Skip to main content

Part of the book series: Advances in Neurobiology ((NEUROBIOL,volume 11))

Abstract

Both ATP and glutamate are on one hand essential metabolites in brain and on the other serve a signaling function as transmitters. However, there is the major difference that the flux in the pathway producing transmitter glutamate is comparable to the rate of glucose metabolism in brain, whereas that producing transmitter ATP is orders of magnitude smaller than the metabolic turnover between ATP and ADP. Moreover, de novo glutamate production occurs exclusively in astrocytes, whereas transmitter ATP is produced both in neurons and astrocytes. This chapter deals only with ATP and exclusively with its formation and release in astrocytes, and it focuses on potential associations with glycogenolysis, which is known to be indispensable for the synthesis of glutamate. Glycogenolysis is dependent upon an increase in free intracellular Ca2+ concentration (Ca2+]i). It can be further stimulated by cAMP, but in contrast to widespread beliefs, cAMP can on its own not induce glycogenolysis. Astrocytes generate ATP from accumulated adenosine, and this process does not seem to require glycogenolysis. A minor amount of the generated ATP is utilized as a transmitter, and its synthesis requires the presence of the mainly intracellular nucleoside transporter ENT3. Many transmitters as well as extracellular K+ concentrations high enough to open the voltage-sensitive L-channels for Ca2+ cause a release of transmitter ATP from astrocytes. Adenosine and ATP induce release of ATP by action at several different purinergic receptors. The release evoked by transmitters or elevated K+ concentrations is abolished by DAB, an inhibitor of glycogenolysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbracchio MP, Ceruti S (2006) Roles of P2 receptors in glial cells: focus on astrocytes. Purinergic Signal 2:595–604

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Abe K, Saito H (1998) Adenosine stimulates stellation of cultured rat cortical astrocytes. Brain Res 804:63–71

    Article  PubMed  CAS  Google Scholar 

  • Allaman I, Lengacher S, Magistretti PJ, Pellerin L (2003) A2B receptor activation promotes glycogen synthesis in astrocytes through modulation of gene expression. Am J Physiol Cell Physiol 284:C696–C704

    Article  PubMed  CAS  Google Scholar 

  • Bender AS, Hertz L (1986) Similarities of adenosine uptake systems in astrocytes and neurons in primary cultures. Neurochem Res 11:1507–1524

    Article  PubMed  CAS  Google Scholar 

  • Berry MN, Friend DS (1969) High-yield preparation of isolated rat liver parenchymal cells: a biochemical and fine structural study. J Cell Biol 43:506–520

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Boison D (2013) Adenosine and seizure termination: endogenous mechanisms. Epilepsy Curr 13:35–37

    Article  PubMed  PubMed Central  Google Scholar 

  • Borke RC, Nau ME (1984) Glycogen, its transient occurrence in neurons of the rat CNS during normal postnatal development. Brain Res 318:277–284

    Article  PubMed  CAS  Google Scholar 

  • Brushia RJ, Walsh DA (1999) Phosphorylase kinase: the complexity of its regulation is reflected in the complexity of its structure. Front Biosci 4:D618–D641

    Article  PubMed  CAS  Google Scholar 

  • Cai L, Du T, Song D, Li B, Hertz L, Peng L (2011) Astrocyte ERK phosphorylation precedes K+-induced swelling but follows hypotonicity-induced swelling. Neuropathology 31:250–264

    Article  PubMed  Google Scholar 

  • Cao X, Li LP, Wang Q, Wu Q, Hu HH, Zhang M, Fang YY, Zhang J, Li SJ, Xiong WC, Yan HC, Gao YB, Liu JH, Li XW, Sun LR, Zeng YN, Zhu XH, Gao TM (2013) Astrocyte-derived ATP modulates depressive-like behaviors. Nat Med 19:773–777

    Article  PubMed  CAS  Google Scholar 

  • Chen Y, Rathbone MP, Hertz L (2001) Guanosine-induced increase in free cytosolic calcium concentration in mouse astrocytes in primary cultures: does it act on an A3 adenosine receptor? J Neurosci Res 65:184–189

    Article  PubMed  CAS  Google Scholar 

  • Choi HB, Gordon GR, Zhou N, Tai C, Rungta RL, Martinez J, Milner TA, Ryu JK, McLarnon JG, Tresguerres M, Levin LR, Buck J, MacVicar BA (2012) Metabolic communication between astrocytes and neurons via bicarbonate-responsive soluble adenylyl cyclase. Neuron 75:1094–1104

