Skip to main content
Log in

Growth-promotion of strawberry plants inoculated with Azospirillum brasilense

  • Original Paper
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Azospirillum brasilense (strains REC3, RLC1, PEC5) were root inoculated in strawberry plants of the cultivars ‘Milsei’, ‘Selva’ and ‘Camarosa’ to assess plant growth-promoting effects. The bacteria were able to promote plant growth (expressed as root length, root area, and dry weight of root and shoot), depending on the genotypes of plants and bacteria used, whereas the stolon production (3–4) depended only on the strawberry cultivar. To explain whether root exudates plays any role on the growth-promotion observed herein, total protein and sugar were determined, and chemotaxis properties were evaluated. The strains showed positive chemotaxis toward the root exudates, being influenced by the total sugars content, suggesting that the latter plays an important role in the chemotaxis effect and may contribute to enhance the root capacity to recruit azospirilla from rhizosphere, thus improving the growth-promoting effect exerted by these bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Bacilio-Jiménez M, Aguilar-Flores S, Ventura-Zapata E, Pérez-Campo E, Bouquelet S, Zenteno E (2003) Chemical characterization of root exudates from rice (Oryza sativa) and their effects on the chemotactic response of endophytic bacteria. Plant Soil 249:271–277

    Article  Google Scholar 

  • Bais HP, Weir TL, Perry LG, Gilroy S, Vivanco JM (2006) The role of root exudates in rhizosphere interactions with plants and other organisms. Annu Rev Plant Biol 57:233–266

    Article  CAS  Google Scholar 

  • Baldani VLD, Döbereiner J (1980) Host-plant specificity in the infection of cereals with Azospirillum spp. Soil Biol Biochem 12:433–439

    Article  Google Scholar 

  • Barak R, Nur I, Okon Y (1983) Detection of chemotaxis in Azospirillum brasilense. J Appl Bacteriol 53:399–403

    Google Scholar 

  • Bashan Y, de Bashan LE (2005) Plant growth-promoting. In: Hillel D (editor-in-chief) Encyclopedia of soils in the environment, vol 1. Oxford: Elsevier, p 2200

  • Bashan Y, Holguin G (1997) Azospirillum-plant relationships: environmental and physiological advances (1990–1996). Can J Microbiol 43:103–121

    Article  CAS  Google Scholar 

  • Bashan Y, Holguin G, de-Bashan LE (2004) Azospirillum-plant relationships: physiological, molecular, and environmental advances (1997–2003). Can J Microbiol 50:521–577

    Article  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–264

    Article  CAS  Google Scholar 

  • Carley HE, Watson TW (1966) A new gravimetric method for estimating root-surface areas. Soil Sci 102:289–291

    Article  Google Scholar 

  • Dakora FD, Phillips DA (2002) Root exudates as mediators of mineral acquisition in low-nutrient environments. Plant Soil 245:35–47

    Article  CAS  Google Scholar 

  • Döbereiner J, Baldani VLD, Baldani JI (1995) Como isolar e identificar bacterias diazotróficas de plantas nao-leguminosas. EMBRAPA-SPI, Brasilia

    Google Scholar 

  • Gregory PJ (2006) Roots, rhizosphere and soil: the route to a better understanding of soil science? Eur J Soil Sci 57:2–12

    Article  Google Scholar 

  • Grifoni A, Bazzicalupo M, Di Serio C, Fancelli S, Fani R (1995) Identification of Azospirillum strains by restriction fragment length polymorphism of the 16S rDNA and of the histidine operon. FEMS Microbiol Lett 127:85–91

    Article  CAS  Google Scholar 

  • Hauwaerts D, Alexandre G, Das SK, Vanderleyden J, Zhulin IB (2002) A major chemotaxis gene cluster in Azospirillum brasilense and relationships between chemotaxis operons in K-proteobacteria. FEMS Microbiol Lett 208:61–67

