Skip to main content

Advertisement

Log in

VEGF differentially regulates transcription and translation of ZO-1α+ and ZO-1α and mediates trans-epithelial resistance in cultured endothelial and epithelial cells

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Tight junctions (TJ) between retinal pigmented epithelial (RPE) and retinal endothelial cells maintain the outer and inner blood-retinal barrier, and the breakdown of these barriers is associated with retinal diseases. Vascular endothelial growth factor (VEGF) increases vascular permeability and is thought to be involved in age-related maculopathy. However, to date, little is known about the effect of VEGF on RPE cell junctions. We have investigated the effect of VEGF on TJ formation by examining two essential proteins, ZO-1α+ and ZO-1α. Cultured vascular endothelial cells in the presence of 5 ng/ml VEGF significantly down-regulate ZO-1α+ and ZO-1α transcripts and proteins with significant loss of their trans-epithelial resistance (TER). Immunoconfocal analysis with an anti-ZO-1 antibody has confirmed the relocation of ZO-1 protein from membrane to cytoplasm. By contrast, in the presence of 5 ng/ml VEGF, cultured RPE cells (ARPE19 and RPE51) significantly up-regulate ZO-1α+ and ZO-1α transcripts and proteins resulting in a significant increase in their TER. Subsequent immunoconfocal analysis has demonstrated increased ZO-1 membrane assembly in VEGF-treated RPE cells. Thus, VEGF has a dual capability with respect to the regulation of the expression of some TJ proteins at the transcriptional and post-translational levels depending on cell type.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Reference

  • Adamis AP, Shima DT, Yeo KT, Yeo TK, Brown LF, Berse B, D'Amore PA, Folkman J (1993) Synthesis and secretion of vascular permeability factor/vascular endothelial growth factor by human retinal pigment epithelial cells. Biochem Biophys Res Commun 193:631–638

    Article  PubMed  CAS  Google Scholar 

  • Antonetti DA, Barber AJ, Hollinger LA, Wolpert EB, Gardner TW (1999) Vascular endothelial growth factor induces rapid phosphorylation of tight junction proteins occludin and zonula occluden 1. A potential mechanism for vascular permeability in diabetic retinopathy and tumors. J Biol Chem 274:23463–23467

    Article  PubMed  CAS  Google Scholar 

  • Balda MS, Anderson JM (1993) Two classes of tight junctions are revealed by ZO-1 isoforms. Am J Physiol 264:C918–C924

    PubMed  CAS  Google Scholar 

  • Balda MS, Garrett MD, Matter K (2003) The ZO-1-associated Y-box factor ZONAB regulates epithelial cell proliferation and cell density. J Cell Biol 160:423–432

    Article  PubMed  CAS  Google Scholar 

  • Blaauwgeers HG, Holtkamp GM, Rutten H, Witmer AN, Koolwijk P, Partanen TA, Alitalo K, Kroon ME, Kijlstra A, van Hinsbergh VW, Schlingemann RO (1999) Polarized vascular endothelial growth factor secretion by human retinal pigment epithelium and localization of vascular endothelial growth factor receptors on the inner choriocapillaris. Evidence for a trophic paracrine relation. Am J Pathol 155:421–428

    PubMed  CAS  Google Scholar 

  • Bok D (1993) Retinal transplantation and gene therapy. Present realities and future possibilities. Invest Ophthalmol Vis Sci 34:473–476

    PubMed  CAS  Google Scholar 

  • Citi S, Cordenonsi M (1998) Tight junction proteins. Biochim Biophys Acta 1448:1–11

    Article  PubMed  CAS  Google Scholar 

  • Connolly DT, Heuvelman DM, Nelson R, Olander JV, Eppley BL, Delfino JJ, Siegel NR, Leimgruber RM, Feder J (1989) Tumor vascular permeability factor stimulates endothelial cell growth and angiogenesis. J Clin Invest 84:1470–1478

    PubMed  CAS  Google Scholar 

  • D'Amato RJ, Adamis AP (1995) Angiogenesis inhibition in age-related macular degeneration. Ophthalmology 102:1261–1262

    PubMed  Google Scholar 

  • Denker BM, Nigam SK (1998) Molecular structure and assembly of the tight junction. Am J Physiol 274:F1–F9

