Skip to main content
Log in

The blood-retinal barriers

  • Published:
Documenta Ophthalmologica Aims and scope Submit manuscript

Abstract

The Blood-Retinal Barrier (BRB) is a situation of restricted permeability which is present between the blood and the retina. This barrier has a well defined anatomic substrate, particular permeability characteristics and appears to play a role of major importance in the pathophysiology and therapeutics of retinal disease.

The BRB phenomenon operates fundamentally at two levels, retinal vessels and chorioepithelial interface, forming which may be better called an inner BRB and an outer BRB. The main structures involved are, for the inner BRB, the endothelial membrane of the retinal vessels, and for the outer BRB, the retinal pigment epithelium. ‘Zonulae occludentes’ are present in these membranes, forming complete belts around the cells, sealing off the spaces between them. Other structures appear to play an accessory role.

Both barriers show an apparent predominance of processes of active transport over mechanisms of passive transfer, these being extremely restricted.

Much information on the pathophysiology of the BRB mechanism has been obtained from studies of its experimental breakdown. In this way, a breakdown of the inner BRB may be induced by acute distension of the vessel walls, ischaemia, chemical influences, defects in the endothelial cells and failure of the active transport system, whereas experimental ischaemia, mechanical distension of the pigment epithelial membrane, defects in the pigment epithelium and failure of the active transport systems can cause a breakdown of the outer BRB. The increased permeability of the inner BRB, and of the outer BRB, appears to be related to changes in the vascular endothelial membrane and retinal pigment epithelium, respectively.

In clinical ophthalmology there are two methods for the diagnosis of breakdown of the BRB, fundus fluorescein angiography and vitreous fluorophotometry. Vitreous fluorophotometry being capable of detecting functional alterations of the barrier before any pathological changes are apparent.

There is evidence of an intimate relationship between breakdown of the BRB and almost every retinal disease, particularly the vascular retinopathies and the pigment epitheliopathies. Diabetic retinopathy, hypertensive retinopathy, retinal vein obstruction, blood diseases, trauma or surgery to the eye, temporary arterial obstruction, perivasculitis, Behçet's and Coats' diseases, retinoblastoma, hemangioblastoma and retinal neovascularization are examples of situations where a breakdown of the inner BRB has been demonstrated. On the other hand, examples of breakdown of the outer BRB include situations of choroidal ischaemia, detachment of the pigment epithelium, choroidal neovascularization, photocoagulation, retinal detachment, Koyanagi's disease, central serous choroidopathy, multifocal inner choroiditis and acute placoid pigment epitheliopathy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adler, F.H. Textbook of physiology of the eye. C.V. Mosby, St. Louis, (1962).

    Google Scholar 

  • Apple D.J., Goldberg, M.F. & Wyhnny, G. Histopathology and ultrastructure of the argon laser lesion in human retinal and choroidal vasculatures, Am. J. Ophthal. 75: 595–609 (1973).

    Google Scholar 

  • Archer, D.B. Fluorescein angiography - In ‘Hereditary Retinal and Choroidal Diseases’ ed. by A Krill, p. 73, Harper & Row, New York (1972).

    Google Scholar 

  • Archer, D.B. The overall mechanism of macular oedema. VII, 25, Macular Workshop, Bath (1975).

  • Ashton, N. The Blood-Retinal Barrier and vasoglial relationships in retinal disease. Trans. Ophthal. Soc. U.K. 85: 199–229 (1965).

    Google Scholar 

  • Ashton, N. Retinal angiogenesis in the human embryo. Brit. Med Bulletin, 6: 103–106 (1970).

    Google Scholar 

  • Ashton, N. & Cunha-Vaz, J.G. Effect of histamine on the permeability of the ocular vessels. Arch. Ophthal. 73: 211–223 (1965).

    Google Scholar 

  • Ashton, N., Peltier, S. & Garner, A. Experimental hypertensive retinopathy in the monkey. Trans. Ophthal. Soc. U.K. 88: 167–184 (1968).

    Google Scholar 

  • Bailliart, P., Affections vasculaires de la retine. G. Doin, Paris (1953).

