Skip to main content

Exploring the Critical Function and Molecular Mechanism of WRKY Transcription Factor Family in Regulating Plant Response Under Abiotic Stress Conditions

  • Chapter
  • First Online:
New Frontiers in Plant-Environment Interactions

Abstract

Environmental stresses adversely affect plant growth and development. However, the signaling pathways and metabolic response mechanisms may differ, and most types of abiotic stresses affect the cellular redox homeostasis ultimately affecting the yield performance of the plant. In response, plants evolve several regulatory proteins that act as central regulators of abiotic stress responses involved in temperature, salinity, and oxidative stresses. Plants rapidly respond through complex genetic and biochemical networks primarily by transducing signals to stress-related transcription factors (TFs) such as MYB, bZIP, AP2/EREBP, NAC, and WRKY of which WRKY is the most extensively studied TF family in different plant stress responses. The WRKY gene family encodes a large group of transcription factors (TFs) that play essential roles in diverse stress responses and developmental processes. Here, we summarize the regulatory mechanisms of WRKY transcription factors and their responses to different abiotic stress conditions. We also discuss the future perspectives of WRKY transcription factor research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Babitha KC, Ramu SV, Pruthvi V, Mahesh P, Nataraja KN, Udayakumar M (2013) Co-expression of at bHLH17 and at WRKY 28 confers resistance to abiotic stress in Arabidopsis. Transgenic Res 22:327–341

    Article  CAS  Google Scholar 

  • Bakshi M, Oelmuller R (2014) WRKY transcription factors. Plant Signal Behav 9:e27700

    Article  CAS  Google Scholar 

  • Banerjee A, Roychoudhury A (2015) WRKY proteins: signaling and regulation of expression during abiotic stress responses. Sci World J 807560

    Google Scholar 

  • Besseau S, Li J, Palva ET (2012) WRKY54 and WRKY70 co-operate as negative regulators of leaf senescence in Arabidopsis thaliana. J Exp Bot 63:2667–2679

    Article  CAS  Google Scholar 

  • Cai Z, Xian P, Wang H, Lin R, Lian T, Cheng Y, Ma Q, Nian H (2020) Transcription factor GmWRKY142 confers cadmium resistance by up-regulating the cadmium tolerance 1-like genes. Front Plant Sci 11:724

    Article  Google Scholar 

  • Cao Y, Li K, Li Y, Zhao X, Wang L (2020) MYB transcription factors as regulators of secondary metabolism in plants. Biology 9(3):61

    Article  CAS  Google Scholar 

  • Chen YF, Li LQ, Xu Q, Kong YH, Wang H, Wu WH (2009) The WRKY6 transcription factor modulates PHOSPHATE1 expression in response to low Pi stress in Arabidopsis. Plant Cell 21:3554–3566

    Article  CAS  Google Scholar 

  • Chen H, Lai Z, Shi J, Xiao Y, Chen Z, Xu X (2010a) Roles of Arabidopsis WRKY18, WRKY40 and WRKY60 transcription factors in plant responses to abscisic acid and abiotic stress. BMC Plant Biol 10:281

    Article  CAS  Google Scholar 

  • Chen L, Zhang L, Yu D (2010b) Wounding-induced WRKY8 is involved in basal defense in Arabidopsis. Mol Plant Microbe Interact 23:558–565

    Article  CAS  Google Scholar 

  • Chen L, Song Y, Li S, Zhang L, Zou C, Yu D (2012) The role of WRKY transcription factors in plant abiotic stresses. Biochim Biophys Acta 1819(2):120–128

    Article  CAS  Google Scholar 

  • Chen N, Yang Q, Pan L et al (2014) Identification of 30 MYB transcription factor genes and analysis of their expression during abiotic stress in peanut (Arachis hypogaea L). Gene 533(1):332–345

    Article  CAS  Google Scholar 

  • Cheng H, Wang S (2014) WRKY-Type transcription factors: a significant factor in rice-pathogen interactions. Scientia Sinica Vitae 44:784

    Article  Google Scholar 

  • Chen X, Li C, Wang H et al (2019) WRKY transcription factors: evolution, binding, and action. Phytopathol Res 1:13

