Skip to main content

Advertisement

Log in

Effects of Adrenergic Agents on Intracellular Ca2+ Homeostasis and Metabolism of Glucose in Astrocytes with an Emphasis on Pyruvate Carboxylation, Oxidative Decarboxylation and Recycling: Implications for Glutamate Neurotransmission and Excitotoxicity

  • Published:
Neurotoxicity Research Aims and scope Submit manuscript

Abstract

Glucose and glycogen are essential sources of energy for maintaining glutamate homeostasis as well as glutamatergic neurotransmission. The metabolism of glycogen, the location of which is confined to astrocytes, is affected by norepinephrine (NE), and hence, adrenergic signaling in the astrocyte might affect glutamate homeostasis with implications for excitatory neurotransmission and possibly excitotoxic neurodegeneration. In order to study this putative correlation, cultured astrocytes were incubated with 2.5 mM [U-13C]glucose in the presence and absence of NE as a time course for 1 h. Employing mass spectrometry, labeling in intracellular metabolites was determined. Moreover, the involvement of Ca2+ in the noradrenergic response was studied. In unstimulated astrocytes, the labeling pattern of glutamate, aspartate, malate and citrate confirmed important roles for pyruvate carboxylation and oxidative decarboxylation in astrocytic glucose metabolism. Importantly, pyruvate carboxylation was best visualized at 10 min of incubation. The abundance and pattern of labeling in lactate and alanine indicated not only an extensive activity of malic enzyme (initial step for pyruvate recycling) but also a high degree of compartmentalization of the pyruvate pool. Stimulating with 1 μM NE had no effect on labeling patterns and glycogen metabolism, whereas 100 μM NE increased glutamate labeling and decreased labeling in alanine, the latter supposedly due to dilution from degradation of non-labeled glycogen. It is suggested that further experiments uncovering the correlation between adrenergic and glutamatergic pathways should be performed in order to gain further insight into the role of astrocytes in brain function and dysfunction, the latter including excitotoxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Bak LK, Schousboe A, Sonnewald U, Waagepetersen HS (2006) Glucose is necessary to maintain neurotransmitter homeostasis during synaptic activity in cultured glutamatergic neurons. J Cereb Blood Flow Metab 26:1285–1297

    Article  PubMed  CAS  Google Scholar 

  • Bak LK, Waagepetersen HS, Melo TM, Schousboe A, Sonnewald U (2007) Complex glutamate labeling from [U-13C]glucose or [U-13C]lactate in co-cultures of cerebellar neurons and astrocytes. Neurochem Res 32:671–680

    Article  PubMed  CAS  Google Scholar 

  • Bakken IJ, White LR, Aasly J, Unsgard G, Sonnewald U (1997) Lactate formation from [U-13C5]aspartate in cultured astrocytes: compartmentation of pyruvate metabolism. Neurosci Lett 237:117–120

    Article  PubMed  CAS  Google Scholar 

  • Bakken IJ, White LR, Aasly J, Unsgard G, Sonnewald U (1998) [U-13C]aspartate metabolism in cultured cortical astrocytes and cerebellar granule neurons studied by NMR spectroscopy. Glia 23:271–277

    Article  PubMed  CAS  Google Scholar 

  • Biemann K (1962) Mass spectrometry. Organic chemistry applications. McGraw, New York, pp 223–227

    Google Scholar 

  • Brand A, Richter-Landsberg C, Leibfritz D (1993) Multinuclear NMR studies on the energy metabolism of glial and neuronal cells. Dev Neurosci 15:289–298

    Article  PubMed  CAS  Google Scholar 

  • Cataldo AM, Broadwell RD (1986) Cytochemical identification of cerebral glycogen and glucose-6-phosphatase activity under normal and experimental conditions. II. Choroid plexus and ependymal epithelia, endothelia and pericytes. J Neurocytol 15:511–524

    Article  PubMed  CAS  Google Scholar 

  • Cerdan S, Kunnecke B, Seelig J (1990) Cerebral metabolism of (1, 2–13C2)acetate as detected by in vivo and in vitro 13C NMR. J Biol Chem 265:12916–12926

    PubMed  CAS  Google Scholar 

  • Chen Y, Hertz L (1999) Noradrenaline effects on pyruvate decarboxylation: correlation with calcium signaling. J Neurosci Res 58:599–606

