Skip to main content

Siderophores Production by Azospirillum: Biological Importance, Assessing Methods and Biocontrol Activity

  • Chapter
Handbook for Azospirillum

Abstract

Siderophores are ferric ion-specific chelating compounds produced by bacteria and fungi growing under limited availability of iron. The function of siderophores is to scavenge iron from the environment and to make the mineral available to the microbial cell. Iron is an essential element for the growth of most bacteria because it is a component of enzymes with important roles in electron transfer, RNA synthesis, and resistance to reactive oxygen intermediates, among other biological processes. Different species of plant growth-promoting bacteria produce siderophores which can be a competitive advantage for plant, not only for growth, but also as biocontrol agent against phytopathogens. In this chapter, the siderophores production by Azospirillum, biological importance, assessing methods, and biocontrol activity are revised. Additionally, methods to detect and characterize siderophores, based on the universal Chrome Azurol Sulphonate (qualitative and quantitative) assay, as well as chemical analyses, thin layer chromatography coupled with fluorescence spectroscopy, and gas chromatography–mass spectrometry are described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Andrews SC (1998) Iron storage in bacteria. Adv Microb Physiol 40:281–351

    Google Scholar 

  • Altomare C, Tringovska I (2011) Beneficial soil microorganisms, an ecological alternative for soil fertility management. In: Lichtfouse E (ed) Genetics, biofuels and local farming systems, vol 7, Sustainable agriculture reviews. Springer, Netherlands, pp 161–214

    Chapter  Google Scholar 

  • Arnow LE (1937) Colorimetric determination of the components of 3,4 dihydroxyphenylalanine-tyrosine mixtures. J Biol Chem 118:531–537

    CAS  Google Scholar 

  • Atkin C, Neilands J, Phaff H (1970) Rhodotorulic acid from species of Leucosporidium, Rhodosporidium, Rhodotorula, Sporodiobolus, and Sporobolomyces and a new alanine containing ferrichrome from Criptcoccus melibiosum. J Bacteriol 103:722–733

    PubMed Central  CAS  PubMed  Google Scholar 

  • Bachhawaat AK, Ghogh S (1989) Temperature inhibition of siderophore production by Azosprillum brasilense. J Bacteriol 171:4092–4094

    Google Scholar 

  • Bachhawat AK, Ghosh S (1987a) Isolation and characterization of the outer membrane proteins of Azospirillum brasilense. J Gen Microbiol 133:1751–1758

    CAS  Google Scholar 

  • Bachhawat AK, Ghosh S (1987b) Iron transport in Azospirillum brasilense: role of the siderophore spirilobactin. J Gen Microbiol 133:1759–1765

    CAS  Google Scholar 

  • Baldani VLD, Döbereiner J (1980) Host-plant specificity in the infection of cereals with Azospirillum spp. Soil Biol Biochem 12:433–439

    Article  Google Scholar 

  • Bashan Y, De-Bashan LE (2010) How the plant growth-promoting bacterium Azospirillum promotes plant growth: a critical assessment. Adv Agron 108:77–136

    Article  CAS  Google Scholar 

  • Braun V (1985) The unusual features of the iron transport systems of Escherichia coli. Trends Biochem Sci 10:75–78

    Article  CAS  Google Scholar 

  • Braun V (1995) Energy-coupled transport and signal transduction through the Gram-negative outer membrane via TonB-ExbB-ExbD dependent receptor proteins. FEMS Microbiol Rev 16:295–307

    Article  CAS  PubMed  Google Scholar 

  • Braun V (1997) Avoidance of iron toxicity through regulation of bacterial iron transport. Biol Chem 378:779–786

    CAS  PubMed  Google Scholar 

  • Braun V, Gunter K, Hantke K (1991) Transport of iron across the outer membrane. Biol Met 4:14–22

    Article  CAS  PubMed  Google Scholar 

  • Braun V, Winkelmann G (1987) Microbial iron transport: structure and function of siderophores. Prog Clin Biochem Med 5:69–95

    Google Scholar 

  • Buysens S, Heungens K, Poppe J, Hofte M (1996) Involvement of pyochelin and pyoverdin in suppression of Pythium-induced damping-off of tomato by Pseudomonas aeruginosa 7NSK2. Appl Environ Microbiol 62:865–871

    PubMed Central  CAS  PubMed  Google Scholar 

  • Cornelis P, Matthijs S (2002) Diversity of siderophore-mediated iron uptake systems in fluorescent pseudomonads: not only pyoverdines. Environ Microbiol 4:787–798

    Article  CAS  PubMed  Google Scholar 

  • Cox CD, Rinehart KL, Moore ML, Cook JC (1981) Pyochelin: novel structure of an iron-chelating growth promoter for Pseudomonas aeruginosa. Proc Natl Acad Sci U S A 78:4256–4260

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cui Y, Tu R, Guan Y, Ma L, Chen S (2006) Cloning, sequencing, and characterization of the Azospirillum brasilense fhuE gene. Curr Microbiol 52:169–177

