Skip to main content
Log in

Dynamics, Diversity and Function of Endophytic Siderophore-Producing Bacteria in Rice

  • Plant Microbe Interactions
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Siderophore production confers to bacteria competitive advantages to colonize plant tissues and to exclude other microorganisms from the same ecological niche. This work shows that the community of endophytic siderophore-producing bacteria (SPB) associated to Oryza sativa cultivated in Uruguayan soils is dynamic and diverse. These bacteria were present in grains, roots, and leaves, and their density fluctuated between log10 3.44 and log10 5.52 cfu g−1 fresh weight (fw) during the plant growth. Less than 10% of the heterotrophic bacteria produced siderophores in roots and leaves of young plants, but most of the heterotrophic bacteria were siderophore-producers in mature plants. According to their amplified restriction DNA ribosomal analysis (ARDRA) pattern, 54 of the 109 endophytic SPB isolated from different plant tissues or growth stages from replicate plots, were unique. Bacteria belonging to the genera Sphingomonas, Pseudomonas, Burkholderia, and Enterobacter alternated during plant growth, but the genus Pantoea was predominant in roots at tillering and in leaves at subsequent stages. Pantoea ananatis was the SPB permanently associated to any of the plant tissues, but the genetic diversity within this species—revealed by BOX-PCR fingerprinting- showed that different strains were randomly distributed along time and plant tissue, suggesting that a common trait of the species P. ananatis determined the interaction with the rice plant. Several isolates were stronger IAA producers than Azospirillum brasilense or Herbaspirillum seropedicae. In vitro inhibition assays showed that SPB of the genus Burkholderia were good antagonists of pathogenic fungi and that only one SPB isolate of the genus Pseudomonas was able to inhibit A. brasilense and H. seropedicae. These results denoted that SPB were selected into the rice plant. P. ananatis was the permanent and dominant associated species which was unable to inhibit two of the relevant plant growth-promoting bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1

Similar content being viewed by others

References

  1. Alvindia D, Natsuaki T (2009) Biocontrol activities of Bacillus amyloliquefaciens DGA14 isolated from banana fruit surface against banana crown rot-causing pathogens. Crop Prot 28:236–242

    Article  Google Scholar 

  2. Araujo W-L, Maccheroni W, Aguilar-Vildoso C-I, Barroso P, Saridakis H, Azevedo J (2001) Variability and interactions between endophytic bacteria and fungi isolated from leaf tissues of citrus rootstocks. Can J Microbiol 47:229–236

    Article  PubMed  CAS  Google Scholar 

  3. Asis C Jr, Adachi K (2004) Isolation of endophytic diazotroph Pantoea agglomerans and nondiazotroph Enterobacter asburiae from sweetpotato stem in Japan. Lett Appl Microbiol 38:19–23

    Article  PubMed  Google Scholar 

  4. Assigbetse K, Gueye M, Thioulouse J, Duponnois R (2005) Soil bacterial diversity responses to root colonization by an ectomycorrhizal fungus are not root-growth-dependent. Microb Ecol 50:350–359

    Article  PubMed  Google Scholar 

  5. Bacilio-Jimenez M, Aguilar-Flores S, del Valle M, Perez A, Zepeda A, Zenteno E (2001) Endophytic bacteria in rice seeds inhibit early colonization of roots by Azospirillum brasilense. Soil Biol Biochem 33:167–172

    Article  CAS  Google Scholar 

  6. Baldani V, Döbereiner J (1980) Host-plant specify in the infection of cereals with Azospirillum spp. Soil Biol Biochem 12(4):433–439

    Article  Google Scholar 

  7. Barraquio WL, Revilla L, Ladha JK (1997) Isolation of endophytic diazotrophic bacteria from wetland rice. Plant Soil 194:15–24

    Article  CAS  Google Scholar 

  8. Berg G, Krechel A, Ditz M, Sikora R, Ulrich A, Hallmann J (2005) Endophytic and ectophytic potato-associated bacterial communities differ in structure and antagonistic function against plant pathogenic fungi. FEMS Microbiol Ecol 51:215–229