    Article  PubMed  CAS  Google Scholar 

  • Dadsetan S, Bak LK, Sorensen M, Keiding S, Vilstrup H, Ott P, Leke R, Schousboe A, Waagepetersen HS (2011) Inhibition of glutamine synthesis induces glutamate dehydrogenase-dependent ammonia fixation into alanine in co-cultures of astrocytes and neurons. Neurochem Int 59:482–488

    Article  PubMed  CAS  Google Scholar 

  • Denton RM, Randle PJ, Martin BR (1972) Stimulation by calcium ions of pyruvate dehydrogenase phosphate phosphatase. Biochem J 128:161–163

    PubMed  CAS  Google Scholar 

  • Denton RM, Randle PJ, Bridges BJ, Cooper RH, Kerbey AL, Pask HT, Severson DL, Stansbie D, Whitehouse S (1975) Regulation of mammalian pyruvate dehydrogenase. Mol Cell Biochem 9:27–53

    Article  PubMed  CAS  Google Scholar 

  • Denton RM, Richards DA, Chin JG (1978) Calcium ions and the regulation of NAD+ -linked isocitrate dehydrogenase from the mitochondria of rat heart and other tissues. Biochem J 176:899–906

    PubMed  CAS  Google Scholar 

  • Gibbs ME (2008) Memory systems in the chick: regional and temporal control by noradrenaline. Brain Res Bull 76:170–182

    Article  PubMed  CAS  Google Scholar 

  • Gibbs ME, Bowser DN (2010) Astrocytic adrenoceptors and learning: alpha1-adrenoceptors. Neurochem Int 57:404–410

    Article  PubMed  CAS  Google Scholar 

  • Gibbs ME, Lloyd HG, Santa T, Hertz L (2007) Glycogen is a preferred glutamate precursor during learning in 1-day-old chick: biochemical and behavioral evidence. J Neurosci Res 85:3326–3333

    Article  PubMed  CAS  Google Scholar 

  • Gruetter R (2003) Glycogen: the forgotten cerebral energy store. J Neurosci Res 74:179–183

    Article  PubMed  CAS  Google Scholar 

  • Gruetter R, Seaquist ER, Ugurbil K (2001) A mathematical model of compartmentalized neurotransmitter metabolism in the human brain. Am J Physiol Endocrinol Metab 281:E100–E112

    PubMed  CAS  Google Scholar 

  • Grynkiewicz G, Poenie M, Tsien RY (1985) A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem 260:3440–3450

    PubMed  CAS  Google Scholar 

  • Haberg A, Qu H, Bakken IJ, Sande LM, White LR, Haraldseth O, Unsgard G, Aasly J, Sonnewald U (1998) In vitro and ex vivo 13C-NMR spectroscopy studies of pyruvate recycling in brain. Dev Neurosci 20:389–398

    Article  PubMed  CAS  Google Scholar 

  • Halim ND, Mcfate T, Mohyeldin A, Okagaki P, Korotchkina LG, Patel MS, Jeoung NH, Harris RA, Schell MJ, Verma A (2010) Phosphorylation status of pyruvate dehydrogenase distinguishes metabolic phenotypes of cultured rat brain astrocytes and neurons. Glia 58:1168–1176

    PubMed  Google Scholar 

  • Hassel B, Sonnewald U, Fonnum F (1995) Glial-neuronal interactions as studied by cerebral metabolism of (2-C-13) acetate and (1-C-13) glucose: an ex vivo C-13 NMR spectroscopic study. J Neurochem 64:2773–2782

    Article  PubMed  CAS  Google Scholar 

  • Heald PJ (1953) The effect of metabolic inhibitors on respiration and glycolysis in electrically stimulated cerebral-cortex slices. Biochem J 55:625–631

    PubMed  CAS  Google Scholar 

  • Hertz L, Juurlink BHJ, Fosmark H, Schousboe A (1982) Astrocytes in primary cultures. In: Pfeiffer SE (ed) Neuroscience approached through cell culture. CRC-press, Boca Raton, pp 175–186

    Google Scholar 

  • Hertz L, Juurlink B, Hertz E, Fosmark H, Schousboe A (1989) Preparation of primary cultures of mouse (rat) astrocytes. In: Shahar A, De Vellis J, Vernadakis A, Haber B (eds) Dissection and tissue culture manual of the nervous system. Alan R. Liss Inc., New York, pp 105–108

    Google Scholar 

  • Hertz L, Peng L, Lai JC (1998) Functional studies in cultured astrocytes. Methods 16:293–310