    Article  Google Scholar 

  • Cheng MC, Liao PM et al (2013) The Arabidopsis ETHYLENE RESPONSE FACTOR1 regulates abiotic stress-responsive gene expression by binding to different cis-acting elements in response to different stress signals. Plant Physiol 162(3):1566–1582

    Article  CAS  Google Scholar 

  • Chinnusamy V, Schumaker K, Zhu JK (2004) Molecular genetic perspectives on cross-talk and specificity in abiotic stress signalling in plants. J Exp Bot 55(395):225–236

    Article  CAS  Google Scholar 

  • Ciftci-Yilmaz S, Morsy MR, Song L, Coutu A, Krizek BA, Lewis MW, Mittler R (2007) The EAR-motif of the Cys2/His2-type zinc finger protein Zat7 plays a key role in the defense response of Arabidopsis to salinity stress. J Biol Chem 282(12):9260–9268

    Google Scholar 

  • Contento AL, Kim SJ, Bassham DC (2004) Transcriptome profiling of the response of Arabidopsis suspension culture cells to Suc starvation. Plant Physiol 135:2330–2347

    Article  CAS  Google Scholar 

  • Dai X, Wang Y, Zhang WH (2016) OsWRKY74, a WRKY transcription factor, modulates tolerance to phosphate starvation in rice. J Exp Bot 67(3):947–960

    Article  CAS  Google Scholar 

  • Dang F, Wang Y, She J, Lei Y (2014) Overexpression of CaWRKY27, a subgroup IIe WRKY transcription factor of Capsicum annuum, positively regulates tobacco resistance to Ralstonia solanacearum infection. Physiol Plant 150:397–411

    Article  CAS  Google Scholar 

  • Danquah A, de Zelicourt A, Colcombet J, Hirt H (2014) The role of ABA and MAPK signaling pathways in plant abiotic stress responses. Biotech Adv 32:40–52

    Article  CAS  Google Scholar 

  • Datnoff LE, Elmer WH, Huber DM (2007) Mineral nutrition and plant disease. The American Phytopathological Society, St. Paul

    Google Scholar 

  • Davletova S, Schlauch K, Coutu J, Mittler R (2005) The zinc-finger protein Zat12 plays a central role in reactive oxygen and abiotic stress signaling in Arabidopsis. Plant Physiol 139:847–856

    Article  CAS  Google Scholar 

  • de Zelicourt A, Colcombet J, Hirt H (2016) The role of MAPK modules and ABA during abiotic stress signaling. Trends Plant Sci 21(8):677–685

    Article  Google Scholar 

  • Devaiah BN, Karthikeyan AS, Raghothama KG (2007) WRKY75 transcription factor is a modulator of phosphate acquisition and root development in Arabidopsis. Plant Physiol 143:1789–1801

    Article  CAS  Google Scholar 

  • Doll J, Muth M, Riester L, Nebel S, Bresson J, Lee HC, Zentgraf U (2020) Arabidopsis thaliana WRKY25 transcription factor mediates oxidative stress tolerance and regulates senescence in a redox-dependent manner. Front Plant Sci 10:1734

    Article  Google Scholar 

  • Dong J, Chen C, Chen Z (2003) Expression profiles of the Arabidopsis WRKY gene superfamily during plant defense response. Plant Mol Biol 51:21–37

    Article  CAS  Google Scholar 

  • Dou L, Zhang X, Pang C, Song M, Wei H, Fan S, Yu S (2014) Genome-wide analysis of the WRKY gene family in cotton. Mol Genet Genom 2896:1103–1121

    Article  Google Scholar 

  • Dubos C, Stracke R, Grotewold E, Weisshaar B, Martin C, Lepiniec L (2010) MYB transcription factors in Arabidopsis. Trends Plant Sci 15(10):573–581

    Article  CAS  Google Scholar 

  • Dvořák P, Krasylenko Y, Zeiner A, Šamaj J, Takáč T (2021) Signaling toward reactive oxygen species-scavenging enzymes in plants. Front Plant Sci 2178

    Google Scholar 

  • Eulgem T, Somssich IE (2007) Networks of WRKY transcription factors in defense signaling. Curr Opin Plant Biol 10(4):366–371

    Article  CAS  Google Scholar 

  • Eulgem T, Rushton PJ, Robatzek S, Somssich IE (2000) The WRKY superfamily of plant transcription factors. Trends Plant Sci 5:199–206