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Cotrina ML, Lin JH, Nedergaard M (1998) Cytoskeletal assembly and ATP release regulate astrocytic calcium signaling. J Neurosci 18:8794–8804

    PubMed  CAS  Google Scholar 

  • Diaz SL, Doly S, Narboux-Nême N, Fernández S, Mazot P, Banas SM, Boutourlinsky K, Moutkine I, Belmer A, Roumier A, Maroteaux L (2012) 5-HT(2B) receptors are required for serotonin-selective antidepressant actions. Mol Psychiatry 17:154–163

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Dienel GA, Wang RY, Cruz NF (2002) Generalized sensory stimulation of conscious rats increases labeling of oxidative pathways of glucose metabolism when the brain glucose-oxygen uptake ratio rises. J Cereb Blood Flow Metab 22:1490–1502

    Article  PubMed  CAS  Google Scholar 

  • Dinuzzo M, Mangia S, Maraviglia B, Giove F (2013) Regulatory mechanisms for glycogenolysis and K+ uptake in brain astrocytes. Neurochem Int 63:458–464

    Article  PubMed  CAS  Google Scholar 

  • Du T, Li B, Li H, Li M, Hertz L, Peng L (2010) Signaling pathways of isoproterenol-induced ERK1/2 phosphorylation in primary cultures of astrocytes are concentration-dependent. J Neurochem 115:1007–1023

    Article  PubMed  CAS  Google Scholar 

  • Du T, Liang C, Li B, Hertz L, Peng L (2014) Chronic fluoxetine administration increases expression of the L-channel gene Cav1.2 in astrocytes from the brain of treated mice and in culture and augments K+-induced increase in [Ca2+]i. Cell Calcium 55(3):166–174

    Article  PubMed  CAS  Google Scholar 

  • Duran J, Saez I, Gruart A, Guinovart JJ, Delgado-García JM (2013) Impairment in long-term memory formation and learning-dependent synaptic plasticity in mice lacking glycogen synthase in the brain. J Cereb Blood Flow Metab 33:550–556

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Exton JH, Hardman JG, Williams TF, Sutherland EW, Park CR (1971) Effects of guanosine 3',5'-monophosphate on the perfused rat liver. J Biol Chem 246:2658–2664

    Google Scholar 

  • Geiger JD, Johnston ME, Yago V (1988) Pharmacological characterization of rapidly accumulated adenosine by dissociated brain cells from adult rat. J Neurochem 51:283–291

    Article  PubMed  CAS  Google Scholar 

  • Gibbs ME, Anderson DG, Hertz L (2006) Inhibition of glycogenolysis in astrocytes interrupts memory consolidation in young chickens. Glia 54:214–222

    Article  PubMed  Google Scholar 

  • Gibbs ME, Lloyd HG, Santa T, Hertz L (2007) Glycogen is a preferred glutamate precursor during learning in 1-day-old chick: biochemical and behavioral evidence. J Neurosci Res 85:3326–3333

    Article  PubMed  CAS  Google Scholar 

  • Gibbs ME, Shleper M, Mustafa T, Burnstock G, Bowser DN (2011) ATP derived from astrocytes modulates memory in the chick. Neuron Glia Biol 7:177–186

    Google Scholar 

  • Glinsmann WH, Hern EP, Linarelli LG, Farese RV (1969) Similarities between effects of adenosine 3′,5′-monophosphate and guanosine 3′ 5′-monophosphate on liver and adrenal metabolism. Endocrinology 85:711–719

    Article  PubMed  CAS  Google Scholar 

  • González-Benítez E, Guinzberg R, Díaz-Cruz A, Piña E (2002) Regulation of glycogen metabolism in hepatocytes through adenosine receptors. Role of Ca2+ and cAMP. Eur J Pharmacol 437:105–111

    Article  PubMed  Google Scholar 

  • Guček A, Vardjan N, Zorec R (2012) Exocytosis in astrocytes: transmitter release and membrane signal regulation. Neurochem Res 37:2351–2363

    Article  PubMed  Google Scholar 

  • Hamilton N, Vayro S, Kirchhoff F, Verkhratsky A, Robbins J, Gorecki DC, Butt AM (2008) Mechanisms of ATP- and glutamate-mediated calcium signaling in white matter astrocytes. Glia 56:734–749

