the inner blood-retinal barrier. Invest Ophthalmol Vis Sci. 2005;46:2522–30.

    Article  PubMed  Google Scholar 

  24. Tomi M, Terayama T, Isobe T, Egami F, Morito A, Kurachi M, et al. Function and regulation of taurine transport at the inner blood-retinal barrier. Microvasc Res. 2007;73:100–6.

    Article  PubMed  CAS  Google Scholar 

  25. Hosoya K, Saeki S, Terasaki T. Activation of carrier-mediated transport of L-cystine at the blood-brain and blood-retinal barriers in vivo. Microvasc Res. 2001;62:136–42.

    Article  PubMed  CAS  Google Scholar 

  26. Nakashima T, Tomi M, Katayama K, Tachikawa M, Watanabe M, Terasaki T, et al. Blood-to-retina transport of creatine via creatine transporter (CRT) at the rat inner blood-retinal barrier. J Neurochem. 2004;89:1454–61.

    Article  PubMed  CAS  Google Scholar 

  27. Nagase K, Tomi M, Tachikawa M, Hosoya K. Functional and molecular characterization of adenosine transport at the rat inner blood-retinal barrier. Biochim Biophys Acta. 2006;1758:13–9.

    Article  PubMed  CAS  Google Scholar 

  28. Pasantes-Morales H, Klethi J, Ledig M, Mandel P. Free amino acids of chicken and rat retina. Brain Res. 1972;41:494–7.

    Article  PubMed  CAS  Google Scholar 

  29. Pasantes-Morales H, Ochoa de la Paz LD, Sepúlveda J, Quesada O. Amino acids as osmolytes in the retina. Neurochem Res. 1999;24:1339–46.

    Article  PubMed  CAS  Google Scholar 

  30. Tomi M, Tajima A, Tachikawa M, Hosoya K. Function of taurine transporter (Slc6a6/TauT) as a GABA transporting protein and its relevance to GABA transport in rat retinal capillary endothelial cells. Biochim Biophys Acta. 2008;1778:2138–42.

    Article  PubMed  CAS  Google Scholar 

  31. Kanai Y, Segawa H, Miyamoto K, Uchino H, Takeda E, Endou H. Expression cloning and characterization of a transporter for large neutral amino acids activated by the heavy chain of 4F2 antigen (CD98). J Biol Chem. 1998;273:23629–32.

    Article  PubMed  CAS  Google Scholar 

  32. Sato H, Tamba M, Ishii T, Bannai S. Cloning and expression of a plasma membrane cystine/glutamate exchange transporter composed of two distinct proteins. J Biol Chem. 1999;274:11455–8.

    Article  PubMed  CAS  Google Scholar 

  33. LaNoue KF, Berkich DA, Conway M, Barber AJ, Hu LY, Taylor C, et al. Role of specific aminotransferases in de novo glutamate synthesis and redox shuttling in the retina. J Neurosci Res. 2001;66:914–22.

    Article  PubMed  CAS  Google Scholar 

  34. Pow DV, Crook DK. Immunocytochemical evidence for the presence of high levels of reduced glutathione in radial glial cells and horizontal cells in the rabbit retina. Neurosci Lett. 1995;193:25–8.

    Article  PubMed  CAS  Google Scholar 

  35. Woodford BJ, Tso MOM, Lam KW. Reduced and oxidized ascorbates in guinea pig retina under normal and light-exposed conditions. Invest Ophthalmol Vis Sci. 1983;24:862–7.

    PubMed  CAS  Google Scholar 

  36. Tomi M, Hosoya K, Takanaga H, Ohtsuki S, Terasaki T. Induction of the xCT gene expression and L-cystine transport activity by diethyl maleate at the inner blood-retinal barrier. Invest Ophthalmol Vis Sci. 2002;43:774–9.

    PubMed  Google Scholar 

  37. Kageyama T, Nakamura M, Matsuo A, Yamasaki Y, Takakura Y, Hashida M, et al. The 4F2hc/LAT1 complex transports L-DOPA across the blood-brain barrier. Brain Res. 2000;879:115–21.