    Article  CAS  Google Scholar 

  • Gao SQ, Chen M, Xu ZS, Zhao CP, Li LC, Xu HJ et al (2011) The soybean GmbZIP1 transcription factor enhances multiple abiotic stress tolerances in transgenic plants. Plant Mol Biol 75:537–553

    Article  CAS  Google Scholar 

  • Golldack D, Lüking I, Yang O (2011) Plant tolerance to drought and salinity: stress regulating transcription factors and their functional significance in the cellular transcriptional network. Plant Cell Rep 30(8):1383–1391

    Article  CAS  Google Scholar 

  • Goraya GK, Kaur B, Asthir B, Bala S, Kaus G, Faroog M (2017) Rapid injuries of high temperature in plants. J Plant Biol 60:298–305

    Article  CAS  Google Scholar 

  • Guo Q, Zhao L, Fan X, Xu P, Xu Z, Zhang X, Meng S, Shen X (2021) Transcription factor GarWRKY5 is involved in salt stress response in diploid cotton species Gossypium aridum L. Int J Mol Sci 2021:5244

    Google Scholar 

  • Guo X, Ullah A, Siuta D, Kukfisz B, Iqbal S (2022) Role of WRKY transcription factors in regulation of abiotic stress responses in cotton. Life (basel) 12(9):1410

    CAS  Google Scholar 

  • Hajiboland R (2012) Effect of micronutrient deficiencies on plants stress responses. In: Ahmad P, Prasad M (eds) Abiotic stress responses in plants. Springer, New York, NY, pp 283–329

    Google Scholar 

  • Hammargren J, Rosenquist S, Jansson C, Knorpp C (2008) A novel connection between nucleotide and carbohydrate metabolism in mitochondria: sugar regulation of the Arabidopsis nucleoside diphosphate kinase 3a gene. Plant Cell Rep 27:529–534

    Article  CAS  Google Scholar 

  • Han M, Kim CY, Lee J, Lee SK, Jeon JS (2014) OsWRKY42 represses OsMT1d and induces reactive oxygen species and leaf senescence in rice. Mol Cells 37(7):532

    Article  Google Scholar 

  • Han Z, Wang J, Wang X, Zhang X, Cheng Y, Cai Z, Nian H, Ma Q (2022) GmWRKY21, a soybean WRKY transcription factor gene, enhances the tolerance to aluminum stress in Arabidopsis thaliana. Front Plant Sci 13:833326

    Article  Google Scholar 

  • He H, Dong Q, Shao Y, Jiang H, Zhu S, Cheng B, Xiang Y (2012) Genome-wide survey and characterization of the WRKY gene family in Populus trichocarpa. Plant Cell Rep 31:1199–1217

    Article  CAS  Google Scholar 

  • He GH, Xu JY, Wang YX et al (2016) Drought-responsive WRKY transcription factor genes TaWRKY1 and TaWRKY33 from wheat confer drought and/or heat resistance in Arabidopsis. BMC Plant Biol 16:116

    Article  Google Scholar 

  • Hong C, Cheng D, Zhang G, Zhu D, Chen Y, Tan M (2017) The role of ZmWRKY4 in regulating maize antioxidant defense under cadmium stress. Biochem Biophys Res Commun 482:1504–1510

    Article  CAS  Google Scholar 

  • Huang S, Gao Y, Liu J, Peng X, Niu X, Fei Z, Cao S, Liu Y (2012) Genome-wide analysis of WRKY transcription factors in Solanum lycopersicum. Mol Genet Genom 287:495–513

    Article  CAS  Google Scholar 

  • Ilyas M, Nisar M, Khan N, Hazrat A, Khan AH, Hayat K, Fahad S, Khan A, Ullah A (2020) Drought tolerance strategies in plants: a mechanistic approach. J Plant Growth Regul 40:926–944

    Article  Google Scholar 

  • Ishihama N, Yoshioka H (2012) Post-translational regulation of WRKY transcription factors in plant immunity. Curr Opin Plant Biol 15(4):431–437

    Article  CAS  Google Scholar 

  • Jeong JS, Kim YS, Baek KH, Jung H, Ha SH, Do Choi, Kim M et al (2010) Root-specific expression of OsNAC10 improves drought tolerance and grain yield in rice under field drought conditions. Plant Physiol 153:185–197