    PubMed  CAS  Google Scholar 

  • Dunn KC, Aotaki-Keen AE, Putkey FR, Hjelmeland LM (1996) ARPE-19, a human retinal pigment epithelial cell line with differentiated properties. Exp Eye Res 62:155–169

    Article  PubMed  CAS  Google Scholar 

  • Ferrara N, Henzel WJ (1989) Pituitary follicular cells secrete a novel heparin-binding growth factor specific for vascular endothelial cells. Biochem Biophys Res Commun 161:851–858

    Article  PubMed  CAS  Google Scholar 

  • Fischer S, Wobben M, Marti HH, Renz D, Schaper W (2002) Hypoxia-induced hyperpermeability in brain microvessel endothelial cells involves VEGF-mediated changes in the expression of zonula occludens-1. Microvasc Res 63:70–80

    Article  PubMed  CAS  Google Scholar 

  • Fischer S, Wiesnet M, Marti HH, Renz D, Schaper W (2004) Simultaneous activation of several second messengers in hypoxia-induced hyperpermeability of brain derived endothelial cells. J Cell Physiol 198:359–369

    Article  PubMed  CAS  Google Scholar 

  • Furuse M, Hirase T, Itoh M, Nagafuchi A, Yonemura S, Tsukita S, Tsukita S (1993) Occludin: a novel integral membrane protein localizing at tight junctions. J Cell Biol 123:1777–1788

    Article  PubMed  CAS  Google Scholar 

  • Ghassemifar MR, Sheth B, Papenbrock T, Leese HJ, Houghton FD, Fleming TP (2002) Occludin TM4(−): an isoform of the tight junction protein present in primates lacking the fourth transmembrane domain. J Cell Sci 115:3171–3180

    PubMed  CAS  Google Scholar 

  • Ghassemifar MR, Eckert JJ, Houghton FD, Picton HM, Leese HJ, Fleming TP (2003) Gene expression regulating epithelial intercellular junction biogenesis during human blastocyst development in vitro. Mol Hum Reprod 9:245–252

    Article  PubMed  CAS  Google Scholar 

  • Guerrin M, Moukadiri H, Chollet P, Moro F, Dutt K, Malecaze F, Plouet J (1995) Vasculotropin/vascular endothelial growth factor is an autocrine growth factor for human retinal pigment epithelial cells cultured in vitro. J Cell Physiol 164:385–394

    Article  PubMed  CAS  Google Scholar 

  • Huber D, Balda MS, Matter K (2000) Occludin modulates transepithelial migration of neutrophils. J Biol Chem 275:5773–5778

    Article  PubMed  CAS  Google Scholar 

  • Hurst RD, Fritz IB (1996) Properties of an immortalised vascular endothelial/glioma cell co-culture model of the blood-brain barrier. J Cell Physiol 167:81–88

    Article  PubMed  CAS  Google Scholar 

  • Itoh M, Furuse M, Morita K, Kubota K, Saitou M, Tsukita S (1999) Direct binding of three tight junction-associated MAGUKs, ZO-1, ZO-2, and ZO-3, with the COOH termini of claudins. J Cell Biol 147:1351–1363

    Article  PubMed  CAS  Google Scholar 

  • Itoh M, Sasaki H, Furuse M, Ozaki H, Kita T, Tsukita S (2001) Junctional adhesion molecule (JAM) binds to PAR-3: a possible mechanism for the recruitment of PAR-3 to tight junctions. J Cell Biol 154:491–497

    Article  PubMed  CAS  Google Scholar 

  • Kennedy CJ, Rakoczy PE, Constable IJ (1996) A simple flow cytometric technique to quantify rod outer segment phagocytosis in cultured retinal pigment epithelial cells. Curr Eye Res 15:998–1003

    Article  PubMed  CAS  Google Scholar 

  • Kliffen M, Sharma HS, Mooy CM, Kerkvliet S, Jong PT de (1997) Increased expression of angiogenic growth factors in age-related maculopathy. Br J Ophthalmol 81:154–162

