Skip to main content
Log in

Overexpression of OsWRKY72 gene interferes in the abscisic acid signal and auxin transport pathway of Arabidopsis

  • Published:
Journal of Biosciences Aims and scope Submit manuscript

Abstract

Through activating specific transcriptional programmes, plants can launch resistance mechanisms to stressful environments and acquire a new equilibrium between development and defence. To screen the rice WRKY transcription factor which functions in abiotic stress tolerance and modulates the abscisic acid (ABA) response, we generated a whole array of 35S-OsWRKY transgenic Arabidopsis. In this study, we report that 35S-OsWRKY72 transgenic Arabidopsis, whose seed germination was retarded under normal conditions, emerged more sensitive to mannitol, NaCl, ABA stresses and sugar starvation than vector plants. Meanwhile, 35S-OsWRKY72 transgenic Arabidopsis displayed early flowering, reduced apical dominance, lost high temperature-induced hypocotyl elongation response, and enhanced gravitropism response, which were similar to the auxin-related gene mutants aux1, axr1 and bud1. Further, semi-quantitative RT-PCR showed that the expression patterns of three auxin-related genes AUX1, AXR1 and BUD1 were significantly altered in rosette leaves and inflorescences of 35S-OsWRKY72 plants compared with control Arabidopsis, and two ABA-related genes ABA2 and ABI4 were induced in 35S-OsWRKY72 seedlings. In addition, northern blot analysis indicated that, in rice, OsWRKY72 was inducible by polyethylene glycol (PEG), NaCl, naphthalene acetic acid (NAA), ABA and 42°C, similar to its orthologue AtWRKY75 in Arabidopsis, implying that these two WRKY genes might be required for multiple physiological processes in their plants. Together, these results suggest that OsWRKY72 interferes in the signal cross-talk between the ABA signal and auxin transport pathway in transgenic Arabidopsis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Belin C, Megies C, Hauserova E and Lopez-Molina L 2009 Abscisic acid represses growth of the Arabidopsis embryonic axis after germination by enhancing auxin signaling; Plant Cell 21 2253–2268

    Article  CAS  PubMed  Google Scholar 

  • Dai Y, Wang H Z, Li B H, Huang J, Liu X F, Zhou Y H, Mou Z L and Li J Y 2006 Increased expression of MAP KINASE KINASE7 causes deficiency in polar auxin transport and leads to plant architectural abnormality in Arabidopsis; Plant Cell 18 308–320

    Article  CAS  PubMed  Google Scholar 

  • Devaiah B N, Karthikeyan A S and Raghothama K G 2007 WRKY75 transcription factor is a modulator of phosphate acquisition and root development in Arabidopsis; Plant Physiol. 143 1789–1801

    Article  CAS  PubMed  Google Scholar 

  • Du L Q and Chen Z X 2000 Identification of genes encoding receptor-like protein kinases as possible targets of pathogenand salicylic acid-induced WRKY DNA-binding proteins in Arabidopsis; Plant J. 24 837–847

    Article  CAS  PubMed  Google Scholar 

  • Finkelstein R R and Gibson S I 2002 ABA and sugar interactions regulating development cross-talk or voices in a crowd?; Curr. Opin. Plant Biol. 5 26–32

    Article  CAS  PubMed  Google Scholar 

  • Fukaki H, Tameda S, Masuda H and Tasaka M 2002 Lateral root formation is blocked by a gain-of-function mutation in the SOLITARY-ROOT/IAA14 gene of Arabidopsis; Plant J. 29 153–168

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez-Guzman M, Apostolova N, Belles J M, Barrero J M, Piqueras P, Ponce M R, Micol J L, Serrano R et al. 2002 The short-chain alcohol dehydrogenase ABA2 catalyzes the conversion of xanthoxin to abscisic aldehyde; Plant Cell 14 1833–1846