    Google Scholar 

  • Jiang Y, Liang G, Yang S, Yu D (2014) Arabidopsis WRKY57 functions as a node of convergence for jasmonic acid- and auxin-mediated signaling in jasmonic acid-induced leaf senescence. Plant Cell 26(1):230–245

    Article  CAS  Google Scholar 

  • Jiang J, Ma S, Ye N, Jiang M, Cao J, Zhang J (2017) WRKY transcription factors in plant responses to stresses. J Integr Plant Biol 59(2):86–101. https://doi.org/10.1111/jipb.12513. PMID: 27995748

    Article  CAS  Google Scholar 

  • Jeong S, Lim CW, Lee SC (2020) The pepper MAP kinase CaAIMK1 positively regulates ABA and drought stress responses. Front Plant Sci 11:720

    Article  Google Scholar 

  • Kim KC, Lai Z, Fan B, Chen Z (2008) Arabidopsis WRKY38 and WRKY62 transcription factors interact with histone deacetylase 19 in basal defense. Plant Cell 20:2357–2371

    Article  CAS  Google Scholar 

  • Kim TH, Böhmer M, Hu H, Nishimura N, Schroeder JI (2010) Guard cell signal transduction network: advances in understanding abscisic acid, CO2, and Ca2+ signaling. Annu Rev Plant Biol 61:561–591

    Article  CAS  Google Scholar 

  • Lata C, Prasad M (2011) Role of DREBs in regulation of abiotic stress responses in plants. J Exp Bot 62(14):4731–4748. https://doi.org/10.1093/jxb/err2101252

    Article  CAS  Google Scholar 

  • Li S, Fu Q, Huang W, Yu D (2009) Functional analysis of an Arabidopsis transcription factor WRKY25 in heat stress. Plant Cell Rep 28:683–693

    Article  CAS  Google Scholar 

  • Li S, Zhou X, Chen L, Huang W, Yu D (2010) Functional characterization of Arabidopsis thaliana WRKY39 in heat stress. Mol Cells 29:475–483

    Article  CAS  Google Scholar 

  • Li S, Fu Q, Chen L, Huang W, Yu D (2011) Arabidopsis thaliana WRKY25, WRKY26, and WRKY33 coordinate induction of plant thermotolerance. Planta 233:1237–1252

    Article  CAS  Google Scholar 

  • Li F, Li M, Wang P, Cox KL Jr, Duan L, Dever JK, Shan L, Li Z, He P (2017) Regulation of cotton Gossypium hirsutum drought responses by mitogen-activated protein MAP kinase cascade-mediated phosphorylation of GhWRKY59. New Phytol 2154:1462–1475

    Article  Google Scholar 

  • Li CX, Yan JY, Ren JY et al (2020a) A WRKY transcription factor confers aluminum tolerance via regulation of cell wall modifying genes. J Integr Plant Biol 62(8):1176–1192

    Article  CAS  Google Scholar 

  • Li W, Pang S, Lu Z, Jin B (2020b) Function and mechanism of WRKY transcription factors in abiotic stress responses of plants. Plants 9(11):1515

    Article  CAS  Google Scholar 

  • Liang T, Mei S, Shi C, Yang Y et al (2018) UVR8 Interacts with BES1 and BIM1 to regulate transcription and photomorphogenesis in Arabidopsis. Dev Cell 4(512):523.e5

    Google Scholar 

  • Liao Y, Zou HF, Wei W, Hao YJ, Tian AG, Huang J et al (2008) Soybean GmbZIP44, GmbZIP62 and GmbZIP78 genes function as negative regulator of ABA signaling and confer salt and freezing tolerance in transgenic. Arabidopsis. Planta 228:225–240. https://doi.org/10.1007/s00425-008-0731-3

    Article  CAS  Google Scholar 

  • Licausi F, Ohme-Takagi M, Perata P (2013) APETALA2/Ethylene Responsive Factor (AP2/ERF) transcription factors: mediators of stress responses and developmental programs. New Phytol 199(3):639–649

    Article  CAS  Google Scholar 

  • Ma J, Gao X, Liu Q, Shao Y, Zhang D, Jiang L, Li C (2017) Overexpression of TaWRKY146 increases drought tolerance through inducing stomatal closure in Arabidopsis thaliana. Front Plant Sci 8:2036