    Article  PubMed  Google Scholar 

  • Herlin T, Petersen CS, Esmann V (1978) The role of calcium and cyclic adenosine 3′,5′-monophosphate in the regulation of glycogen metabolism in phagocytozing human polymorphonuclear leukocytes. Biochim Biophys Acta 542:63–76

    Article  PubMed  CAS  Google Scholar 

  • Hertz L (2011) Astrocytic energy metabolism and glutamate formation–relevance for 13C-NMR spectroscopy and importance of cytosolic/mitochondrial trafficking. Magn Reson Imaging 29:1319–1329

    Article  PubMed  CAS  Google Scholar 

  • Hertz L (2013) The glutamate-glutamine (GABA) cycle: importance of late postnatal development and potential reciprocal interactions between biosynthesis and degradation. Front Endocrinol (Lausanne) 4:59

    CAS  Google Scholar 

  • Hertz L, Code WE (1993) Calcium channel signalling in astrocytes. In: Paoletti R, Godfraind T, Vankoullen PM (eds) Calcium antagonists: pharmacology and clinical research. Kluwer, Boston, pp 205–213

    Chapter  Google Scholar 

  • Hertz L, Matz H (1989) Inhibition of adenosine deaminase activity reveals an intense active transport of adenosine into neurons in primary cultures. Neurochem Res 14:755–760

    Article  PubMed  CAS  Google Scholar 

  • Hertz L, Zielke HR (2004) Astrocytic control of glutamatergic activity: astrocytes as stars of the show. Trends Neurosci 27:735–743

    Article  PubMed  CAS  Google Scholar 

  • Hertz L, O’Dowd BS, Ng KT, Gibbs ME (2003) Reciprocal changes in forebrain contents of glycogen and of glutamate/glutamine during early memory consolidation in the day-old chick. Brain Res 994:226–233

    Article  PubMed  CAS  Google Scholar 

  • Hertz L, Peng L, Dienel GA (2007) Energy metabolism in astrocytes: high rate of oxidative metabolism and spatiotemporal dependence on glycolysis/glycogenolysis. J Cereb Blood Flow Metab 27:219–249

    Article  PubMed  CAS  Google Scholar 

  • Hertz L, Song D, Li B, Yan E, Peng L (2013a) Importance of ‘inflammatory molecules’ in the pathophysiology of bipolar disorder and in the mechanisms of action of anti-bipolar drugs. Neurol Psychiatry Brain Res 19:174–179

    Article  Google Scholar 

  • Hertz L, Xu J, Song D, Du T, Yan E, Peng L (2013b) Brain glycogenolysis, adrenoceptors, pyruvate carboxylase, Na+, K+-ATPase and Marie E. Gibbs’ pioneering learning studies. Front Integr Neurosci 7:20

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Hertz L, Xu J, Song D, Yan E, Gu L, Peng L (2013c) Astrocytic and neuronal accumulation of elevated extracellular K+ with a 2/3 K+/Na+ flux ratio-consequences for energy metabolism, osmolarity and higher brain function. Front Comput Neurosci 7:114

    Article  PubMed  PubMed Central  Google Scholar 

  • Hof PR, Pascale E, Magistretti PJ (1988) K+ at concentrations reached in the extracellular space during neuronal activity promotes a Ca2+-dependent glycogen hydrolysis in mouse cerebral cortex. J Neurosci 8:1922–1928

    PubMed  CAS  Google Scholar 

  • Ibrahim MZ (1975) Glycogen and its related enzymes of metabolism in the central nervous system. Adv Anat Embryol Cell Biol 52:3–89

    PubMed  CAS  Google Scholar 

  • Illes P, Verkhratsky A, Burnstock G, Franke H (2012) P2X receptors and their roles in astroglia in the central and peripheral nervous system. Neuroscientist 18:422–438

    Article  PubMed  CAS  Google Scholar 

  • Jacobson KA, Gao ZG (2006) Adenosine receptors as therapeutic targets. Nat Rev Drug Discov 5:247–264

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • James G, Butt AM (2001) P2X and P2Y purinoreceptors mediate ATP-evoked calcium signalling in optic nerve glia in situ. Cell Calcium 30(4):251–259