    Article  PubMed  CAS  Google Scholar 

  9. Cho K, Young Hong S, Mi Lee S, Hee Kim Y, Gjung Kahng G, Pyo Lim P, Kim H, Dae Yun H (2007) Endophytic bacterial communities in ginseng and their antifungal activity against pathogens. Microb Ecol 54:341–351

    Article  PubMed  CAS  Google Scholar 

  10. Compant S, Duffy B, Nowak J, Clément C, Ait Barka E (2005) Use of plant growth-promoting bacteria for biocontrol of plant diseases: principles, mechanisms of action, and future prospects. Appl Environ Microb 71(9):4951–4959

    Article  CAS  Google Scholar 

  11. Conn V, Franco C (2004) Analysis of the endophytic actinobacterial population in the roots of wheat (Triticum aestivum L.) by terminal restriction fragment length polymorphism and sequencing of 16S rRNA clones. Appl Environm Microbiol 70(3):1787–1794

    Article  CAS  Google Scholar 

  12. Doberman A, Fairhurst T (2000) Rice: nutrient disorders and nutrient management. International Rice Research Institute (IRRI), Singapore, MY

    Google Scholar 

  13. Elbeltagy A, Nishioka K, Sato T, Suzuki H, Ye B, Hamada T, Isawa T, Mitsui H, Minamisawa K (2001) Endophytic colonization and in planta nitrogen fixation by a Herbaspirillum sp. isolated from wild rice species. Appl Environ Microbiol 67:5285–5293

    Article  PubMed  CAS  Google Scholar 

  14. Engelhard M, Hurek T, Reinhol-Hurek B (2000) Preferential occurrence of diazotrophic endophytes, Azoarcus spp., in wild rice species and land races of Oryza sativa in comparison with modern races. Environ Microbiol 2:131–141

    Article  PubMed  CAS  Google Scholar 

  15. Enya J, Shinohara H, Yoshida S, Tsukiboshi T, Negishi T, Suyama K, Tsushima S (2007) Culturable leaf-associated bacteria on tomato plants and their potential as biological control agents. Microb Ecol 53:524–536

    Article  PubMed  CAS  Google Scholar 

  16. Felici C, Vettori L, Giraldi L, Costantina L, Toffanin A, Tagliasacchi A, Nuti M (2008) Single and co-inoculation of Bacillus subtilis and Azospirillum brasilense on Lycopersicon esculentum: Effects on plant growth and rhizosphere microbial community. Appl Soil Ecol 40(2):260–270

    Article  Google Scholar 

  17. Feng Y, Shen D, Dong X, Song W (2003) In vitro symplasmata formation in the rice diazotrophic endophyte Pantoea agglomerans YS19. Plant Soil 255:435–444

    Article  CAS  Google Scholar 

  18. Glickmann E, Dessaux Y (1994) A critical examination of the specificity of the Salkowski reagent for indolic compounds produced by phytopatogenic bacteria. Appl Environ Microbiol 61(2):793–796

    Google Scholar 

  19. Gyaneshwar P, James EK, Mathan N, Reddy PM, Reinhold-Hurek B, Ladha JK (2001) Endophytic colonization of rice by a diazotrophic strain of Serratia marcescens. J Bacteriol 183:2634–45

    Article  PubMed  CAS  Google Scholar 

  20. Iversen C, Lehner A, Mullane N, Bidlas E, Cleenwerck I, Marugg J, Fanning S, Stephan R, Joosten H (2007) The taxonomy of Enterobacter sakazakii: proposal of a new genus Cronobacter gen. nov. and descriptions of Cronobacter sakazakii comb. nov. Cronobacter sakazakii subsp. sakazakii, comb. nov., Cronobacter sakazakii subsp. malonaticus subsp. nov., Cronobacter turicensis sp. nov., Cronobacter muytjensiisp. nov., Cronobacter dublinensis sp. nov. and Cronobactergenomospecies. BMC Evol Biol 7:64