    Article  Google Scholar 

  • Mangelsen E, Wanke D, Kilian J, Sundberg E, Harter K, Jansson C (2010) Significance of light, sugar, and amino acid supply for diurnal gene regulation in developing barley caryopses. Plant Physiol 153:14–33

    Article  CAS  Google Scholar 

  • Misra P, Pandey A, Tiwari M, Chandrashekar K, Sidhu OP, Asif MH, Chakrabarty D, Singh PK, Trivedi PK, Nath PJ (2010) Modulation of transcriptome and metabolome of tobacco by Arabidopsis transcription factor, atmyb12, leads to insect resistance. Plant Physiol 152:2258–2268

    Article  CAS  Google Scholar 

  • Mizoi J, Shinozaki K, Yamaguchi-Shinozaki K (2012) AP2/ERF family transcription factors in plant abiotic stress responses. Biochim Biophys Acta 1819(2):86–96

    Article  CAS  Google Scholar 

  • Nakano T, Suzuki K, Fujimura T, Shinshi H (2006) Genome-wide analysis of the ERF gene family in Arabidopsis and rice. Plant Physiol 140(2):411–432

    Article  CAS  Google Scholar 

  • Nakashima K, Ito Y, Yamaguchi-Shinozaki K (2009) Transcriptional regulatory networks in response to abiotic stresses in Arabidopsis and grasses. Plant Physiol 149(1):88–95

    Article  CAS  Google Scholar 

  • Nakashima K, Takasaki H, Mizoi J, Shinozaki K, Yamaguchi-Shinozaki K (2012) NAC transcription factors in plant abiotic stress responses. Biochem Biophys Acta 1819(2):97–103

    CAS  Google Scholar 

  • Nakashima K, Yamaguchi-Shinozaki K, Shinozaki K (2014) The transcriptional regulatory network in the drought response and its crosstalk in abiotic stress responses including drought, cold, and heat. Front Plant Sci 5:170

    Article  Google Scholar 

  • Pandey A, Misra P, Chandrashekar K, Trivedi PKJ (2012) Development of atmyb12-expressing transgenic tobacco call us culture for production of rutin with biopesticidal potential. Plant Cell Rep 31:1867–1876

    Article  CAS  Google Scholar 

  • Park CY, Lee JH, Yoo JH, Moon BC, Choi MS, Kang YH, Lee SM, Kim HS, Kang KY, Chung WS et al (2005) WRKY group IId transcription factors interact with calmodulin. FEBS Lett 579:1545–1550

    Article  CAS  Google Scholar 

  • Phukan UJ, Jeena GS, Shukla RK (2016) WRKY transcription factors: molecular regulation and stress responses in plants. Front Plant Sci 3(7):760

    Google Scholar 

  • Puranik S, Sahu PP, Srivastava PS, Prasad M (2012) NAC proteins: regulation and role in stress tolerance. Trends Plant Sci 17(6):369–381

    Article  CAS  Google Scholar 

  • Qiu YP, Yu DQ (2009) Over-expression of the stress-induced OsWRKY45 enhances disease resistance and drought tolerance in Arabidopsis. Environ Exp Bot 65:35–47

    Article  CAS  Google Scholar 

  • Raineri J, Wang S, Peleg Z, Blumwald E, Chan RL (2015) The rice transcription factor OsWRKY47 is a positive regulator of the response to water deficit stress. Plant Mol Biol 88(4–5):401–413

    Article  CAS  Google Scholar 

  • Richardson AE, Hocking PJ, Simpson RJ, George TS (2009) Plant mechanisms to optimize access to soil phosphorus. Crop Pasture Sci 60:124–143

    Article  CAS  Google Scholar 

  • Rizhsky L, Davletova S, Liang H, Mittler R (2004) The zinc finger protein Zat12 is required for cytosolic ascorbate peroxidase 1 expression during oxidative stress in Arabidopsis. J Biol Chem 279:11736–11743

    Article  CAS  Google Scholar 

  • Rouached H, Arpat AB, Poirier Y (2010) Regulation of phosphate starvation responses in plants: signaling players and cross-talks. Mol Plant 3:288–299

