Skip to main content
Log in

Cloning, Sequencing, and Characterization of the Azospirillum brasilense fhuE Gene

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

The fhuE gene of Escherichia coli encodes the FhuE protein, which is a receptor protein in the coprogen-mediated siderophore iron-transport system. A fhuE gene homologue from Azospirillum brasilense, a nitrogen-fixing soil bacterium that lives in association with the roots of cereal grasses, was cloned, sequenced, and characterized. The A. brasilense fhuE encodes a protein of 802 amino acids with a predicted molecular weight of approximately 87 kDa. The deduced amino-acid sequence showed a high level of homology to the sequences of all the known fhuE gene products. The fhuE mutant was sensitive to iron starvation and defective in coprogen-mediated iron uptake. The mutant failed to express one membrane protein of approximately 78 kDa that was induced by iron starvation in the wild type. Complementation studies showed that the A. brasilense fhuE gene, when present on a low-copy number plasmid, could restore the functions of the mutant. Mutation in fhuE gene did not affect nitrogen fixation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Literature Cited

  1. Arsene F, Kaminski PA, Elmerich C (1996) Modulation of NifA activity by P? in Azospirillum brasilense: Evidence for a regulatory role of the NifA N-terminal domain. J Bacteriol 178:4830–4838

    CAS  PubMed  Google Scholar 

  2. Bachhawat AK, Ghosh S (1987) Isolation and characterization of the outer membrane proteins of Azospirillum brasilense. J Gen Microbiol 133:1751–1758

    CAS  Google Scholar 

  3. Bachhawat AK, Ghosh S (1987) Iron transport in Azospirillum brasilense: Role of the siderophore spirilobactin. J Gen Microbiol 133:1759–1765

    CAS  Google Scholar 

  4. Barenkamp SJ, Munson RS, Granoff DM (1981) Subtyping of isolates Haemophilius influenzae type b by outer membrane protein profiles. J Infect Dis 143:668–676

    CAS  PubMed  Google Scholar 

  5. Biswas GD, Anderson JE, Sparling PF (1997) Cloning, sequencing and genetic characterization of tonB-exbB-exbD genes of Neisseria gonorrhoeae. Mol Microbiol 24:169–179

    Article  CAS  PubMed  Google Scholar 

  6. Braun V (1985) The unusual features of the iron transport systems of Escherichia coli. Trends Biochem Sci 10:75–78

    Article  CAS  Google Scholar 

  7. Braun V (1995) Energy-coupled transport and signal transduction through the Gram-negative outer membrane via TonB-ExbB-ExbD-dependent receptor proteins. FEMS Microbiol Rev 16:295–307

    CAS  PubMed  Google Scholar 

  8. Braun V (1997) Avoidance of iron toxicity through regulation of bacterial iron transport. Biol Chem 378: 779–786

    CAS  PubMed  Google Scholar 

  9. Braun V, Gunter K, Hantke K (1991) Transport of iron across the outer membrane. Biol Metals 4: 14–22

    Article  CAS  Google Scholar 

  10. Braun V, Winkelmann G (1987) Microbial iron transport: Structure and function of siderophores. Prog Clin Biochem Med 5:69–95

    Google Scholar 

  11. Chen SF, Du JP, Wu LX, Zhao YS, Li JL (2003) Interaction between P? and NifA in Azospirillum brasilense Sp7. Chin Sci Bull 48:2170–2174

    Google Scholar 

  12. Cornelis P, Matthijs S (2002) Diversity of siderophore-mediated iron uptake systems in fluorescent pseudomonads: Not only pyoverdines. Environ Microbiol 4:787–798

    Article  CAS  PubMed  Google Scholar 

  13. Cornelissen CN, Biswas GD, Tsai J, Paruchuri DK, Thompson SA, Sparling PF (1992) Gonococcal transferrin-binding protein 1 is required for transferring utilization and is homologous to TonB-dependent outer membrane receptors. J Bacteriol 174:5788–5797

    CAS  PubMed  Google Scholar 

  14. Crosa JH (1997) Signal transduction and transcriptional and posttranscriptional control of iron-regulated genes in bacteria Microbio. Mol Biol Rev 61:319–336

    CAS  Google Scholar 

  15. Escolar L, Perez-Martin J, de Lorenzo V (1999) Opening the iron box: Transcriptional metalloregulation by the Fur protein. J Bacteriol 181:6223–6229

    CAS  PubMed  Google Scholar 

  16. Galimand M, Perroud B, Delorme F, Paquelin A, Vieille C, Bozouklian H, et al. (1989) Identification of DNA regions homologous to nitrogen fixation genes nifE, nifUS and fixABC in Azospirillum brasilense Sp7. J Gen Microbiol 135:1047–1059

    CAS  PubMed  Google Scholar 

  17. Grunberg-Manago M (1996) Regulation of the expression of aminoacyl-tRNA synthetases and translation factors. In: Neidhardt FC (ed) Escherichia coli and Salmonella cellular and molecular biology. Washington, DC: ASM Press, pp 1075–1090

    Google Scholar 

  18. Hantke K (1983) Identification of an iron uptake system specific for coprogen and rhodotorulic acid in Escherichia coli K12. Mol Gen Genet 191:301-306

    Article  CAS  PubMed  Google Scholar 

  19. Hübner P, Masepohl B, Klipp W, Bickle TA (1993) nif gene expression studies in Rhodobacter capsulatus: ntrC-independent repression by high ammonium concentrations. Mol Microbiol 10:123–132