    Article  PubMed  CAS  Google Scholar 

  • Konari K, Sawada N, Zhong Y, Isomura H, Nakagawa T, Mori M (1995) Development of the blood-retinal barrier in vitro: formation of tight junctions as revealed by occludin and ZO-1 correlates with the barrier function of chick retinal pigment epithelial cells. Exp Eye Res 61:99–108

    Article  PubMed  CAS  Google Scholar 

  • Kvanta A, Algvere PV, Berglin L, Seregard S (1996) Subfoveal fibrovascular membranes in age-related macular degeneration express vascular endothelial growth factor. Invest Ophthalmol Vis Sci 37:1929–1934

    PubMed  CAS  Google Scholar 

  • Lopez PF, Sippy BD, Lambert HM, Thach AB, Hinton DR (1996) Transdifferentiated retinal pigment epithelial cells are immunoreactive for vascular endothelial growth factor in surgically excised age-related macular degeneration-related choroidal neovascular membranes. Invest Ophthalmol Vis Sci 37:855–868

    PubMed  CAS  Google Scholar 

  • Madara JL, Parkos C, Colgan S, Nusrat A, Atisook K, Kaoutzani P (1992) The movement of solutes and cells across tight junctions. Ann N Y Acad Sci 664:47–60

    Article  PubMed  CAS  Google Scholar 

  • Mark KS, Davis TP (2002) Cerebral microvascular changes in permeability and tight junctions induced by hypoxia-reoxygenation. Am J Physiol Heart Circ Physiol 282:H1485–H1494

    PubMed  CAS  Google Scholar 

  • Martin-Padura I, Lostaglio S, Schneemann M, Williams L, Romano M, Fruscella P, Panzeri C, Stoppacciaro A, Ruco L, Villa A, Simmons D, Dejana E (1998) Junctional adhesion molecule, a novel member of the immunoglobulin superfamily that distributes at intercellular junctions and modulates monocyte transmigration. J Cell Biol 142:117–127

    Article  PubMed  CAS  Google Scholar 

  • Matter K, Balda MS (1999) Occludin and the functions of tight junctions. Int Rev Cytol 186:117–146

    PubMed  CAS  Google Scholar 

  • Mitic LL, Anderson JM (1998) Molecular architecture of tight junctions. Annu Rev Physiol 60:121–142

    Article  PubMed  CAS  Google Scholar 

  • Muresan Z, Paul DL, Goodenough DA (2000) Occludin 1B, a variant of the tight junction protein occludin. Mol Biol Cell 11:627–634

    PubMed  CAS  Google Scholar 

  • Okamoto N, Tobe T, Hackett SF, Ozaki H, Vinores MA, LaRochelle W, Zack DJ, Campochiaro PA (1997) Transgenic mice with increased expression of vascular endothelial growth factor in the retina: a new model of intraretinal and subretinal neovascularization. Am J Pathol 151:281–291

    PubMed  CAS  Google Scholar 

  • Rakoczy PE, Brankov M, Fonceca A, Zaknich T, Rae BC, Lai CM (2003) Enhanced recombinant adeno-associated virus-mediated vascular endothelial growth factor expression in the adult mouse retina: a potential model for diabetic retinopathy. Diabetes 52:857–863

    Article  PubMed  CAS  Google Scholar 

  • Reichert M, Muller T, Hunziker W (2000) The PDZ domains of zonula occludens-1 induce an epithelial to mesenchymal transition of Madin-Darby canine kidney I cells. Evidence for a role of beta-catenin/Tcf/Lef signaling. J Biol Chem 275:9492–9500

    Article  PubMed  CAS  Google Scholar 

  • Robledo RF, Barber DS, Witten ML (1999) Modulation of bronchial epithelial cell barrier function by in vitro jet propulsion fuel 8 exposure. Toxicol Sci 51:119–125

    Article  PubMed  CAS  Google Scholar 

  • Schwesinger C, Yee C, Rohan RM, Joussen AM, Fernandez A, Meyer TN, Poulaki V, Ma JJ, Redmond TM, Liu S, Adamis AP, D'Amato RJ (2001) Intrachoroidal neovascularization in transgenic mice overexpressing vascular endothelial growth factor in the retinal pigment epithelium. Am J Pathol 158:1161–1172