    Article  CAS  Google Scholar 

  • Rusconi F, Simeoni F, Francia P et al (2013) The Arabidopsis thaliana MYB60 promoter provides a tool for the spatio-temporal control of gene expression in stomatal guard cells. J Exp Bot 64(11):3361–3371

    Article  CAS  Google Scholar 

  • Rushton PJ, Somssich IE, Ringler P, Shen QJ (2010) WRKY transcription factors. Trends Plant Sci 15(5):247–258

    Article  CAS  Google Scholar 

  • Rushton DL, Tripathi P, Rabara RC, Lin J, Ringler P, Boken AK, Langum TJ, Smidt L, Boomsma DD, Emme NJ et al (2012) WRKY transcription factors: key components in abscisic acid signalling. Plant Biotechnol J 10:2–11

    Article  CAS  Google Scholar 

  • Schmutz J, Cannon SB, Schlueter J, Ma J, Mitros T, Nelson W, Hyten DL, Song Q, Thelen JJ, Cheng J et al (2010) Genome sequence of the palaeopolyploid soybean. Nature 463:178–183

    Article  CAS  Google Scholar 

  • Shen H, Liu C, Zhang Y, Meng X, Zhou X, Chu C, Wang X (2012) OsWRKY30 is activated by MAP kinases to confer drought tolerance in rice. Plant Mol Biol 80:241–253

    Article  CAS  Google Scholar 

  • Sheng Y, Yan X, Huang Y et al (2019) The WRKY transcription factor, WRKY13, activates PDR8 expression to positively regulate cadmium tolerance in Arabidopsis. Plant Cell Environ 42(3):891–903

    Article  CAS  Google Scholar 

  • Shi W (2016) The expressional and functional characterization of CaMAPK1 and its correlationship to CaWRKY17 and CaWRKY40 in Pepper’s response to Ralatonia solanacearum inoculation. Fujian Agriculture and Forestry University, Fujian, China

    Google Scholar 

  • Shinozaki K, Yamaguchi-Shinozaki K (2007) Gene networks involved in drought stress response and tolerance. J Exp Bot 58:221–227. https://doi.org/10.1093/jxb/erl164

    Article  CAS  Google Scholar 

  • Shu W, Zhou Q, Xian P, Cheng Y, Lian T, Ma Q, Zhou Y, Li H, Nian H, Cai Z (2022) GmWRKY81 encoding a WRKY transcription factor enhances aluminum tolerance in soybean. Int J Mol Sci 23(12):6518

    Article  CAS  Google Scholar 

  • Singh S, Parihar P, Singh R, Singh VP, Prasad SM (2016) Heavy metal tolerance in plants: role of transcriptomics, proteomics, metabolomics, and ionomics. Front Plant Sci 6:1143

    Article  Google Scholar 

  • Song Y, Chen LG, Zhang LP, Yu DQ (2010) Overexpression of OsWRKY72 gene interferes in the abscisic acid signal and auxin transport pathway of Arabidopsis. J Biosci 35:459–471

    Article  CAS  Google Scholar 

  • Stracke R, Werber M, Weisshaar B (2001) The R2R3-MYB gene family in Arabidopsis thaliana. Curr Opin Plant Biol 4(5):447–456

    Article  CAS  Google Scholar 

  • Tsuneaki GT, Joulia P, Matthew RW et al (2002) MAPkinase signalling cascade in Arabidopsis innate immunity. Nature 28:977–983

    Google Scholar 

  • Ullah A, Sun H, Yang X, Zhang X (2018) A novel cotton WRKY gene, GhWRKY6—Like, improves salt tolerance by activating the ABA signaling pathway and scavenging of reactive oxygen species. Physiol Plant 1624:439–454

    Article  Google Scholar 

  • Vanderauwera S, Zimmermann P, Rombauts S, Vandenabeele S, Langebartels C, Gruissem W, Inzé D, Van Breusegem F (2005) Genome-wide analysis of hydrogen peroxide-regulated gene expression in Arabidopsis reveals a high light-induced transcriptional cluster involved in anthocyanin biosynthesis. Plant Physiol 139:806–821

    Article  CAS  Google Scholar 

  • Viana VE, Marini N, Finatto T, Ezquer I, Busanello C et al (2017) Iron excess in rice: from phenotypic changes to functional genomics of WRKY transcription factors. Genet Mol Res 16(3)