    CAS  Google Scholar 

  • Hoagland DR (1975) Mineral nutrition. In: De Kaufman PB, Labavitch J, Anderson-Prouty A, Ghosheh NS (eds) Laboratory experiments in plant physiology. Macmillan, New York, pp 129–134

    Google Scholar 

  • Jones DL, Hodge A, Kuzyakov Y (2004) Plant and mycorrhizal regulation of rhizodeposition. New Phytol 163:459–480

    Article  CAS  Google Scholar 

  • Nguyen C (2003) Rhizodeposition of organic C by plants: mechanisms and controls. Agronomie 23:375–396

    Article  CAS  Google Scholar 

  • Okon Y, Labandera-Gonzalez CA (1994) Agronomic applications of Azospirillum: an evaluation of 20 years worldwide field inoculation. Soil Biol Biochem 26:1591–1601

    Article  CAS  Google Scholar 

  • Paterson E (2003) Importance of rhizodeposition in the coupling of plant and microbial productivity. Eur J Soil Sci 54:741–750

    Article  Google Scholar 

  • Pedraza RO, Motok J, Tortora ML, Salazar SM, Díaz-Ricci JC (2007) Natural occurrence of Azospirillum brasilense in strawberry plants. Plant Soil 295:169–178

    Article  CAS  Google Scholar 

  • Pérez D, Mazzone L (2004) La actividad frutillera en la provincia de Tucumán y Argentina. EEAOC Publicación Especial No 26, 100 pp

  • Reinhold B, Hurek T, Fendrik I (1985) Strain-specific chemotaxis of Azospirillum spp. J Bacteriol 162:190–195

    CAS  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning. In: Ford N (ed) A laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Saubidet MI, Barneix AJ (1998) Growth stimulation and nitrogen supply to wheat plants inoculated with Azospirillum brasilense. J Plant Nutr 21:2565–2577

    Article  CAS  Google Scholar 

  • Tarrand JJ, Krieg NR, Döbereiner J (1978) A taxonomic study of the Spirillum lipoferum group, with descriptions of a new genus, Azospirillum gen. nov. and two species, Azospirillum lipoferum (Beijerinck) comb. nov. and Azospirillum brasilense sp. nov. Can J Microbiol 8:967–980

    Article  Google Scholar 

  • Vestberg M, Kukkonen S, Saari K, Parikka P, Huttunen J, Tainio L, Devos N, Weekers F, Kevers C, Thonart P, Lemoine MC, Cordier C, Alabouvette C, Gianinazzi S (2004) Microbial inoculation for improving the growth and health of micropropagated strawberry. Appl Soil Ecol 27:243–258

    Article  Google Scholar 

  • Wichern F, Mayer J, Joergensen RG, Muller T (2007) Release of C and N from roots of peas and oats and their availability to soil microorganisms. Soil Biol Biochem 39:2829–2839

    Article  CAS  Google Scholar 

  • Wood CC, Islam N, Ritchie RJ, Kennedy IR (2001) A simplified model for assessing critical parameters during associative 15N2 fixation between Azospirillum and wheat. Aust J Plant Physiol 28:969–974

    Google Scholar 

  • Zheng XY, Sinclair JB (1996) Chemostactic response of Bacillus megaterium strain B153-2-2 to soybean root and seed exudates. Physiol Mol Plant Pathol 48:21–35

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by grant BID1728 OC-AR/PICTO 2004 N° 860 of Agencia Nacional de Promoción Cientifica y Tecnológica.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raúl O. Pedraza.

Additional information

Juan C. Díaz-Ricci is researcher of Conicet. María L. Tortora and María F. Guerrero-Molina are Conicet fellows.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pedraza, R.O., Motok, J., Salazar, S.M. et al. Growth-promotion of strawberry plants inoculated with Azospirillum brasilense . World J Microbiol Biotechnol 26, 265–272 (2010). https://doi.org/10.1007/s11274-009-0169-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11274-009-0169-1

Keywords

Navigation