    Article  PubMed  CAS  Google Scholar 

  • Kang YM, Zhang ZH, Yang SW, Qiao JT, Dafny N (1998) ATP-sensitive K+ channels are involved in the mediation of intrathecal norepinephrine- or morphine-induced antinociception at the spinal level: a study using EMG planimetry of flexor reflex in rats. Brain Res Bull 45:269–273

    Article  PubMed  CAS  Google Scholar 

  • Kong EK, Peng L, Chen Y, Yu AC, Hertz L (2002) Up-regulation of 5-HT2B receptor density and receptor-mediated glycogenolysis in mouse astrocytes by long-term fluoxetine administration. Neurochem Res 27:113–120

    Article  PubMed  CAS  Google Scholar 

  • Krivanek J (1958) Changes of brain glycogen in the spreading EEG-depression of Leao. J Neurochem 2:337–343

    Article  PubMed  CAS  Google Scholar 

  • Lauritzen M, Hansen AJ, Kronborg D, Wieloch T (1990) Cortical spreading depression is associated with arachidonic acid accumulation and preservation of energy charge. J Cereb Blood Flow Metab 10:115–122

    Article  PubMed  CAS  Google Scholar 

  • Li B, Zhang S, Zhang H, Nu W, Cai L, Hertz L, Peng L (2008) Fluoxetine-mediated 5-HT2B receptor stimulation in astrocytes causes EGF receptor transactivation and ERK phosphorylation. Psychopharmacology (Berl) 201:443–458

    Article  CAS  Google Scholar 

  • Li B, Zhang S, Zhang H, Hertz L, Peng L (2011) Fluoxetine affects GluK2 editing, glutamate-evoked Ca2+ influx and extracellular signal-regulated kinase phosphorylation in mouse astrocytes. J Psychiatry Neurosci 36:322–338

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Li B, Dong L, Wang B, Cai L, Jiang N, Peng L (2012) Cell type-specific gene expression and editing responses to chronic fluoxetine treatment in the in vivo mouse brain and their relevance for stress-induced anhedonia. Neurochem Res 37:2480–2495

    Article  PubMed  CAS  Google Scholar 

  • Li B, Gu L, Hertz L, Peng L (2013) Expression of nucleoside transporter in freshly isolated neurons and astrocytes from mouse brain. Neurochem Res 38:2351–2358. doi:10.1007/s11064-013-1146-5

    Article  PubMed  CAS  Google Scholar 

  • Linden J, Taylor HE, Robeva AS, Tucker AL, Stehle JH, Rivkees SA, Fink JS, Reppert SM (1993) Molecular cloning and functional expression of a sheep A3 adenosine receptor with widespread tissue distribution. Mol Pharmacol 44:524–532

    PubMed  CAS  Google Scholar 

  • Lovatt D, Xu Q, Liu W, Takano T, Smith NA, Schnermann J, Tieu K, Nedergaard M (2012) Neuronal adenosine release, and not astrocytic ATP release, mediates feedback inhibition of excitatory activity. Proc Natl Acad Sci U S A 109:6265–6270

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Ma BF, Xie MJ, Zhou M (2012) Bicarbonate efflux via GABA(A) receptors depolarizes membrane potential and inhibits two-pore domain potassium channels of astrocytes in rat hippocampal slices. Glia 60:1761–1772

    Article  PubMed  PubMed Central  Google Scholar 

  • Magistretti PJ (1988) Regulation of glycogenolysis by neurotransmitters in the central nervous system. Diabete Metab 14:237–246

    PubMed  CAS  Google Scholar 

  • Magistretti PJ, Hof PR, Martin JL (1986) Adenosine stimulates glycogenolysis in mouse cerebral cortex: a possible coupling mechanism between neuronal activity and energy metabolism. J Neurosci 6:2558–2562

    PubMed  CAS  Google Scholar 

  • Matz H, Hertz L (1989) Adenosine metabolism in neurons and astrocytes in primary cultures. J Neurosci Res 24:260–267

    Article  PubMed  CAS  Google Scholar 

  • Matz H, Hertz L (1990) Effects of adenosine deaminase inhibition on active uptake and metabolism of adenosine in astrocytes in primary cultures. Brain Res 515:168–172

    Article  PubMed  CAS  Google Scholar 

  • Meier E, Hertz L, Schousboe A (1991) Neurotransmitters as developmental signals. Neurochem Int 19:1–15

    Article  CAS  Google Scholar 

  • Morita M, Kudo Y (2010) Growth factors upregulate astrocyte [Ca2+]i oscillation by increasing SERCA2b expression. Glia 58:1988–1995