    Article  PubMed  CAS  Google Scholar 

  38. Bodis-Wollner I. Visual electrophysiology in Parkinson’s disease: PERG, VEP and visual P300. Clin Electroencephalogr. 1997;28:143–7.

    PubMed  CAS  Google Scholar 

  39. Bhaskar PA, Vanchilingam S, Bhaskar EA, Devaprabhu A, Ganesan RA. Effect of L-dopa on visual evoked potential in patients with Parkinson's disease. Neurology 1986;36:1119–21.

    PubMed  CAS  Google Scholar 

  40. Goldenberg GJ, Lam HY, Begleiter A. Active carrier-mediated transport of melphalan by two separate amino acid transport systems in LPC-1 plasmacytoma cells in vitro. J Biol Chem. 1979;254:1057–64.

    PubMed  CAS  Google Scholar 

  41. Uchino H, Kanai Y, Kim DK, Wempe MF, Chairoungdua A, Morimoto E, et al. Transport of amino acid-related compounds mediated by L-type amino acid transporter 1 (LAT1): insights into the mechanisms of substrate recognition. Mol Pharmacol. 2002;61:729–37.

    Article  PubMed  CAS  Google Scholar 

  42. Hosoya K, Tomi M, Ohtsuki S, Takanaga H, Ueda M, Yanai N, et al. Conditionally immortalized retinal capillary endothelial cell lines (TR-iBRB) expressing differentiated endothelial cell functions derived from a transgenic rat. Exp Eye Res. 2001;72:163–72.

    Article  PubMed  CAS  Google Scholar 

  43. Hosoya K, Kyoko H, Toyooka N, Kato A, Orihashi M, Tomi M, et al. Evaluation of amino acid-mustard transport as L-type amino acid transporter 1 (LAT1)-mediated alkylating agents. Biol Pharm Bull. 2008;31:2126–30.

    Article  PubMed  CAS  Google Scholar 

  44. Lutty GA, McLeod DS. Retinal vascular development and oxygen-induced retinopathy: a role for adenosine. Prog Retin. Eye Res. 2003;22:95–111.

    Article  PubMed  CAS  Google Scholar 

  45. Ghiardi GJ, Gidday JM, Roth S. The purine nucleoside adenosine in retinal ischemia-reperfusion injury. Vision Res. 1999;39:2519–35.

    Article  PubMed  CAS  Google Scholar 

  46. Isakovic AJ, Abbott NJ, Redzic ZB. Brain to blood efflux transport of adenosine: blood-brain barrier studies in the rat. J Neurochem. 2004;90:272–86.

    Article  PubMed  CAS  Google Scholar 

  47. Baldwin SA, Beal PR, Yao SY, King AE, Cass CE, Young JD. The equilibrative nucleoside transporter family, SLC29. Pflugers Arch. 2004;447:735–43.

    Article  PubMed  CAS  Google Scholar 

  48. Yao SY, Ng AM, Sundaram M, Cass CE, Baldwin SA, Young JD. Transport of antiviral 3′-deoxy-nucleoside drugs by recombinant human and rat equilibrative, nitrobenzylthioinosine (NBMPR)-insensitive (ENT2) nucleoside transporter proteins produced in Xenopus oocytes. Mol Membr Biol. 2001;18:161–7.

    Article  PubMed  CAS  Google Scholar 

  49. Tomi M, Arai K, Tachikawa M, Hosoya K. Na+-independent choline transport in rat retinal capillary endothelial cells. Neurochem Res. 2007;32:1833–42.

    Article  PubMed  CAS  Google Scholar 

  50. Voigt T. Cholinergic amacrine cells in the rat retina. J Comp Neurol. 1986;248:19–35.

    Article  PubMed  CAS  Google Scholar 

  51. Masland RH, Mills JW, Cassidy C. The functions of acetylcholine in the rabbit retina. Proc R Soc Lond B Biol Sci. 1984;223:121–39.