    Article  CAS  PubMed  Google Scholar 

  • D’Onofrio A, Crawford JM, Stewart RJ, Witt K, Gayrish E, Epstein S, Clardy J, Lewis K (2010) Siderophores from neighboring organisms promote the growth of uncultured bacteria. Chem Biol 17:254–264

    Article  PubMed Central  PubMed  Google Scholar 

  • De Meyer G, Höfte M (1997) Salicylic acid produced by the rhizobacterium Pseudomonas aeruginosa 7NSK2 induces resistance to leaf infection by Botrytis cinerea on bean. Phytopathology 87:588–593

    Article  PubMed  Google Scholar 

  • Delaney TP, Uknes S, Vernooij B, Friedrich L, Weymann K, Negrotto D, Gaffney T, Gut-Rella M, Kessmann H, Ward E, Ryals J (1994) A central role of salicylic acid in plant disease resistance. Science 266:1247–1250

    Article  CAS  PubMed  Google Scholar 

  • Desai A, Archana G (2011) Role of siderophores in crop improvement. In: Maheshwari DK (ed) Bacteria in agrobiology: plant nutrient management. Springer, Berlin, pp 109–139

    Chapter  Google Scholar 

  • Fernández-Scavino A, Pedraza RO (2013) The role of siderophores in plant growth-promoting bacteria. In: Maheshwari DK, Saraf M, Aeron A (eds) Bacteria in agrobiology: crop productivity. Springer, Heidelberg, pp 265–285

    Chapter  Google Scholar 

  • Guerinot M (2010) Iron. In: Hell R, Mendel R-R (eds) Cell biology of metals and nutrients, vol 17, Plant cell monographs. Springer, Berlin, pp 75–94

    Chapter  Google Scholar 

  • Hantke K (2001) Iron and metal regulation in bacteria. Curr Opin Microbiol 4:172–177

    Article  CAS  PubMed  Google Scholar 

  • Jones AM, Lindow SE, Wildermuth MC (2007) Salicylic acid, yersiniabactin, and pyoverdin production by the model phytopathogen Pseudomonas syringae pv. tomato DC3000: synthesis, regulation, and impact on tomato and Arabidopsis host plants. J Bacteriol 189:6773–6786

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kloepper JW, Leong J, Teintze M, Schroth MN (1980) Enhanced plant growth by siderophores produced by plant growth-promoting rhizobacteria. Nature 286:885–886

    Article  CAS  Google Scholar 

  • Leeman M, den Ouden FM, van Pelt JA, Dirkx FPM, Steijl H, Bakker PAHM, Schippers B (1996) Iron availability affects induction of systemic resistance to Fusarium wilt of radish by Pseudomonas fluorescens. Phytopathology 86:149–155

    Article  CAS  Google Scholar 

  • Leong SA, Winkelmann G (1998) Molecular biology of iron transport in fungi. In: Sigel A, Sigel H (eds) Metal ions in biological systems, vol 35, Iron transport and storage in microorganisms, plants, and animals. Marcel Dekker, New York, pp 147–186

    Google Scholar 

  • Loaces I, Ferrando L, Fernández-Scavino A (2011) Dynamics, diversity and function of endophytic siderophore-producing bacteria in rice. Microb Ecol 61:606–618

    Article  PubMed  Google Scholar 

  • Maurhofer M, Reimmann C, Schmidli-Sacherer P, Heeb S, Haas D, Defago G (1998) Salicylic acid biosynthetic genes expressed in Pseudomonas fluorescens P3 improve the induction of systemic resistance in tobacco against tobacco necrosis virus. Phytopathology 88:678–684

    Article  CAS  PubMed  Google Scholar 

  • Meyer JM, Azelvandre P, Georges C (1992) Iron metabolism in Pseudomonas: salicylic acid, a siderophore of Pseudomuna fluorescens CHAO. Biofactors 4:23–27

    CAS  PubMed  Google Scholar 

  • Miethke M, Marahiel MA (2007) Siderophore-based iron acquisition and pathogen control. Microbiol Mol Biol Rev 71:413–451

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Neilands JB (1981) Microbial iron compounds. Annu Rev Biochem 50:715–773

    Article  CAS  PubMed  Google Scholar 

  • Neilands JB (1995) Siderophores: structure and function of microbial iron transport compounds. J Biol Chem 270:26723–26726

    Article  CAS  PubMed  Google Scholar 

  • Occhino DA, Wyckoff EE, Henderson DP, Wrona TJ, Shelley M (1998) Vibrio cholerae iron transport: haem transport genes are linked to one of two sets of tonB, exbB, exbD genes. Mol Microbiol 29:1493–1507

    Article  CAS  PubMed  Google Scholar 

  • Pandey P, Kang SC, Gupta CP, Maheshwari DK (2005) Rhizosphere competent pseudomonas aeruginosa GRC1 produces characteristic siderophore and enhances growth of Indian mustard (Brassica campestris). Curr Microbiol 51:303–309

    Article  CAS  PubMed  Google Scholar 

  • Pedraza RO, Motok J, Salazar SM, Ragout AL, Mentel MI, Tortora ML, Guerrero-Molina MF, Winik BC, Díaz-Ricci JC (2010) Growth-promotion of strawberry plants inoculated with Azospirillum brasilense. World J Microbiol Biotechnol 26:265–272