    Google Scholar 

  • Bakay, L. The blood-brain barrier, with special regard to the use of radioactive isotopes. Springfield, Ill., Charles C. Thomas (1956).

    Google Scholar 

  • Bassett, R.C., Rogers, J.R., Cherry, G.R. & Gruzhit, C. The effect of contrast media on the blood-brain barrier. J. Neurosurg. 10: 38–45 (1953).

    Google Scholar 

  • Bleeker, G.M. & Maas, E.H. Penetration of penethamate penicillin esther into the tissue of the eye. Arch. Ophthal. 60: 1013–1020 (1958).

    Google Scholar 

  • Bondareff, W. Distribution of ferritin in the cerebral cortex of the mouse revealed by electron microscopy Exp. Neurol. 10: 377–382 (1964).

    Google Scholar 

  • Brightman, M.W. The distribution within the brain of ferritin injected into cerebrospinal fluid compartments. II. Parenchymal distribution. Amer. J. Anat. 117: 193–220 (1965).

    Google Scholar 

  • Broman, T. The permeability of the cerebral vessels in normal and pathological conditions. Copenhagen, Munksgaard (1949).

    Google Scholar 

  • Broman, T. & Olsson, O. The tolerance of cerebral blood vessels to a contrast medium of the diodrast group. Acta Radiol. (Stockh.) 30: 326–342 (1948).

    Google Scholar 

  • Broughton, W. & Goldman, J.N. The intraocular penetration of chloramphenicol succinate in rabbits. Ann. Ophthal. 5: 71–80 (1973).

    Google Scholar 

  • Crone, C. The permeability of brain capillaries to non-electrolytes. Acta Physiol. Scand. 64: 407–412 (1965).

    Google Scholar 

  • Cunha-Vaz, J.G. Studies on the permeability of the blood-retinal barrier. II. Breakdown of the blood-retinal barrier by injury. Brit. J. Ophthal. 50: 454–462 (1966).

    Google Scholar 

  • Cunha-Vaz J.G. Studies on the permeability of the blood-brain barrier. III. Breakdown of the blood-retinal barrier by circulatory disturbances. A topographical study of the vascular tree. Brit. J. Ophthal. 50: 505–516 (1966).

    Google Scholar 

  • Cunha-Vaz, J.G. Permeability of the retinal vessels in health and disease. Ph.D. Thesis, University of London (1966).

  • Cunha-Vaz, J.G. Physiopathogenesis of retinitis proliferans and retinal new vessel formation. Proceedings of the 5th Congress of European Society of Ophthalmology, 1976 (in press).

  • Cunha-Vaz, J.G. & Faria de Abreu, J.R. Algunas noções fundamentais de fisiopatologia vascular da retina. Rev. Soc. Port. Oftal. 1: 9–16 (1975).

    Google Scholar 

  • Cunha-Vaz, J.G., Faria de Abreu, J.R., Campos, A.J. & Figo, G.M. Early breakdown of the blood-retinal barrier in diabetes. Brit. J. Ophthal. 59: 649–656 (1975).

    Google Scholar 

  • Cunha-Vaz, J.G. & Maurice, D.M. The active transport of fluorescein by the retinal vessels and retina. J. Physiol. 191: 467–486 (1967).

    Google Scholar 

  • Cunha-Vaz, J.G. & Shakib, M. Ultrastructural mechanism of breakdown of the blood-retinal barrier. J. Path. Bact. 93: 645–652 (1967).

    Google Scholar 

  • Cunha-Vaz J.G., Shakib, M. & Ashton, N. Studies on the permeability of the blood-retinal barrier. I. On the existence, development and site of a blood-retinal barrier. Brit. J. Ophthal. 50: 441–453 (1966).

    Google Scholar 

  • Davson, H. The intraocular fluids. ‘The Eye’, ed. by H. Davson, pp. 167, Academic Press, New York (1962).

    Google Scholar 

  • Davson, H. Physiology of the cerebrospinal fluid. London, Churchill (1967).

    Google Scholar 

  • Davson, H. & Danielli, J.F. The permeability of natural membranes. Cambridge University Press, London (1952).