    Article  PubMed  CAS  Google Scholar 

  52. Sweet DH, Miller DS, Pritchard JB. Ventricular choline transport: a role for organic cation transporter 2 expressed in choroid plexus. J Biol Chem. 2001;276:41611–9.

    Article  PubMed  CAS  Google Scholar 

  53. Friedrich A, George RL, Bridges CC, Prasad PD, Ganapathy V. Transport of choline and its relationship to the expression of the organic cation transporters in a rat brain microvessel endothelial cell line (RBE4). Biochim Biophys Acta. 2001;1512:299–307.

    Article  PubMed  CAS  Google Scholar 

  54. Murakami H, Sawada N, Koyabu N, Ohtani H, Sawada Y. Characteristics of choline transport across the blood-brain barrier in mice: correlation with in vitro data. Pharm Res. 2000;17:1526–30.

    Article  PubMed  CAS  Google Scholar 

  55. Allen DD, Lockman PR. The blood-brain barrier choline transporter as a brain drug delivery vector. Life Sci. 2003;73:1609–15.

    Article  PubMed  CAS  Google Scholar 

  56. Wyss M, Kaddurah-Daouk R. Creatine and creatinine metabolism. Physiol Rev. 2000;80:1107–213.

    PubMed  CAS  Google Scholar 

  57. Sipila I, Valle D, Brusilow S. Low guanidinoacetic acid and Creatine concentrations in gyrate atrophy of the choroids and retina (GA). In: De Deyn PP, Marescau B, Stalon V, Qureshi IA, editors. Guanidino compounds in Biology and Medicine. London: John Libbey and Company Ltd.; 1992. p. 379–83.

    Google Scholar 

  58. Nakashima T, Tomi M, Tachikawa M, Watanabe M, Terasaki T, Hosoya K. Evidence for creatine biosynthesis in Müller glia. Glia 2005;52:47–52.

    Article  PubMed  Google Scholar 

  59. Tachikawa M, Kasai Y, Takahashi M, Fujinawa J, Kitaichi K, Terasaki T, et al. The blood-cerebrospinal fluid barrier is a major pathway of cerebral creatinine clearance: involvement of transporter-mediated process. J Neurochem. 2008;107:432–42.

    Article  PubMed  CAS  Google Scholar 

  60. Tachikawa M, Fujinawa J, Takahashi M, Kasai Y, Fukaya M, Yamazaki M, et al. Expression and possible role of creatine transporter in the brain and at the blood-cerebrospinal fluid barrier as a transporting protein of guanidinoacetate, an endogenous convulsant. J Neurochem. 2008;107:768–78.

    Article  PubMed  CAS  Google Scholar 

  61. Graymore CN. Biochemistry of retina. In: Graymore CN, editor. Biochemistry of the eye. New York: Academic; 1970. p. 645–735.

    Google Scholar 

  62. Poitry-Yamate CL, Poitry S, Tsacopoulos M. Lactate released by Müller glial cells is metabolized by photoreceptors from mammalian retina. J Neurosci. 1995;15:5179–91.

    PubMed  CAS  Google Scholar 

  63. Alm A, Törnquist P. Lactate transport through the blood-retinal and the blood-brain barrier in rats. Ophthalmic Res. 1985;17:181–4.

    PubMed  CAS  Google Scholar 

  64. Gerhart DZ, Leino RL, Drewes LR. Distribution of monocarboxylate transporters MCT1 and MCT2 in rat retina. Neuroscience 1999;92:367–75.

    Article  PubMed  CAS  Google Scholar 

  65. Hosoya K, Kondo T, Tomi M, Takanaga H, Ohtsuki S, Terasaki T. MCT1-mediated transport of L-lactic acid at the inner blood-retinal barrier: a possible route for delivery of monocarboxylic acid drugs to the retina. Pharm Res. 2001;18:1669–76.

    Article  PubMed  CAS  Google Scholar 

  66. Brzezińska A, Wińska P, Balińska M. Cellular aspects of folate and antifolate membrane transport. Acta Biochim Pol. 2000;47:735–49.