    Article  PubMed  Google Scholar 

  21. Kaga H, Mano H, Tanaka F, Watanabe A, Kaneko S, Morisaki H (2009) Rice seeds as sources of endophytic bacteria. Microb Environm 24(2):154–162

    Article  Google Scholar 

  22. Kuklinsky-Sobral J, Araujo WL, Mendes R, Geraldi IO, Pizzirani-Kleiner AA, Azevedo JL (2004) Isolation and characterization of soybean-associated bacteria and their potential for plant growth promotion. Environ Microbiol 12:1244–1251

    Article  Google Scholar 

  23. Li C-H, Zhao M-W, Tang C-M, Li S-P (2009) Population dynamics and identification of endophytic bacteria antagonistic toward plant-pathogenic fungi in cotton root. Microb Ecol 59(2):344–356

    Article  PubMed  Google Scholar 

  24. Loiret FG, Ortega E, Kleiner D, Ortega-Rodés P, Rodés R, Dong Z (2004) A putative new endophytic nitrogen-fixing bacterium Pantoea sp. from sugarcane. J Appl Microbiol 97:504–511

    Article  PubMed  CAS  Google Scholar 

  25. Mahaffee W, Kloepper J (1997) Temporal changes in the bacterial communities of soil, rhizosphere, and endorhiza associated with field-grown cucumber (Cucumis sativus L.). Microb Ecol 34(3):2210–223

    Article  Google Scholar 

  26. Malik K, Bilal R, Mehnaz S, Rasul G, Mirza M, Ali S (1997) Association of nitrogen-fixing, plant-growth-promoting rhizobacteria (PGPR) with Kallar grass and rice. Plant Soil 194(1):37–44

    Article  CAS  Google Scholar 

  27. Mano H, Tanaca F, Nakamura C, Kaga H, Morisaki H (2007) Culturable endophytic bacterial flora on the maturing leaves and roots of rice plants (Oryza sativa) cultivated in a paddy field. Microb Environm 22(2):175–185

    Article  Google Scholar 

  28. Mc Inroy A, Kloepper J (1995) Survey of indigenous bacterial endophytes from cotton and sweet corn. Plant Soil 173(2):337–342

    Article  CAS  Google Scholar 

  29. Miethke M, Marahiel M (2007) Siderophore-based iron acquisition and pathogen control. Microbiol Mol Biol 71(3):413–451

    Article  CAS  Google Scholar 

  30. Mocali S, Bertelli E, Di Cello F, Mengoni A, Sfalanga A, Viliani F, Caciotti A, Tegli S, Surico G, Fani R (2003) Fluctuation of bacteria isolated from elm tissues during different seasons and from different plant organs. Microbiol Res 154(2):105–114

    Article  Google Scholar 

  31. Naik S, Shashikala J, Krishnamurthy Y (2009) Study on the diversity of endophytic communities from rice (Oryza sativa L.) and their antagonistic activities in vitro. Microbiol Res 164(3):290–296

    Article  PubMed  CAS  Google Scholar 

  32. Okunishi S, Sako K, Mano H, Imamura A, Morisaki H (2005) Bacterial Flora of Endophytes in the Maturing Seed of Cultivated Rice (Oryza sativa). Microb Environm 20(3):168–177

    Article  Google Scholar 

  33. Posada F, Vega F (2005) Establishment of the fungal entomopathogen Beauveria bassiana (Ascomycota: Hypocreales) as an endophyte in cocoa seedlings (Theobroma cacao). Mycologia 97(6):1195–1200

    Article  PubMed  Google Scholar 

  34. Prakamhang J, Minamisawa K, Teamtaisong K, Boonkerd N, Teaumroong N (2009) The communities of endophytic diazotrophic bacteria in cultivated rice (Oryza sativa L.). Appl Soil Ecol 142(2):141–149