    PubMed  Google Scholar 

  20. James P, Halladay J, Craig EA (1996) Genomic libraries and a host strain designed for highly efficient two-hybrid selection in yeast. Genetics 144:1425–1436

    CAS  PubMed  Google Scholar 

  21. Keller-Schierlein W, Diekmann H (1970) Zur Konstitution des Coprogens. Helv Chim Acta 53:2035–2044

    CAS  Google Scholar 

  22. Klebba PE, Rutz JM, Liu J, Murphy CK (1993) Mechanisms of TonB-catalyzed iron transport through the enteric bacterial cell envelope. J Bioenerget Biomemb 25:603–611

    CAS  PubMed  Google Scholar 

  23. Knauf VC, Nester EW (1982) Wide host range cloning vectors: A cosmid clone bank of an Agrobacterium Ti plasmid. Plasmid 8:45–54

    Article  CAS  PubMed  Google Scholar 

  24. Lugtenberg B, Meijers J, Peters R, Van Der Hock P, Van Alphen L (1975) Electrophoretic resolution of the major outer membrane protein of E. coli K12 into 4 bands. FEBS Lett 58:254–258

    Article  CAS  PubMed  Google Scholar 

  25. Mori E, Fani R, Gallori E, Fantappie O, Bazzicalupo M (1992) Mutants of Azospirillum brasilense altered in the uptake of iron. Symbiosis 13:115–122

    CAS  Google Scholar 

  26. Nakae T, Ishii J, Tokunafa M (1979) Subunit structure of functional porin oligomers that form permeability channels in the outer membrane of Escherichia coli. J Biol Chem 254:1457–1461

    CAS  PubMed  Google Scholar 

  27. Neilands JB (1981) Microbial iron compounds. Annu Rev Biochem 50:715–731

    Article  CAS  PubMed  Google Scholar 

  28. Occhino DA, Wyckoff EE, Henderson DP, Wrona TJ, Shelley M (1998) Vibrio cholerae iron transport: Haem transport genes are linked to one of two sets of tonB, exbB, exbD genes. Mol Microbiol 29:1493–1507

    Article  CAS  PubMed  Google Scholar 

  29. Persmark M, Pittman P, Buyer JS, Schwyn B, Gill PR, Neilands JB (1993) Isolation and structure of rhizobactin-1021, a siderophore from the alfalfa symbiont Rhizobium meliloti 1021. J Am Chem Soc 115:3950–3956

    Article  CAS  Google Scholar 

  30. Sambrook J, Fritsch F, Maniatis T (1989) Molecular cloning: A laboratory manual, 2nd ed. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press

    Google Scholar 

  31. Sauer M, Hantke K, Braun V (1987) Ferric-coprogen receptor FhuE of Escherichia coli: Processing and sequence common to all TonB-dependent outer membrane receptor proteins. J Bacteril 169:2044–2049

    CAS  PubMed  Google Scholar 

  32. Sauer M, Hantke K, Braun V (1990) Sequence of the fhuE outer-membrane receptor gene of Escherichia coli K12 and properties of mutants. Mol Microbiol 4:427–437

    CAS  PubMed  Google Scholar 

  33. Seliger SS, Mey AR, Valle A-M, Payne SM (2001) The two TonB systems of Vibrio cholerae: Redundant and specific functions. Mol Microbiol 39:801–812

    Article  CAS  PubMed  Google Scholar 

  34. Simon R, O′Connell M, Labes M, Puhler A (1986) Plasmid vectors for the genetic analysis and manipulation of rhizobia and other Gram negative bacteria. Methods Enzymol 118:640–659

    CAS  PubMed  Google Scholar 

  35. Tarrand JJ, Krieg NR (1978) A taxonomic study of the Spirillum lipoferum group with descriptions of a new genus, Azospirillum gen. Nov. and two species, Azospirillum lipoferum (Beijerinck) comb. nov. and Azospirillum brasilense sp. nov. Can J Microbiol 24:967–980

    CAS  PubMed  Google Scholar 

  36. Umali-Garcia M, Hubbell DH, Gaskins MH, Dazzo FB (1980) Association of Azospirilum with grass roots. Appl Environ Microbiol 39:219–226

    PubMed  Google Scholar 

  37. Visca P, Leoni L, Wilson MJ, Lamont IL (2002) Iron transport and regulation, cell signaling and genomics: Lessons from Escherichia coli and Pseudomonas. Mol Rev 45:1177–1190

    CAS  Google Scholar 

  38. Von Bulow JFW, Dobereiner J (1975) Potential for nitrogen fixation maize genotypes in Brazil. Proc Natl Acad Sci U S A 72:2389–2393

    Google Scholar 

  39. Wexler M, Yeoman KH, Stevens JB, de Luca NG, Sawers G, Johnston AWB (2001) The Rhizoblium leguminosarum tonB gene is required for the uptake of siderophore and heam as source of iron. Mol Microbil 41:801–816

    Article  CAS  PubMed  Google Scholar 

  40. Yanisch-Perron C, Vieira J, Messing J (1985) Improved M13 phage cloning vectors and host strains: Nucleotide sequences of the M13mp18 and pUC19 vectors. Gene 33:103–119

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by International Foundation Science (Grant No. C/32081-1) and National Nature Science Foundation of China (Grant No. 30170020).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanfeng Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cui, Y., Tu, R., Guan, Y. et al. Cloning, Sequencing, and Characterization of the Azospirillum brasilense fhuE Gene. Curr Microbiol 52, 169–177 (2006). https://doi.org/10.1007/s00284-005-0008-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-005-0008-z

Keywords

Navigation