    PubMed  Google Scholar 

  67. Knox DL, Chen MF, Guilarte TR, Dang CV, Burnette J. Nutritional amblyopia. Folic acid, vitamin B-12, and other vitamins. Retina 1982;2:288–93.

    Article  PubMed  CAS  Google Scholar 

  68. Golnik KC, Schaible ER. Folate-responsive optic neuropathy. J Neuroophthalmol. 1994;14:163–9.

    PubMed  CAS  Google Scholar 

  69. Martinasevic MK, Green MD, Baron J, Tephly TR. Folate and 10-formyltetrahydrofolate dehydrogenase in human and rat retina: relation to methanol toxicity. Toxicol Appl Pharmacol. 1996;141:373–81.

    Article  PubMed  CAS  Google Scholar 

  70. Hosoya K, Fujita K, Tachikawa M. Involvement of reduced folate carrier 1 in the inner blood-retinal barrier transport of methyltetrahydrofolate. Drug Metabol Pharmacokinet. 2008;23:285–92.

    Article  CAS  Google Scholar 

  71. Tomi M, Hosoya K. Application of magnetically isolated rat retinal vascular endothelial cells for the determination of transporter gene expression levels at the inner blood-retinal barrier. J Neurochem. 2004;91:1244–8.

    Article  PubMed  CAS  Google Scholar 

  72. Törnquist P, Alm A. Carrier-mediated transport of amino acids through the blood-retinal and the blood-brain barriers. Graefes Arch Clin Exp Ophthalmol. 1986;224:21–5.

    Article  PubMed  Google Scholar 

  73. Brigelius-Flohe R, Traber MG. Vitamin E: function and metabolism. Faseb J. 1999;13:1145–55.

    PubMed  CAS  Google Scholar 

  74. Burton GW, Traber MG. Vitamin E: antioxidant activity, biokinetics, and bioavailability. Annu Rev Nutr. 1990;10:357–82.

    Article  PubMed  CAS  Google Scholar 

  75. Goti D, Hrzenjak A, Levak-Frank S, Frank S, van der Westhuyzen DR, Malle E, et al. Scavenger receptor class B, type I is expressed in porcine brain capillary endothelial cells and contributes to selective uptake of HDL-associated vitamin E. J Neurochem. 2001;76:498–508.

    Article  PubMed  CAS  Google Scholar 

  76. Nieland TJ, Penman M, Dori L, Krieger M, Kirchhausen T. Discovery of chemical inhibitors of the selective transfer of lipids mediated by the HDL receptor SR-BI. Proc Natl Acad Sci USA. 2002;99:15422–7.

    Article  PubMed  CAS  Google Scholar 

  77. Tachikawa M, Okayasu S, Hosoya K. Functional involvement of scavenger receptor class B, type I, in the uptake of α-tocopherol using cultured rat retinal capillary endothelial cells. Mol Vis. 2007;13:2041–7.

    PubMed  CAS  Google Scholar 

  78. Yefimova MG, Jeanny JC, Guillonneau X, Keller N, Nguyen-Legros J, Sergeant C, et al. Iron, ferritin, transferrin, and transferrin receptor in the adult rat retina. Invest Ophthalmol Vis Sci. 2000;41:2343–51.

    PubMed  CAS  Google Scholar 

  79. Naeser P. Insulin receptors in human ocular tissues. Immunohistochemical demonstration in normal and diabetic eyes. Ups J Med Sci. 1997;102:35–40.

    Article  PubMed  CAS  Google Scholar 

  80. Zhu C, Zhang Y, Pardridge WM. Widespread expression of an exogenous gene in the eye after intravenous administration. Invest Ophthalmol Vis Sci. 2002;43:3075–80.

    PubMed  Google Scholar 

  81. Zhang Y, Schlachetzki F, Li JY, Boado RJ, Pardridge WM. Organ-specific gene expression in the rhesus monkey eye following intravenous non-viral gene transfer. Mol Vis. 2003;9:465–72.