    Article  PubMed  CAS  Google Scholar 

  • Hertz L, O’Dowd BS, Ng KT, Gibbs ME (2003) Reciprocal changes in forebrain contents of glycogen and of glutamate/glutamine during early memory consolidation in the day-old chick. Brain Res 994:226–233

    Article  PubMed  CAS  Google Scholar 

  • Hertz L, Lovatt D, Goldman SA, Nedergaard M (2010) Adrenoceptors in brain: cellular gene expression and effects on astrocytic metabolism and (Ca(2+))i. Neurochem Int 57:411–420

    Article  PubMed  CAS  Google Scholar 

  • Hutchinson DS, Summers RJ, Gibbs ME (2007) Beta2- and beta3-adrenoceptors activate glucose uptake in chick astrocytes by distinct mechanisms: a mechanism for memory enhancement? J Neurochem 103:997–1008

    Article  PubMed  CAS  Google Scholar 

  • Hutchinson DS, Catus SL, Merlin J, Summers RJ, Gibbs ME (2011) Alpha-Adrenoceptors activate noradrenaline-mediated glycogen turnover in chick astrocytes. J Neurochem 117:915–926

    Article  PubMed  CAS  Google Scholar 

  • Jouaville LS, Pinton P, Bastianutto C, Rutter GA, Rizzuto R (1999) Regulation of mitochondrial ATP synthesis by calcium: evidence for a long-term metabolic priming. Proc Natl Acad Sci USA 96:13807–13812

    Article  PubMed  CAS  Google Scholar 

  • Karpova T, Danchuk S, Kolobova E, Popov KM (2003) Characterization of the isozymes of pyruvate dehydrogenase phosphatase: implications for the regulation of pyruvate dehydrogenase activity. Biochim Biophys Acta 1652:126–135

    PubMed  CAS  Google Scholar 

  • Kaufman EE, Driscoll BF (1993) Evidence for cooperativity between neurons and astroglia in the regulation of CO2 fixation in vitro. Dev Neurosci 15:299–305

    Article  PubMed  CAS  Google Scholar 

  • Lapidot A, Gopher A (1994) Cerebral metabolic compartmentation: estimation of glucose flux via pyruvate-carboxylase pyruvate-dehydrogenase by C-13 NMR isotopomer analysis of D-(U-C-13)glucose metabolites. J Biol Chem 269:27198–27208

    PubMed  CAS  Google Scholar 

  • Leo GC, Driscoll BF, Shank RP, Kaufman E (1993) Analysis of (1–13C)d-glucose metabolism in cultured astrocytes and neurons using nuclear magnetic resonance spectroscopy. Dev Neurosci 15:282–288

    Article  PubMed  CAS  Google Scholar 

  • Mawhinney TP, Robinett RS, Atalay A, Madson MA (1986) Analysis of amino acids as their tert.-butyldimethylsilyl derivatives by gas-liquid chromatography and mass spectrometry. J Chromatogr 358:231–242

    Article  PubMed  CAS  Google Scholar 

  • McCormack JG, Denton RM (1979) The effects of calcium ions and adenine nucleotides on the activity of pig heart 2-oxoglutarate dehydrogenase complex. Biochem J 180:533–544

    PubMed  CAS  Google Scholar 

  • McCormack JG, Halestrap AP, Denton RM (1990) Role of calcium ions in regulation of mammalian intramitochondrial metabolism. Physiol Rev 70:391–425

    PubMed  CAS  Google Scholar 

  • McKenna MC, Dienel G, Sonnewald U, Waagepetersen H, Schousboe A (2012) Energy metabolism of the brain. In: Siegel GJ, Albers RW, Brady ST, Price DL (eds) Basic neurochemistry. Elsevier Academic Press, London, pp 223–258

    Google Scholar 

  • Nilsson M, Hansson E, Ronnback L (1991) Adrenergic and 5-HT2 receptors on the same astroglial cell. A microspectrofluorimetric study on cytosolic Ca2+ responses in single cells in primary culture. Brain Res Dev Brain Res 63:33–41

    Article  PubMed  CAS  Google Scholar 

  • O’Dowd BS, Barrington J, Ng KT, Hertz E, Hertz L (1995) Glycogenolytic response of primary chick and mouse cultures of astrocytes to noradrenaline across development. Brain Res Dev Brain Res 88:220–223