    Google Scholar 

  • Davson, H.& Duke-Elder, W.S. The distribution of reducing substances between the intraocular fluids and plasma, the kinetics of penetration of various sugars into the fluids. J. Physiol. London 107: 141–148 (1948).

    Google Scholar 

  • Davson, H., Duke-Elder, W.S., Maurice, D.M., Ross, E.J. & Woodin, A.M. The penetration of some electrolytes and non-electrolytes into the aqueous humour and vitreous body of the cat. J. Physiol. London 108: 203–217 (1949).

    Google Scholar 

  • Dollery, C.T., Henkind, P. & Orme, M.L'E. Assimilation of D and L 1-c-14 glucose into the retina, brain and other tissues. Diabetes 20: 519–524 (1971).

    Google Scholar 

  • Duke-Elder, W.S. System of Ophthalmology. Vol. I, 233–257, Henry Kimpton London (1958).

    Google Scholar 

  • Duke-Elder, W.S. Textbook of Ophthalmology. Vol. IV. 214–215, Henry Kimpton, London (1968).

    Google Scholar 

  • Ehrlich, P. Das Sauerstoff-Bedurfinin des Organismus. Eine Farben-analytische Studie, Berlin (1885).

    Google Scholar 

  • Fenstermacher, J.D. & Johnson, J.A. Filtration and reflection coefficients of the rabbit blood-brain barrier. Amer. J. Physiol. 211: 341–346 (1966).

    Google Scholar 

  • Garner, A., Ashton, N., Tripathi, R., Kohner, E., Bulpitt, C.J. & Dollery, C.T. Pathogenesis of hypertensive retinopathy. Brit. J. Ophthal. 59: 3–44 (1975).

    Google Scholar 

  • Gass, J.D.M. Stereoscopic Atlas of Macular Diseases: A fundoscopic and angiographic presentation. C.V. Mosby, St. Louis (1970).

    Google Scholar 

  • Gay, A.J., Goldor, H. & Smith, M. Chorioretinal vascular occlusion with latex spheres. Invest. Ophthal. 3: 647–655 (1964).

    Google Scholar 

  • Gerschenfeld, H.M., Wald, F., Zadunaisky, J.A. & De Robertis, E.D.P. Function of astrologia in the water-ion metabolism of the central nervous system. An electron microscope study. Neurology 9: 412–425 (1959).

    Google Scholar 

  • Goldberg, M.F. & Duke J.R. Von Hippel-Lindau disease: histopathological findings in a treated and an untreated eye. Amer. J. Ophthal. 66: 693–705 (1968).

    Google Scholar 

  • Goldman, G.E. Vitalfarbung am Zentralnervensystem. Abhandl. Königl. Preuss. Akad. Wiss. 1: 1–60 (1913).

    Google Scholar 

  • Grayson, M.C. & Latties, A.M. Ocular localization of sodium fluorescein. Arch. Ophthal. 85: 600–609 (1971).

    Google Scholar 

  • Grazer, F.M. & Clemente, C.D. Developing blood-brain barrier to trypan blue. Proc.Soc. Exp. Biol. Med. 94: 758–760 (1957).

    Google Scholar 

  • Havener W.H. Ocular pharmacology, C.V. Mosby, St. Louis (1974).

    Google Scholar 

  • Hayreh, S.S. Segmental nature of the choroidal vasculature. Brit. J. Ophthal. 59: 631–648 (1976).

    Google Scholar 

  • Hazlett, L.D. & Meyer, D.B. Ferritin uptake in the Japanese quail retina. Exp. Eye Res. 19: 303–308 (1974).

    Google Scholar 

  • Hogan, M.J. & Feeney, L. The ultrastructure of the retinal vessels. I. The large vessels. J. Ultrastruct. Res. 9: 10–28 (1963).

    Google Scholar 

  • Joó, F Effect of inhidition of adenosine triphosphatase activity on the fine structural organization of the brain capillaries. Nature 219: 1378–1379 (1968).

    Google Scholar 

  • Joó, F. & Csillik, B. Topographic correlation between the hematoencephalic barrier and the cholinesterase activity of brain capillaries. Exp. Brain Res. 1: 147–151 (1966).

    Google Scholar 

  • Kinsey, K.E. Ion movement in the eye. Circulation 21: 968–975 (1960).