    PubMed  CAS  Google Scholar 

  82. Pardridge WM. Drug targeting to the brain. Pharm Res. 2007;24:1733–44.

    Article  PubMed  CAS  Google Scholar 

  83. Brooks PC. Role of integrins in angiogenesis. Eur J Cancer. 1996;32A:2423–9.

    Article  PubMed  CAS  Google Scholar 

  84. Friedlander M, Theesfeld CL, Sugita M, Fruttiger M, Thomas MA, Chang S, et al. Involvement of integrins alpha v beta 3 and alpha v beta 5 in ocular neovascular diseases. Proc Natl Acad Sci USA. 1996;93:9764–9.

    Article  PubMed  CAS  Google Scholar 

  85. Brooks PC, Silletti S, von Schalscha TL, Friedlander M, Cheresh DA. Disruption of angiogenesis by PEX, a noncatalytic metalloproteinase fragment with integrin binding activity. Cell 1998;92:391–400.

    Article  PubMed  CAS  Google Scholar 

  86. Wilkinson-Berka JL, Jones D, Taylor G, Jaworski K, Kelly DJ, Ludbrook SB, et al. SB-267268, a nonpeptidic antagonist of alpha(v)beta3 and alpha(v)beta5 integrins, reduces angiogenesis and VEGF expression in a mouse model of retinopathy of prematurity. Invest Ophthalmol Vis Sci. 2006;47:1600–5.

    Article  PubMed  Google Scholar 

  87. Somervaille TC, Hann IM, Harrison G, Eden TO, Gibson BE, Hill FG, et al. MRC childhood leukaemia working party. Intraocular relapse of childhood acute lymphoblastic leukaemia. Br J Haematol. 2003;121:280–8.

    Article  PubMed  Google Scholar 

  88. Barza M, Kane A, Baum J. Pharmacokinetics of intravitreal carbenicillin, cefazolin, and gentamicin in rhesus monkeys. Invest Ophthalmol Vis Sci. 1983;24:1602–6.

    PubMed  CAS  Google Scholar 

  89. Katayama K, Ohshima Y, Tomi M, Hosoya K. Application of microdialysis to evaluate the efflux transport of estradiol 17-β glucuronide across the rat blood-retinal barrier. J Neurosci Methods. 2006;156:249–56.

    Article  PubMed  CAS  Google Scholar 

  90. Noé B, Hagenbuch B, Stieger B, Meier PJ. Isolation of a multispecific organic anion and cardiac glycoside transporter from rat brain. Proc Natl Acad Sci USA. 1997;94:10346–50.

    Article  PubMed  Google Scholar 

  91. Gao B, Wenzel A, Grimm C, Vavricka SR, Benke D, Meier PJ, et al. Localization of organic anion transport protein 2 in the apical region of rat retinal pigment epithelium. Invest Ophthalmol Vis Sci. 2002;43:510–4.

    PubMed  Google Scholar 

  92. Li JY, Boado RJ, Pardridge WM. Blood-brain barrier genomics. J Cereb Blood Flow Metab. 2001;21:61–8.

    Article  PubMed  CAS  Google Scholar 

  93. Sugiyama D, Kusuhara H, Shitara Y, Abe T, Meier PJ, Sekine T, et al. Characterization of the efflux transport of 17beta-estradiol-D-17beta-glucuronide from the brain across the blood-brain barrier. J Pharmacol Exp Ther. 2001;298:316–22.

    PubMed  CAS  Google Scholar 

  94. Hosoya K, Makihara A, Tsujikawa Y, Yoneyama D, Mori S, Terasaki T, et al. Roles of inner blood-retinal barrier organic anion transporter 3 in the vitreous/retina-to-blood efflux transport of p-aminohippuric acid, benzylpenicillin, and 6-mercaptopurine. J Pharmacol Exp Ther. 2009;329:87–93.

    Article  PubMed  CAS  Google Scholar 

  95. Kikuchi R, Kusuhara H, Sugiyama D, Sugiyama Y. Contribution of organic anion transporter 3 (Slc22a8) to the elimination of p-aminohippuric acid and benzylpenicillin across the blood-brain barrier. J Pharmacol Exp Ther. 2003;306:51–8.