    Article  PubMed  Google Scholar 

  • Müller MS, Fox R, Schousboe A, Waagepetersen HS, Bak LK (2014) Astrocyte glycogenolysis is triggered by store-operated calcium entry and provides metabolic energy for cellular calcium homeostasis. Glia 62:526–534

    Google Scholar 

  • Neary JT, van Breemen C, Forster E, Norenberg LO, Norenberg MD (1988) ATP stimulates calcium influx in primary astrocyte cultures. Biochem Biophys Res Commun 157:1410–1416

    Article  PubMed  CAS  Google Scholar 

  • Obel LF, Andersen KM, Bak LK, Schousboe A, Waagepetersen HS (2012) Effects of adrenergic agents on intracellular Ca2+ homeostasis and metabolism of glucose in astrocytes with an emphasis on pyruvate carboxylation, oxidative decarboxylation and recycling: implications for glutamate neurotransmission and excitotoxicity. Neurotox Res 21:405–417

    Article  PubMed  CAS  Google Scholar 

  • Offermanns S, Simon MI (1995) G alpha 15 and G alpha 16 couple a wide variety of receptors to phospholipase C. J Biol Chem 270:15175–15180

    Article  PubMed  CAS  Google Scholar 

  • Öhman J, Erlinge D (2012) The touching story of purinergic signaling in epithelial and endothelial cells. Purinergic Signal 8:599–608

    Article  PubMed  PubMed Central  Google Scholar 

  • Ozawa E (1972) Activation of muscular phosphorylase b kinase by a minute amount of Ca ion. J Biochem 71:321–331

    PubMed  CAS  Google Scholar 

  • Ozawa E (2011) Regulation of phosphorylase kinase by low concentrations of Ca ions upon muscle contraction: the connection between metabolism and muscle contraction and the connection between muscle physiology and Ca-dependent signal transduction. Proc Jpn Acad Ser B Phys Biol Sci 87:486–508

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Pardridge WM, Yoshikawa T, Kang YS, Miller LP (1994) Blood-brain barrier transport and brain metabolism of adenosine and adenosine analogs. J Pharmacol Exp Ther 268:14–18

    PubMed  CAS  Google Scholar 

  • Parkinson FE, Damaraju VL, Graham K, Yao SY, Baldwin SA, Cass CE, Young JD (2011) Molecular biology of nucleoside transporters and their distributions and functions in the brain. Curr Top Med Chem 11:948–972

    Article  PubMed  CAS  Google Scholar 

  • Pawelczyk T, Sakowicz M, Podgorska M, Szczepanska-Konkel M (2003) Insulin induces expression of adenosine kinase gene in rat lymphocytes by signaling through the mitogen-activated protein kinase pathway. Exp Cell Res 286:152–163

    Article  PubMed  CAS  Google Scholar 

  • Peng L, Huang R, Yu AC, Fung KY, Rathbone MP, Hertz L (2005) Nucleoside transporter expression and function in cultured mouse astrocytes. Glia 52:25–35

    Article  PubMed  Google Scholar 

  • Peng L, Guo C, Wang T, Li B, Gu L, Wang Z (2013) Some methodologies for determination of astrocytic gene expression fail to give correct information for some genes. Front Endocrinol 4:176

    Google Scholar 

  • Priller J, Reddington M, Haas CA, Kreutzberg GW (1998) Stimulation of P2Y-purinoceptors on astrocytes results in immediate early gene expression and potentiation of neuropeptide action. Neuroscience 85:521–525

    Article  PubMed  CAS  Google Scholar 

  • Rall TW, Sutheland EW (1962) Adenyl cyclase. II. The enzymatically catalyzed formation of adenosine 3′,5′-phosphate and inorganic pyrophosphate from adenosine triphosphate. J Biol Chem 237:1228–1232

    PubMed  CAS  Google Scholar 

  • Rall TW, Sutherland EW, Berthet J (1957) The relationship of epinephrine and glucagons to liver phosphorylase. IV. Effect of epinephrine and glucagons on the reactivation of phosphorylase in liver homogenate. J Biol Chem 224:463–475

    PubMed  CAS  Google Scholar 

  • Ribeiro JA, Sebastião AM (1985) On the type of receptor involved in the inhibitory action of adenosine at the neuromuscular junction. Br J Pharmacol 84:911–918