    Article  PubMed  Google Scholar 

  • Olstad E, Olsen GM, Qu H, Sonnewald U (2007) Pyruvate recycling in cultured neurons from cerebellum. J Neurosci Res 85:3318–3325

    Article  PubMed  CAS  Google Scholar 

  • Oz G, Berkich DA, Henry PG, Xu Y, LaNoue K, Hutson SM, Gruetter R (2004) Neuroglial metabolism in the awake rat brain: CO2 fixation increases with brain activity. J Neurosci 24:11273–11279

    Article  PubMed  Google Scholar 

  • Patel MS (1974) The relative significance of CO2-fixing enzymes in the metabolism of rat brain. J Neurochem 22:717–724

    Article  PubMed  CAS  Google Scholar 

  • Patel AB, Chowdhury GM, de Graaf RA, Rothman DL, Shulman RG, Behar KL (2005) Cerebral pyruvate carboxylase flux is unaltered during bicuculline-seizures. J Neurosci Res 79:128–138

    Article  PubMed  CAS  Google Scholar 

  • Pellerin L, Stolz M, Sorg O, Martin JL, Deschepper CF, Magistretti PJ (1997) Regulation of energy metabolism by neurotransmitters in astrocytes in primary culture and in an immortalized cell line. Glia 21:74–83

    Article  PubMed  CAS  Google Scholar 

  • Qu H, Eloqayli H, Unsgard G, Sonnewald U (2001) Glutamate decreases pyruvate carboxylase activity and spares glucose as energy substrate in cultured cerebellar astrocytes. J Neurosci Res 66:1127–1132

    Article  PubMed  CAS  Google Scholar 

  • Salm AK, McCarthy KD (1990) Norepinephrine-evoked calcium transients in cultured cerebral type 1 astroglia. Glia 3:529–538

    Article  PubMed  CAS  Google Scholar 

  • Satrustegui J, Pardo B, del Arco A (2007) Mitochondrial transporters as novel targets for intracellular calcium signaling. Physiol Rev 87:29–67

    Article  PubMed  CAS  Google Scholar 

  • Schousboe A, Sickmann HM, Walls AB, Bak LK, Waagepetersen HS (2010) Functional importance of the astrocytic glycogen-shunt and glycolysis for maintenance of an intact intra/extracellular glutamate gradient. Neurotoxic Res 18:94–99

    Article  Google Scholar 

  • Schousboe A, Sickmann HM, Bak LK, Schousboe I, Jajo FS, Faek, SA Waagepetersen H (2011) Neuron-glia interactions in glutamatergic neurotransmission: Roles of oxidative and glycolytic ATP as energy source. J Neurosci Res 89:1926–1934

    Google Scholar 

  • Sickmann HM, Schousboe A, Fosgerau K, Waagepetersen HS (2005) Compartmentation of lactate originating from glycogen and glucose in cultured astrocytes. Neurochem Res 30:1295–1304

    Article  PubMed  CAS  Google Scholar 

  • Sickmann HM, Walls AB, Schousboe A, Bouman SD, Waagepetersen HS (2009) Functional significance of brain glycogen in sustaining glutamatergic neurotransmission. J Neurochem 109(Suppl 1):80–86

    Article  PubMed  CAS  Google Scholar 

  • Sonnewald U, Westergaard N, Hassel B, Muller TB, Unsgard G, Fonnum F, Hertz L, Schousboe A, Petersen SB (1993) NMR spectroscopic studies of 13C acetate and 13C glucose metabolism in neocortical astrocytes: evidence for mitochondrial heterogeneity. Dev Neurosci 15:351–358

    Article  PubMed  CAS  Google Scholar 

  • Sonnewald U, Westergaard N, Jones P, Taylor A, Bachelard HS, Schousboe A (1996) Metabolism of [U-13C]glutamine in cultured astrocytes studied by NMR spectroscopy: first evidence of astrocytic pyruvate recycling. J Neurochem 67:2566–2572

    Article  PubMed  CAS  Google Scholar 

  • Sorg O, Magistretti PJ (1991) Characterization of the glycogenolysis elicited by vasoactive intestinal peptide, noradrenaline and adenosine in primary cultures of mouse cerebral cortical astrocytes. Brain Res 563:227–233

    Article  PubMed  CAS  Google Scholar 

  • Sorg O, Magistretti PJ (1992) Vasoactive intestinal peptide and noradrenaline exert long-term control on glycogen levels in astrocytes: blockade by protein synthesis inhibition. J Neurosci 12:4923–4931