    Google Scholar 

  • Vishwakarma K, Upadhyay N, Kumar N, Yadav G, Singh J, Mishra RK, Kumar V, Verma R, Upadhyay RG, Pandey M, Sharma S (2017) Abscisic acid signaling and abiotic stress tolerance in plants: a review on current knowledge and future prospects. Front Plant Sci 8:161

    Article  Google Scholar 

  • Wang C, Deng P, Chen L, Wang X, Ma H, Hu W, Yao N, Feng Y, Chai R, Yang G, He G (2013) A wheat WRKY transcription factor TaWRKY10 confers tolerance to multiple abiotic stresses in transgenic tobacco. PLoS ONE 8(6):e65120

    Article  CAS  Google Scholar 

  • Wang H, Hao J, Chen X, Hao Z, Wang X, Lou Y, Peng Y, Guo Z (2007a) Overexpression of rice WRKY89 enhances ultraviolet tolerance and disease resistance in rice plants. Plant Mol Biol 65:799–815

    Article  CAS  Google Scholar 

  • Wang H, Zhang Y, Norris A, Jiang CZ (2022) S1-bZIP transcription factors play important roles in the regulation of fruit quality and stress response. Front Plant Sci 12:802802

    Article  Google Scholar 

  • Wang HJ, Wan AR, Hsu CM et al (2007b) Transcriptomic adaptations in rice suspension cells under sucrose starvation. Plant Mol Biol 63:441–463

    Article  CAS  Google Scholar 

  • Wang M, Vannozzi A, Wang G, Liang YH, Tornielli GB, Zenoni S, Cavallini E, Pezzotti M, Cheng ZM (2014) Genome and transcriptome analysis of the grapevine (Vitis vinifera L.) WRKY gene family. Horti Res 1:14016

    Google Scholar 

  • Wang Y, Zhang Y, Zhou R, Dossa K, Yu J, Li D, Liu A, Mmadi MA, Zhang X, You J (2018) Identification and characterization of the bZIP transcription factor family and its expression in response to abiotic stresses in sesame. PLoS ONE 13(7):e0200850

    Article  Google Scholar 

  • Wu X, Chen Q, Chen L, Tian F, Chen X, Han C, Mi J, Lin X, Wan X, Jiang B, Liu Q, He F, Chen L, Zhang F (2022) A WRKY transcription factor, PyWRKY75, enhanced cadmium accumulation and tolerance in poplar. Ecotoxicol Environ Saf 239:113630

    Article  CAS  Google Scholar 

  • Wu X, Shiroto Y, Kishitani S, Ito Y, Toriyama K (2009) Enhanced heat and drought tolerance in transgenic rice seedlings overexpressing OsWRKY11 under the control of HSP101 promoter. Plant Cell Rep 28:21–30

    Article  CAS  Google Scholar 

  • Xing DH, Lai ZB, Zheng ZY, Vinod KM, Fan BF, Chen ZX (2008) Stress- and pathogen-induced Arabidopsis WRKY48 is a transcriptional activator that represses plant basal defense. Mol Plant 1:459–470

    Article  CAS  Google Scholar 

  • Xu ZS, Chen M, Li LC, Ma YZ (2011) Functions and application of the AP2/ERF transcription factor family in crop improvement. J Integr Plant Biol 53:570–585

    Article  CAS  Google Scholar 

  • Yamasaki K, Kigawa T, Inoue M, Tateno M, Yamasaki T, Yabuki T, Yokoyama S (2005) Solution structure of an Arabidopsis WRKY DNA binding domain. The Plant Cell 17(3):944–956

    Google Scholar 

  • Yan H, Jia H, Chen X, Hao L, An H, Guo X (2014) The cotton WRKY transcription factor GhWRKY17 functions in drought and salt stress in transgenic Nicotiana benthamiana through ABA signaling and the modulation of reactive oxygen species production. Plant Cell Physiol 55(12):2060–2076

    Article  CAS  Google Scholar 

  • Yan JY, Li CX, Sun L, Ren JY, Li GX, Ding ZJ, Zheng SJ (2016) A WRKY transcription factor regulates Fe translocation under Fe deficiency. Plant Physiol 171(3):2017–2027