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Rothman DL, De Feyter HM, de Graaf RA, Mason GF, Behar KL (2011) 13C MRS studies of neuroenergetics and neurotransmitter cycling in humans. NMR Biomed 24:943–957

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Sajjadi FG, Firestein GS (1993) cDNA cloning and sequence analysis of the human A3 adenosine receptor. Biochim Biophys Acta 1179:105–107

    Article  PubMed  CAS  Google Scholar 

  • Schousboe A, Scafidi S, Bak LK, Waagepetersen HS, McKenna MC (2014) Glutamate metabolism in the brain focusing on astrocytes. In: Parpura V, Schousboe A, Verkhratsky A (eds) Glutamate and ATP at the interface of metabolism and signaling in the brain. Springer, New York

    Google Scholar 

  • Shen H, Wiederhold MD, Ou DW (1995) The suppression of macrophage secretion by calcium blockers and adenosine. Immunopharmacol Immunotoxicol 17:301–309

    Article  PubMed  CAS  Google Scholar 

  • Shen J, Halenda SP, Sturek M, Wilden PA (2005) Cell-signaling evidence for adenosine stimulation of coronary smooth muscle proliferation via the A1 adenosine receptor. Circ Res 97:574–582

    Article  PubMed  CAS  Google Scholar 

  • Sibson NR, Dhankhar A, Mason GF, Rothman DL, Behar KL, Shulman RG (1998) Stoichiometric coupling of brain glucose metabolism and glutamatergic neuronal activity. Proc Natl Acad Sci U S A 95:316–321

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Song D, Li B, Yan E, Man Y, Wolfson M, Chen Y, Peng L (2012) Chronic treatment with anti-bipolar drugs causes intracellular alkalinization in astrocytes, altering their functions. Neurochem Res 37:2524–2540

    Article  PubMed  CAS  Google Scholar 

  • Song D, Xu L, Bai Q, Cai L, Hertz L, Peng L (2014) Role of the intracellular nucleoside transporter ENT3 in transmitter and high K+ stimulation of astrocytic ATP release investigated using siRNA against ENT3. ASN Neuro, in press

    Google Scholar 

  • Sorg O, Magistretti PJ (1991) Characterization of the glycogenolysis elicited by vasoactive intestinal peptide, noradrenaline and adenosine in primary cultures of mouse cerebral cortical astrocytes. Brain Res 563:227–233

    Article  PubMed  CAS  Google Scholar 

  • Sorg O, Magistretti PJ (1992) Vasoactive intestinal peptide and noradrenaline exert long-term control on glycogen levels in astrocytes: blockade by protein synthesis inhibition. J Neurosci 12:4923–4931

    PubMed  CAS  Google Scholar 

  • Sorg O, Pellerin L, Stolz M, Beggah S, Magistretti PJ (1995) Adenosine triphosphate and arachidonic acid stimulate glycogenolysis in primary cultures of mouse cerebral cortical astrocytes. Neurosci Lett 188:109–112

    Article  PubMed  CAS  Google Scholar 

  • Studer FE, Fedele DE, Marowsky A, Schwerdel C, Wernli K, Vogt K, Fritschy JM, Boison D (2006) Shift of adenosine kinase expression from neurons to astrocytes during postnatal development suggests dual functionality of the enzyme. Neuroscience 142:125–137

    Article  PubMed  CAS  Google Scholar 

  • Sun W, McConnell E, Pare JF, Xu Q, Chen M, Peng W, Lovatt D, Han X, Smith Y, Nedergaard M (2013) Glutamate-dependent neuroglial calcium signaling differs between young and adult brain. Science 339:197–200

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Suzuki A, Stern SA, Bozdagi O, Huntley GW, Walker RH, Magistretti PJ, Alberini CM (2011) Astrocyte-neuron lactate transport is required for long-term memory formation. Cell 144:810–823

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Swanson RA, Morton MM, Sagar SM, Sharp FR (1992) Sensory stimulation induces local cerebral glycogenolysis: demonstration by autoradiography. Neuroscience 51:451–461

    Article  PubMed  CAS  Google Scholar 

  • Tu MT, Luo SF, Wang CC, Chien CS, Chiu CT, Lin CC, Yang CM (2000) P2Y(2) receptor-mediated proliferation of C(6) glioma cells via activation of Ras/Raf/MEK/MAPK pathway. Br J Pharmacol 129:1481–1489