    Article  Google Scholar 

  • Pedraza RO, Motok J, Totora ML, Salazar SM, Díaz-Ricci JC (2007) Natural occurrence of Azospirillum brasilense in strawberry plants. Plant and Soil 295:169–178

    Article  CAS  Google Scholar 

  • Perrig D, Boiero ML, Masciarelli OA, Penna C, Ruiz OA, Cassán FD, Luna MV (2007) Plant-growth-promoting compounds produced by two agronomically important strains of Azospirillum brasilense, and implications for inoculant formulation. Appl Microbiol Biotechnol 75:1143–1150

    Article  CAS  PubMed  Google Scholar 

  • Press CM, Wilson M, Tuzun S, Kloepper JW (1997) Salicylic acid produced by Serratia marcescens 90-166 is not the primary determinant of induced systemic resistance in cucumber or tobacco. Mol Plant Microbe Interact 10:761–768

    Article  CAS  Google Scholar 

  • Radzki W, Gutiérrez-Mañero FJ, Algar E, Lucas-García JA, García-Villaraco A, Ramos-Solano B (2013) Bacterial siderophores efficiently provide iron to iron-starved tomato plants in hydroponics culture. Antonie Van Leeuwenhoek 104:321–330

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Reichard P (1993) The anaerobic ribonucleotide reductase from Escherichia coli. J Biol Chem 268:8383–8386

    CAS  PubMed  Google Scholar 

  • Reis VM, Teixeira KRS, Pedraza RO (2011) What is expected from the genus Azospirillum as plant growth promoting bacteria? In: Maheshwari DK (ed) Bacteria in agrobiology: plant growth responses. Springer, Berlin, pp 123–138

    Chapter  Google Scholar 

  • Saxena B, Modi M, Modi VV (1986) Isolation and characterization of siderophores from Azospirillum lipoferum D-2. J Gen Microbiol 132:2219–2224

    CAS  Google Scholar 

  • Schwyn B, Neilands JB (1987) Universal chemical assay for the detection and determination of siderophores. Anal Biochem 160:47–56

    Article  CAS  PubMed  Google Scholar 

  • Serino L, Reimmann C, Baur H, Beyeler M, Visca P, Haas D (1995) Structural genes for salicylate biosynthesis from chorismate in Pseudomonas aeruginosa. Mol Gen Genet 249:217–228

    Article  CAS  PubMed  Google Scholar 

  • Shah S, Karkhanis V, Desai A (1992) Isolation and characterization of siderophore, with antimicrobial activity from Azospirillum lipoferum M. Curr Microbiol 25:34–35

    Article  Google Scholar 

  • Sharma A, Johri BN (2003) Growth promoting influence of siderophore-producing Pseudomonas strains GRP3A and PRS9 in maize (Zea mays L.) under iron limiting conditions. Microbiol Res 158:243–248

    Article  CAS  PubMed  Google Scholar 

  • Siddiqui IA, Shaukat S (2005) Pseudomonas aeruginosa mediated induction of systemic resistance in tomato against root knot nematode. J Phytopathol 4:21–25

    Google Scholar 

  • Tapia-Hernández A, Mascarua-Esparza MA, Caballero-Mellado J (1990) Production of bacteriocins and siderophore-like activity in Azospirillum brasilense. Microbios 64:73–83

    PubMed  Google Scholar 

  • Tortora ML, Diaz-Ricci JC, Pedraza RO (2011) Azospirillum brasilense siderophores with antifungal activity against Colletotrichum acutatum. Arch Microbiol 193:275–286

    Article  CAS  PubMed  Google Scholar 

  • Tortora ML, Diaz-Ricci JC, Pedraza RO (2012) Protection of strawberry plants (Fragaria ananassa Duch.) against anthracnose disease induced by Azospirillum brasilense. Plant and Soil 356:279–290

    Article  CAS  Google Scholar 

  • Visca P, Ciervo A, San Filippo V, Orsi N (1993) Iron-regulated salicylate synthesis by Pseudomonas spp. J Gen Microbiol 139:1995–2001

    Article  CAS  PubMed  Google Scholar 

  • Winkelmann G, Busch B, Hartmann A, Kirchhof G, Süssmuth R, Jung G (1999) Degradation of desferrioxamines by Azospirillum irakense: assignment of metabolites by HPLC/electrospray mass spectrometry. Biol Met 12:255–264

    CAS  Google Scholar 

  • Zuo Y, Zhang F (2011) Soil and crop management strategies to prevent iron deficiency in crops. Plant and Soil 339:83–95

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raúl O. Pedraza .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Pedraza, R.O. (2015). Siderophores Production by Azospirillum: Biological Importance, Assessing Methods and Biocontrol Activity. In: Cassán, F., Okon, Y., Creus, C. (eds) Handbook for Azospirillum. Springer, Cham. https://doi.org/10.1007/978-3-319-06542-7_14

Download citation

Publish with us

Policies and ethics