    Article  PubMed  CAS  Google Scholar 

  96. Ambudkar SV, Kimchi-Sarfaty C, Sauna ZE, Gottesman MM. P-glycoprotein: from genomics to mechanism. Oncogene 2003;22:7468–85.

    Article  PubMed  CAS  Google Scholar 

  97. BenEzra D, Maftzir G. Ocular penetration of cyclosporin A. The rabbit eye. Invest Ophthalmol Vis Sci. 1990;31:1362–6.

    PubMed  CAS  Google Scholar 

  98. Shen J, Cross ST, Tang-Liu DD, Welty DF. Evaluation of an immortalized retinal endothelial cell line as an in vitro model for drug transport studies across the blood-retinal barrier. Pharm Res. 2003;20:1357–63.

    Article  PubMed  CAS  Google Scholar 

  99. Dean M, Rzhetsky A, Allikmets R. The human ATP-binding cassette (ABC) transporter superfamily. Genome Res. 2001;11:1156–66.

    Article  PubMed  CAS  Google Scholar 

  100. Dean M, Hamon Y, Chimini G. The human ATP-binding cassette (ABC) transporter superfamily. J Lipid Res. 2001;42:1007–17.

    PubMed  CAS  Google Scholar 

  101. Choudhuri S, Klaassen CD. Structure, function, expression, genomic organization, and single nucleotide polymorphisms of human ABCB1 (MDR1), ABCC (MRP), and ABCG2 (BCRP) efflux transporters. Int J Toxicol. 2006;25:231–59.

    Article  PubMed  CAS  Google Scholar 

  102. Nies AT, Schwab M, Keppler D. Interplay of conjugating enzymes with OATP uptake transporters and ABCC/MRP efflux pumps in the elimination of drugs. Expert Opin Drug Metab Toxicol. 2008;4:545–68.

    Article  PubMed  CAS  Google Scholar 

  103. Tachikawa M, Toki H, Tomi M, Hosoya K. Gene expression profiles of ATP-binding cassette transporter A and C subfamilies in mouse retinal vascular endothelial cells. Microvasc Res. 2008;75:68–72.

    Article  PubMed  CAS  Google Scholar 

  104. Asashima T, Hori S, Ohtsuki S, Tachikawa M, Watanabe M, Mukai C, et al. ATP-binding cassette transporter G2 mediates the efflux of phototoxins on the luminal membrane of retinal capillary endothelial cells. Pharm Res. 2006;23:1235–42.

    Article  PubMed  CAS  Google Scholar 

  105. Boulton M, Rozanowska M, Rozanowski B. Retinal photodamage. J Photochem Photobiol B. 2001;64:144–61.

    Article  PubMed  CAS  Google Scholar 

  106. Boado RJ, Li JY, Nagaya M, Zhang C, Pardridge WM. Selective expression of the large neutral amino acid transporter at the blood-brain barrier. Proc Natl Acad Sci USA. 1999;96:12079–84.

    Article  PubMed  CAS  Google Scholar 

  107. Ohtsuki S, Terasaki T. Contribution of carrier-mediated transport systems to the blood-brain barrier as a supporting and protecting interface for the brain; importance for CNS drug discovery and development. Pharm Res. 2007;24:1745–58.

    Article  PubMed  CAS  Google Scholar 

Download references

ACKNOWLEDGEMENT

This work was supported, in part, by a Grant-in-Aid for Scientific Research from the Japan Society for the Promotion of Science (JSPS). The authors thank Dr. M. Tomi for valuable suggestions, and S. Akanuma and T. Sugita for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ken-ichi Hosoya.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hosoya, Ki., Tachikawa, M. Inner Blood-Retinal Barrier Transporters: Role of Retinal Drug Delivery. Pharm Res 26, 2055–2065 (2009). https://doi.org/10.1007/s11095-009-9930-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-009-9930-2

KEY WORDS

Navigation