    PubMed  CAS  Google Scholar 

  • Subbarao KV, Hertz L (1990) Effect of adrenergic agonists on glycogenolysis in primary cultures of astrocytes. Brain Res 536:220–226

    Article  PubMed  CAS  Google Scholar 

  • Subbarao KV, Hertz L (1991) Stimulation of energy metabolism by alpha-adrenergic agonists in primary cultures of astrocytes. J Neurosci Res 28:399–405

    Article  PubMed  CAS  Google Scholar 

  • Taylor A, McLean M, Morris P, Bachelard H (1996) Approaches to studies on neuronal/glial relationships by 13C-MRS analysis. Dev Neurosci 18:434–442

    Article  PubMed  CAS  Google Scholar 

  • Van Calker D, Muller M, Hamprecht B (1978) Adrenergic alpha- and beta-receptors expressed by the same cell type in primary culture of perinatal mouse brain. J Neurochem 30:713–718

    Article  PubMed  Google Scholar 

  • Waagepetersen HS, Westergaard N, Schousboe A (2000) The effects of isofagomine, a potent glycogen phosphorylase inhibitor, on glycogen metabolism in cultured mouse cortical astrocytes. Neurochem Int 36:435–440

    Article  PubMed  CAS  Google Scholar 

  • Waagepetersen HS, Qu H, Schousboe A, Sonnewald U (2001a) Elucidation of the quantitative significance of pyruvate carboxylation in cultured cerebellar neurons and astrocytes. J Neurosci Res 66:763–770

    Article  PubMed  CAS  Google Scholar 

  • Waagepetersen HS, Sonnewald U, Larsson OM, Schousboe A (2001b) Multiple compartments with different metabolic characteristics are involved in biosynthesis of intracellular and released glutamine and citrate in astrocytes. Glia 35:246–252

    Article  PubMed  CAS  Google Scholar 

  • Waagepetersen HS, Qu H, Hertz L, Sonnewald U, Schousboe A (2002) Demonstration of pyruvate recycling in primary cultures of neocortical astrocytes but not in neurons. Neurochem Res 27:1431–1437

    Article  PubMed  CAS  Google Scholar 

  • Waagepetersen H, Sonnewald U, Schousboe A (2009) Energy and amino acid neurotransmitter metabolism in astrocytes. In: Parpura V, Haydon PG (eds) Astrocytes in (patho)physiology of the nervous system. Springer, Boston, MA, pp 177–1199

    Chapter  Google Scholar 

  • Walls AB, Sickmann HM, Brown A, Bouman SD, Ransom B, Schousboe A, Waagepetersen HS (2008) Characterization of 1,4-dideoxy-1,4-imino-d-arabinitol (DAB) as an inhibitor of brain glycogen shunt activity. J Neurochem 105:1462–1470

    Article  PubMed  CAS  Google Scholar 

  • Walls AB, Heimburger CM, Bouman SD, Schousboe A, Waagepetersen HS (2009) Robust glycogen shunt activity in astrocytes: effects of glutamatergic and adrenergic agents. Neuroscience 158:284–292

    Article  PubMed  CAS  Google Scholar 

  • Yu AC, Drejer J, Hertz L, Schousboe A (1983) Pyruvate carboxylase activity in primary cultures of astrocytes and neurons. J Neurochem 41:1484–1487

    Article  PubMed  CAS  Google Scholar 

  • Yu N, Martin JL, Stella N, Magistretti PJ (1993) Arachidonic acid stimulates glucose uptake in cerebral cortical astrocytes. Proc Natl Acad Sci USA 90:4042–4046

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank Ms. Lene Vigh and Ms. Heidi Marie Nielsen for expert technical assistance. This study was funded by MRC 09-063393 and The Novo Nordisk Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helle S. Waagepetersen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Obel, L.F., Andersen, K.M.H., Bak, L.K. et al. Effects of Adrenergic Agents on Intracellular Ca2+ Homeostasis and Metabolism of Glucose in Astrocytes with an Emphasis on Pyruvate Carboxylation, Oxidative Decarboxylation and Recycling: Implications for Glutamate Neurotransmission and Excitotoxicity. Neurotox Res 21, 405–417 (2012). https://doi.org/10.1007/s12640-011-9296-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12640-011-9296-1

Keywords

Navigation