    Article  Google Scholar 

  • Yang Y, Liang T, Zhang L, Shao K, Gu X, Shang R, Shi N, Li X, Zhang P, Liu H (2018) UVR8 interacts with WRKY36 to regulate HY5 transcription and hypocotyl elongation in Arabidopsis. Nature Plants 4:98–107

    Article  CAS  Google Scholar 

  • Yu F, Lou L, Tian M, Li Q, Ding Y, Cao X, Wu Y, Belda-Palazon B, Rodriguez PL, Yang S et al (2016) ESCRT-I component VPS23A affects ABA signaling by recognizing ABA receptors for endosomal degradation. Mol Plant 912:1570–1582

    Article  Google Scholar 

  • Zhang Y, Wang L (2005) The WRKY transcription factor superfamily: its origin in eukaryotes and expansion in plants. BMC Evol Biol 5:1

    Article  CAS  Google Scholar 

  • Zhang Y, Yu H, Yang X, Li Q, Ling J, Wang H, Gu X, Huang S, Jiang W (2016) CsWRKY46, a WRKY transcription factor from cucumber, confers cold resistance in transgenic-plant by regulating a set of cold-stress responsive genes in an ABA-dependent manner. Plant Physiol Biochem 108:478–487

    Article  CAS  Google Scholar 

  • Zhao CJ, Hao ZN, Wang HH, Chen XJ, Guo ZJ (2010) Identification of a novel regulatory element region responded to UV-B in rice WRKY89 promoter. Prog Biochem Biophys 37:671–677

    Article  CAS  Google Scholar 

  • Zhao J, He Q, Chen G, Wang L, Jin B (2016) Regulation of non-coding RNAs in heat stress responses of plants. Front Plant Sci 7:1213

    Article  Google Scholar 

  • Zheng Z, Mosher SL, Fan B, Klessig DF, Chen Z (2007) Functional analysis of Arabidopsis WRKY25 transcription factor in plant defense against Pseudomonas syringae. BMC Plant Biol 7:2

    Article  Google Scholar 

  • Zheng Z, Qamar SA, Chen Z, Mengiste T (2006) Arabidopsis WRKY33 transcription factor is required for resistance to necrotrophic fungal pathogens. Plant J 48:592–605

    Article  CAS  Google Scholar 

  • Zhou QY, Tian AG, Zou HF, Xie ZM, Lei G, Huang J, Wang CM, Wang HW, Zhang JS, Chen SY (2008) Soybean WRKY-type transcription factor genes, GmWRKY13, GmWRKY21, and GmWRKY54, confer differential tolerance to abiotic stresses in transgenic Arabidopsis plants. Plant Biotechnol J 6:486–503

    Article  CAS  Google Scholar 

  • Zou C, Jiang W, Yu D (2010) Male gametophyte-specific WRKY34 transcription factor mediates cold sensitivity of mature pollen in Arabidopsis. J Exp Bot 61:3901–3914

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge Council of Scientific and Industrial Research, Govt. of India, (Ref. No. 38(1587)/16/EMR-II, dated: 17/05/2016 to SR), and SERB, DST, Govt of India (Ref. No. ECR/2016/000539 and Ref. No. CRG/2021/000989-G to SR) for providing financial supports performing research related to the topic discussed in this review. SB is thankful to CSIR, Govt. of India (09/025(0261)/2018-EMR-I) for the research fellowship. AM is thankful to UGC (Ref. No. 221610047029), Govt. of India for the research fellowship. MK is thankful to DST-SERB (Ref No. CRG/2021/000989-G). PR is thankful to UGC (715/(CSIR-UGC NET JUNE 2019)), Govt. of India for the research fellowship. SN is thankful for the DST-INSPIRE (DST/INSPIRE Fellowship/2021/IF200219) fellowship. We apologize to those authors whose work could not be cited due to space limitations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sujit Roy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Banerjee, S., Mukherjee, A., Khatun, M., Roy, P., Nandi, S., Roy, S. (2023). Exploring the Critical Function and Molecular Mechanism of WRKY Transcription Factor Family in Regulating Plant Response Under Abiotic Stress Conditions. In: Aftab, T. (eds) New Frontiers in Plant-Environment Interactions. Environmental Science and Engineering. Springer, Cham. https://doi.org/10.1007/978-3-031-43729-8_6

Download citation

Publish with us

Policies and ethics