    Google Scholar 

  • Kleeman, C.R., Davson, H. & Levin, E. Urea transport in the central nervous system. Amer. J. Physiol. 203: 739–747 (1962).

    Google Scholar 

  • Kohner, E.M., Dollery, C.T., Henkind, P., Paterson, J.W. & Ramalho, P.S. Retinal vascular changes following exposure to high intensity light. Amer. J. Ophthal. 63: 1748–1761 (1967).

    Google Scholar 

  • Kulvin, S.M. & David, N.J. Experimental retinal embolism. Studies with high speed fluorescein cinematography. Arch. Ophthal. 78: 774–787 (1967).

    Google Scholar 

  • Lajtha, A. Protein metabolism of the nervous system. Int. Rev. Neurobiol. 6: 1–98 (1964).

    Google Scholar 

  • Landis E.H. & Pappenheimer, J.R. Exchange of substances through the capillary walls. ‘Handbook of Physiology’. Section 2 - circulation, p. 961, American Physiological Society. Washington (1963).

    Google Scholar 

  • Lee J.C. Evolution in the concept of the blood-brain barrier. Int. Rev. Neuropathology 2: 84–125 (1971).

    Google Scholar 

  • Majno, G & Palade, G.E. Studies on inflammation. I. The effect of histamine and serotonin on vascular permeability: an electron microscopic study. J. Biophys. Biochem. Cytol. 11: 571–605 (1961).

    Google Scholar 

  • Marshall, J. Acute damage to the retina by light. Macular Workshop, III, 5 (1975).

  • Maumenee, A.E. Discussion of Gass, J.D.M.: Disciform macular degeneration presented at the Wilmer Residents Meeting in Baltimore, Md., April, 1964. Quoted by Wise, Dollery and Henkind (1971).

  • Maumenee, A.E. Fluorescein angiography in the diagnosis and treatment of lesions of the ocular fundus. Trans. Ophthal. Soc. U.K. 88: 529–556 (1968).

    Google Scholar 

  • McMahon, R.T., Tso, M.O.M. & McLean, I.W. Histologic localization of sodium fluorescein in human ocular tissues Amer. J. Ophthal. 80: 1058–1065 (1975).

    Google Scholar 

  • Missotten, L. L'ultrastructure des tissues oculaires. Bull. Soc. Belge Ophtal. 136: 1–73(1964).

    Google Scholar 

  • Nilausen, K. The vasoformative tissue in the foetal retina with particular reference to the histochemical demonstration of its alkaline phosphatase activity. Acta Ophthal. (Kbh.) 36: 65–69 (1958).

    Google Scholar 

  • Okun, E. & Collins, E.M. Histopathology of experimental photocoagulation in the dog: 3. Microaneurysm-like formations following branch vein occlusion. Amer. J. Ophthal. 56: 40–45 (1963).

    Google Scholar 

  • Peyman, G.A. & Apple, D. Peroxidase diffusion processes in the optic nerve. Arch. Ophthal. 88: 650–654 (1972).

    Google Scholar 

  • Peyman, G.A., Spitznas, M. & Straatsma, B.R. Peroxidase diffusion in the normal and photocoagulated retina. Inv. Ophthal. 10: 181–187 (1971).

    Google Scholar 

  • Rahi, A.H.S. & Chignell, A.H. Immunoelectrophoretic analysis of subretinal fluid and its diagnostic significance. Trans. Ophthal. Soc. U.K. 95: 180–183 (1975).

    Google Scholar 

  • Reese, T.S. & Karnovski, M.J. Fine structural localization of a blood-brain barrier to exogenous peroxidase. J. Cell Biol. 34: 207–217 (1967).

    Google Scholar 

  • Rodriguez-Peralta, L.A. Experiments of the site of the blood ocular barrier. Anat. Rec. 142: 173–176 (1962).

    Google Scholar 

  • Sallman, L. von, Evans, T.C. & Dillon, B. Studies of the eye with radiosodium autographs. Arch. Ophthal. 41: 611–626 (1949).

    Google Scholar 

  • Sacks, S. Pathogenesis of the disciform lesion - histopathology, Macular Workshop, Bath, V, 7 (1975).