    PubMed  CAS  Google Scholar 

  • Sheedlo HJ, Li L, Turner JE (1992) Effects of RPE-cell factors secreted from permselective fibers on retinal cells in vitro. Brain Res 587:327–337

    Article  PubMed  CAS  Google Scholar 

  • Shen WY, Yu MJ, Barry CJ, Constable IJ, Rakoczy PE (1998) Expression of cell adhesion molecules and vascular endothelial growth factor in experimental choroidal neovascularisation in the rat. Br J Ophthalmol 82:1063–1071

    PubMed  CAS  Google Scholar 

  • Sheth B, Fesenko I, Collins JE, Moran B, Wild AE, Anderson JM, Fleming TP (1997) Tight junction assembly during mouse blastocyst formation is regulated by late expression of ZO-1 alpha+ isoform. Development 124:2027–2037

    PubMed  CAS  Google Scholar 

  • Siafakas CG, Anatolitou F, Fusunyan RD, Walker WA, Sanderson IR (1999) Vascular endothelial growth factor (VEGF) is present in human breast milk and its receptor is present on intestinal epithelial cells. Pediatr Res 45:652–657

    Article  PubMed  CAS  Google Scholar 

  • Spilsbury K, Garrett KL, Shen WY, Constable IJ, Rakoczy PE (2000) Overexpression of vascular endothelial growth factor (VEGF) in the retinal pigment epithelium leads to the development of choroidal neovascularization. Am J Pathol 157:135–144

    PubMed  CAS  Google Scholar 

  • Stevenson BR, Keon BH (1998) The tight junction: morphology to molecules. Annu Rev Cell Dev Biol 14:89–109

    Article  PubMed  CAS  Google Scholar 

  • Tarnuzzer RW, Macauley SP, Farmerie WG, Caballero S, Ghassemifar MR, Anderson JT, Robinson CP, Grant MB, Humphreys-Beher MG, Franzen L, Peck AB, Schultz GS (1996) Competitive RNA templates for detection and quantitation of growth factors, cytokines, extracellular matrix components and matrix metalloproteinases by RT-PCR. Biotechniques 20:670–674

    PubMed  CAS  Google Scholar 

  • Tobe T, Okamoto N, Vinores MA, Derevjanik NL, Vinores SA, Zack DJ, Campochiaro PA (1998) Evolution of neovascularization in mice with overexpression of vascular endothelial growth factor in photoreceptors. Invest Ophthalmol Vis Sci 39:180–188

    PubMed  CAS  Google Scholar 

  • Umeda K, Matsui T, Nakayama M, Furuse K, Sasaki H, Furuse M, Tsukita S (2004) Establishment and characterization of cultured epithelial cells lacking expression of ZO-1. J Biol Chem 279:44785–44794

    Article  PubMed  CAS  Google Scholar 

  • Wang W, Dentler WL, Borchardt RT (2001) VEGF increases BMEC monolayer permeability by affecting occludin expression and tight junction assembly. Am J Physiol Heart Circ Physiol 280:H434–H440

    PubMed  CAS  Google Scholar 

  • Wells JA, Murthy R, Chibber R, Nunn A, Molinatti PA, Kohner EM, Gregor ZJ (1996) Levels of vascular endothelial growth factor are elevated in the vitreous of patients with subretinal neovascularisation. Br J Ophthalmol 80:363–366

    Article  PubMed  CAS  Google Scholar 

  • Willott E, Balda MS, Heintzelman M, Jameson B, Anderson JM (1992) Localization and differential expression of two isoforms of the tight junction protein ZO-1. Am J Physiol 262:C1119–C1124

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr. R. Marano for his valuable advice regarding the use of statistical programs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reza Ghassemifar.

Additional information

The authors gratefully acknowledge the Lions Eye Institute and Lions Save-Sight Foundation for financing the fellowship of R.G.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ghassemifar, R., Lai, CM. & Rakoczy, P.E. VEGF differentially regulates transcription and translation of ZO-1α+ and ZO-1α and mediates trans-epithelial resistance in cultured endothelial and epithelial cells. Cell Tissue Res 323, 117–125 (2006). https://doi.org/10.1007/s00441-005-0046-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-005-0046-7

Keywords

Navigation