    Article  CAS  PubMed  Google Scholar 

  • Gray W M, Ostin A, Sandberg G, Romano C P and Estelle M 1998 High temperature promotes auxin-mediated hypocotyl elongation in Arabidopsis; Proc. Natl. Acad. Sci. USA 95 7197–7202

    Article  CAS  PubMed  Google Scholar 

  • Grunewald W, Karimi M, Wieczorek K, Van de Cappelle E, Wischnitzki E, Grundler F, Inze D, Beeckman T et al. 2008 A role for AtWRKY23 in feeding site establishment of plantparasitic nematodes; Plant Physiol. 148 358–368

    Article  CAS  PubMed  Google Scholar 

  • Jiang W B and Yu D Q 2009 Arabidopsis WRKY2 transcription factor mediates seed germination and postgermination arrest of development by abscisic acid; BMC Plant Biol. 9 96

    Article  PubMed  Google Scholar 

  • Jiang Y Q and Deyholos M K 2009 Functional characterization of Arabidopsis NaCl-inducible WRKY25 and WRKY33 transcription factors in abiotic stresses; Plant Mol. Biol. 69 91–105

    Article  CAS  PubMed  Google Scholar 

  • Jing S J, Zhou X, Song Y and Yu D Q 2009 Heterologous expression of OsWRKY23 gene enhances pathogen defense and dark-induced leaf senescence in Arabidopsis; Plant Growth Regul. 58 181–190

    Article  CAS  Google Scholar 

  • Kato N, Dubouzet E, Kokabu Y, Yoshida S, Taniguchi Y, Dubouzet J G, Yazaki K and Sato F 2007 Identification of a WRKY protein as a transcriptional regulator of benzylisoquinoline alkaloid biosynthesis in Coptis japonica; Plant Cell Physiol. 48 8–18

    Article  CAS  PubMed  Google Scholar 

  • Lincoln C, Britton J H and Estelle M 1990 Growth and development of the axr1 mutants of Arabidopsis; Plant Cell 2 1071–1080

    Article  CAS  PubMed  Google Scholar 

  • Nakashima K and Yamaguchi-Shinozaki K 2006 Regulons involved in osmotic stress-responsive and cold stress-responsive gene expression in plants; Physiol. Plantarum 126 62–71

    Article  CAS  Google Scholar 

  • Noh B, Bandyopadhyay A, Peer W A, Spalding E P and Murphy A S 2003 Enhanced gravi- and phototropism in plant mdr mutants mislocalizing the auxin efflux protein PIN1; Nature (London) 423 999–1002

    Article  CAS  Google Scholar 

  • Okada K and Shimura Y 1992 Mutational analysis of root gravitropism and phototropism of Arabidopsis thaliana seedlings; Aust. J. Plant Physiol. 19 439–448

    Article  Google Scholar 

  • Pandey S P and Somssich I E 2009 The role of WRKY transcription factors in plant immunity; Plant Physiol. 150 1648–1655

    Article  CAS  PubMed  Google Scholar 

  • Pickett F B, Wilson A K and Estelle M 1990 The Aux1 mutation of Arabidopsis confers both auxin and ethylene resistance; Plant Physiol. 94 1462–1466

    Article  CAS  PubMed  Google Scholar 

  • Qiu D Y, Xiao J, Xie W B, Liu H B, Li X H, Xiong L Z and Wang S P 2008 Rice gene network inferred from expression profiling of plants overexpressing OsWRKY13, a positive regulator of disease resistance; Mol. Plant 1 538–551

    Article  CAS  PubMed  Google Scholar 

  • Qiu Y P, Jing S J, Fu J, Li L and Yu D Q 2004 Cloning and analysis of expression profile of 13 WRKY genes in rice; Chinese Sci. Bull. 49 2159–2168

    CAS  Google Scholar 

  • Qiu Y P and Yu D Q 2009 Over-expression of the stress-induced OsWRKY45 enhances disease resistance and drought tolerance in Arabidopsis; Environ. Exp. Bot. 65 35–47