  • Shakib, M. & Cunha-Vaz, J.G. Studies on the permeability of the blood-retinal barrier. IV. Role of the junctional complexes of the retinal vessels on the permeability of the blood-retinal barrier. Exp. Eye Res. 5: 229–234 (1966).

    Google Scholar 

  • Shakib, M., Cunha-Vaz, J.G. & Keith, C. G. Studies on the effect of osmotically active substances on the retina. II. Electron microscopical studies. Invest. Ophthal. 6: 198–206 (1967).

    Google Scholar 

  • Shakib, M., Rutkowski, P. & Wise, G.E. Fluorescein angiography and the retinal pigment epithelium, Am. J. Ophthal. 74: 206–218 (1972).

    Google Scholar 

  • Shiose, Y. Electron microscopic changes on early changes of inherited dystrophic mouse retina. Jap. J. Ophthal. 12: 181–184 (1968).

    Google Scholar 

  • Shiose, Y. Electron microscopic studies on blood-retinal barrier and blood-aqueous barrier. Jap. J. Ophthal. 14: 73–79 (1970).

    Google Scholar 

  • Schnaudigel, O. Die Vitalfarbung mit Trypanblau am Auge. V. Graefes Arch. Ophthal. 86: 93–97 (1913).

    Google Scholar 

  • Silva Pinto, M., Magalhães, M. & Coimbra, A. A nutrição da retina: dos capilares aos neuronios. Anais do 2 Congresso Luso-Hispano-Brasileiro de Oftalmologia, Vol. III, 17–40 (1972).

    Google Scholar 

  • Smelser, G.K., Ishikawa, T. & Pey, Y.F. Electron microscopic studies of intra-retinal spaces: diffusion of particulate materials. In ‘The Structure of the Eye’, by Rohen, J., II, 109, Verlag, Stuttgart (1965).

    Google Scholar 

  • Steinwall, O. Transport mechanisms in certain blood-brain barrier phenomena. A hypothesis. Acta Psychiat. Scand. 36 (suppl. 150): 314–318 (1961).

    Google Scholar 

  • Tower, D.B. Distribution of cerebral fluids and electrolytes in vivo in vitro. In Klatzo, I., and Seitelberger, F. (Eds.): Brain Edema. New York, Springer-Verlag, 303 (1967).

    Google Scholar 

  • Tso, M.O., Shih, C.-Y. & McLean, I.W. Is there a blood-brain barrier at the optic nerve head? Arch. Ophthal. 93: 815–825 (1975).

    Google Scholar 

  • Vargas, F. & Johnson, J.A. Permeability of rabbit heart capillaries to nonelectrolytes. Amer. J. Physiol. 213: 87–93 (1967).

    Google Scholar 

  • Wessing, A. Fluorescein Angiography of the Retina. C.V. Mosby, St. Louis, (1969).

    Google Scholar 

  • Whitelocke, R.A.F. & Eakins, K.E. Vascular changes in the anterior uvea of the rabbit produced by prostaglandins. Arch. Ophthal. 89: 459–499 (1973).

    Google Scholar 

  • Wise, G.N. & Baum, J.L. Subretinal neovascularization in Coats' disease and the experimental animal. Trans. A.M.A. Sect. Ophthal. 69–75, (1965).

  • Wise G.N., Dollery, C.T. & Henkind, P. The retinal circulation. Harper & Row, New York (1971).

    Google Scholar 

  • Wislocki, G.B. & Dempsey, E.W. The chemical cytology of the choroid plexus and blood-brain barrier of the rhesus monkey (Macaca Mulatta). J. Comp. Neurol. 88: 319–326 (1948).

    Google Scholar 

  • Wood, L.W. & Watzke, R.C. Effects of cryopexy upon retinal vasculature. Arch. Ophthal. 81: 254–263 (1969).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This work was supported by research grant CMC 8 from the Instituto de Alta Cultura, Portugal

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cunha-Vaz, J.G. The blood-retinal barriers. Doc Ophthalmol 41, 287–327 (1976). https://doi.org/10.1007/BF00146764

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00146764

Key words

Navigation