    Article  Google Scholar 

  35. Reiter B, Pfeifer U, Schwab H, Sessitsch A (2002) Response of endophytic bacterial communities in potato plants to infection with Erwinia carotovora subsp. atroseptica. Appl Envrion Microbiol 68:2261–2268

    Article  CAS  Google Scholar 

  36. Rosenblueth M, Martínez Romero E (2006) Bacterial endophytes and their interactions with hosts. Mol Plant Microb Interact 19(8):827–837

    Article  CAS  Google Scholar 

  37. Ryan P, Germaine K, Franks A, Ryan D, Dowling D (2008) Bacterial endophytes: recent developments and applications. FEMS Microbiol Lett 278(1):1–9

    Article  PubMed  CAS  Google Scholar 

  38. Schulz B, Boyle C (2006) What are endophytes? In: Schulz B, Boyle C, Sieber T (eds) Microbial root endophytes. Springer-Verlag, Berlin, pp 1–13

    Chapter  Google Scholar 

  39. Schwyn B, Neilands JB (1987) Universal chemical assay for the detection and determination of siderophores. Anal Biochem 160:47–56

    Article  PubMed  CAS  Google Scholar 

  40. Steibl HD, Siddavattam D, Klingmuller W (1995) Self-transmissible nif plasmid (pEA9) of Enterobacter agglomerans 339: molecular cloning and evidence for the existence of similar nif clusters on dissimilar plasmids in Enterobacter strains. Plasmid 34:223–8

    Article  PubMed  CAS  Google Scholar 

  41. Stoltzfus J, So R, Malarvithi P, Ladha J, de Bruijn F (1997) Isolation of endophytic bacteria from rice and assessment of theri potential for supplying rice with biologically fixed nitrogen. Plant Soil 194:25–36

    Article  CAS  Google Scholar 

  42. Sturz AV, Christie BR, Matheson BG, Nowak J (1997) Biodiversity of endophytic bacteria which colonize red clover nodules, roots, stems and foliage and their influence on host growth. Biol Biofertility Soils 25:13–19

    Article  Google Scholar 

  43. Sun L, Qiu F, Zhang X, Dai X, Dong X, Song W (2008) Endophytic bacterial diversity in rice (Oryza sativa L.) roots estimated by 16S rDNA sequence analysis. Microb Ecol 55(3):415–424

    Article  PubMed  CAS  Google Scholar 

  44. Verma S, Ladha J, Tripathi A (2001) Evaluation of plant growth promoting and ability of endophytic diazotrophs from deep water rice. J Biotechnol 91:127–141

    Article  PubMed  CAS  Google Scholar 

  45. Yang J-H, Liu H-X, Zhu G-M, Pan Y-L, Guo J-H (2008) Diversity analysis of antagonists from rice-associated bacteria and their application in biocontrol of rice diseases. J Appl Microbiol 104:91–104

    PubMed  CAS  Google Scholar 

  46. Yasmin S, Bakar M, Malik K, Hafeez F (2004) Isolation, characterization and beneficial effects of rice associated plant growth promoting bacteria from Zanzibar soils. J Basic Microbiol 44(3):241–252

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Dra. Silvana Vero for technical suggestions and critical reading of the manuscript. We acknowledge Dra. Silvana Tarlera for her assistance to edit this manuscript. We also thank Stella Ávila for providing the pathogenic fungi and José Terra for allowing us to take samples from his field assay, both of them are researchers of the Instituto Nacional de Investigaciones Agropecuarias, Uruguay. This work was supported by CSIC (Comisión Sectorial de Investigación Científica, Universidad de la República, Uruguay), Projects 345 I + D, and 440 SP, and by ANII (Agencia Nacional de Investigación e Innovación) providing a scholarship for I. Loaces.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana Fernández Scavino.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Loaces, I., Ferrando, L. & Fernández Scavino, A. Dynamics, Diversity and Function of Endophytic Siderophore-Producing Bacteria in Rice. Microb Ecol 61, 606–618 (2011). https://doi.org/10.1007/s00248-010-9780-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-010-9780-9

Keywords

Navigation