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • van Calker D, Müller M, Hamprecht B (1979) Adenosine regulates via two different types of receptors, the accumulation of cyclic AMP in cultured brain cells. J Neurochem 33:999–1005

    Article  PubMed  Google Scholar 

  • Verkhratsky A, Burnstock G (2014) Purinergic and glutamatergic receptors on astroglia. In: Parpura V, Schousboe A, Verkhratsky A (eds) Glutamate and ATP at the interface of metabolism and signaling in the brain. Springer, New York

    Google Scholar 

  • Verkhratsky A, Krishtal OA, Burnstock G (2009) Purinoceptors on neuroglia. Mol Neurobiol 39:190–208

    Article  PubMed  CAS  Google Scholar 

  • Ververken D, Van Veldhoven P, Proost C, Carton H, De Wulf H (1982) On the role of calcium ions in the regulation of glycogenolysis in mouse brain cortical slices. J Neurochem 38:1286–1295

    Article  PubMed  CAS  Google Scholar 

  • Xia M, Zhu Y (2011) Signaling pathways of ATP-induced PGE2 release in spinal cord astrocytes are EGFR transactivation-dependent. Glia 59:664–674

    Article  PubMed  Google Scholar 

  • Xu J, Song D, Xue Z, Gu L, Hertz L, Peng L (2013) Requirement of glycogenolysis for uptake of increased extracellular K+ in astrocytes: potential implications for K+ homeostasis and glycogen usage in brain. Neurochem Res 38:472–485

    Article  PubMed  CAS  Google Scholar 

  • Xu J, Song D, Bai Q, Zhou L, Cai L, Hertz L, Peng L (2014a) Role of glycogenolysis in stimulation of ATP release from cultured mouse astrocytes by transmitters and high K+ concentrations. ASN Neuro 6:e00132

    Article  PubMed  PubMed Central  Google Scholar 

  • Xu J, Song D, Bai Q, Cai L, Hertz L, Peng L (2014b) Basic mechanism leading to stimulation of glycogenolysis by isoproterenol, EGF, elevated extracellular K+ concentrations, or GABA. Neurochem Res 39:661–667

    Article  PubMed  CAS  Google Scholar 

  • Yan E, Li B, Gu L, Hertz L, Peng L (2013) Mechanisms for L-channel-mediated increase in [Ca2+]i and its reduction by anti-bipolar drugs in cultured astrocytes combined with its mRNA expression in freshly isolated cells support the importance of astrocytic L-channels. Cell Calcium 54(5):335–342

    Article  PubMed  CAS  Google Scholar 

  • Zetterstrom R, Ernster L, Lindberg O (1950) Renewal of the stable phosphate group of adenosine di- and triphosphates in different organs. Arch Biochem 25:225

    PubMed  CAS  Google Scholar 

  • Zhao Z, Hertz L, Code WE (1996) Effects of benzodiazepines on potassium-induced increase in free cytosolic calcium concentration in astrocytes: interactions with nifedipine and the peripheral-type benzodiazepine antagonist PK 11195. Can J Physiol Pharmacol 74:273–277

    Article  PubMed  CAS  Google Scholar 

  • Zhou QY, Li C, Olah ME, Johnson RA, Stiles GL, Civelli O (1992) Molecular cloning and characterization of an adenosine receptor: the A3 adenosine receptor. Proc Natl Acad Sci U S A 89:7432–7436

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Zorec R, Araque A, Carmignoto G, Haydon PG, Verkhratsky A, Parpura V (2012) Astroglial excitability and gliotransmission: an appraisal of Ca2+ as a signalling route. ASN Neuro 4(2):e00080

    Google Scholar 

Download references

Acknowledgment

The careful studies by Henry Matz of adenosine metabolism in cultured astrocytes and neurons 25 years ago are gratefully acknowledged.

Conflict of Interest The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leif Hertz M.D., D.Sc., D.Sc. hon. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Hertz, L., Xu, J., Peng, L. (2014). Glycogenolysis and Purinergic Signaling. In: Parpura, V., Schousboe, A., Verkhratsky, A. (eds) Glutamate and ATP at the Interface of Metabolism and Signaling in the Brain. Advances in Neurobiology, vol 11. Springer, Cham. https://doi.org/10.1007/978-3-319-08894-5_3

Download citation

Publish with us

Policies and ethics