    Article  CAS  Google Scholar 

  • Ramon M, Rolland F, Thevelein J M, Van Dijck P and Leyman B 2007 ABI4 mediates the effects of exogenous trehalose on Arabidopsis growth and starch breakdown; Plant Mol. Biol. 63 195–206

    Article  CAS  PubMed  Google Scholar 

  • Seki M, Narusaka M, Kamiya A, Ishida J, Satou M, Sakurai T, Nakajima M, Enju A et al. 2002 Functional annotation of a full-length Arabidopsis cDNA collection; Science 296 141–145

    Article  PubMed  Google Scholar 

  • Shinozaki K and Yamaguchi-Shinozaki K 1997 Gene expression and signal transduction in water-stress response; Plant Physiol. 115 327–334

    Article  CAS  PubMed  Google Scholar 

  • Song Y, Ai C R, Jing S J and Yu D Q 2010 Research progress on function analysis of rice WRKY gene; Rice Sci. 17 60–72

    Article  Google Scholar 

  • Song Y, Jing S J and Yu D Q 2009 Overexpression of the stressinduced OsWRKY08 improves osmotic stress tolerance in Arabidopsis; Chinese Sci. Bull. 54 4671–4678

    Article  CAS  Google Scholar 

  • Song Y, Liu D M and Yu D Q 2008 [Overexpression of OsWRKY72 gene repress apical dominance in Arabidopsis;] Acta Bot. Yunnan 30 699–705 (in Chinese with English abstract)

    CAS  Google Scholar 

  • Tosti N, Pasqualini S, Borgogni A, Ederli L, Falistocco E, Crispi S and Paolocci F 2006 Gene expression profiles of O-3-treated Arabidopsis plants; Plant Cell Environ. 29 1686–1702

    Article  CAS  PubMed  Google Scholar 

  • Vanderauwera S, De Block M, Van de Steene N, van de Cotte B, Metzlaff M and Van Breusegem F 2007 Silencing of poly ADP-ribose polymerase in plants alters abiotic stress signal transduction; Proc. Natl. Acad. Sci. USA 104 15150–15155

    Article  CAS  PubMed  Google Scholar 

  • Wang H J, Wan A R, Hsu C M, Lee K W, Yu S M and Jauh G Y 2007 Transcriptomic adaptations in rice suspension cells under sucrose starvation; Plant Mol. Biol. 63 441–463

    Article  CAS  PubMed  Google Scholar 

  • Wei W, Zhang Y, Han L, Guan Z and Chai T 2008 A novel WRKY transcriptional factor from Thlaspi caerulescens negatively regulates the osmotic stress tolerance of transgenic tobacco; Plant Cell Rep. 27 795–803

    Article  CAS  PubMed  Google Scholar 

  • Xie Z, Zhang Z L, Hanzlik S, Cook E and Shen Q X J 2007 Salicylic acid inhibits gibberellin-induced alpha-amylase expression and seed germination via a pathway involving an abscisic-acid-inducible WRKY gene; Plant Mol. Biol. 64 293–303

    Article  CAS  PubMed  Google Scholar 

  • Xie Z, Zhang Z L, Zou X L, Huang J, Ruas P, Thompson D and Shen Q X J 2005 Annotations and functional analyses of the rice WRKY gene superfamily reveal positive and negative regulators of abscisic acid signaling in aleurone cells; Plant Physiol. 137 176–189

    Article  CAS  PubMed  Google Scholar 

  • Yamaguchi-Shinozaki K and Shinozaki K 2006 Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses; Annu. Rev. Plant Biol. 57 781–803

    Article  CAS  PubMed  Google Scholar 

  • Yamasaki K, Kigawa T, Inoue M, Watanabe S, Tateno M, Seki M, Shinozaki K and Yokoyama S 2008 Structures and evolutionary origins of plant-specific transcription factor DNA-binding domains; Plant Physiol. Biochem. 46 394–401

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Peng Y L and Guo Z J 2008 Constitutive expression of pathogen-inducible OsWRKY31 enhances disease resistance and affects root growth and auxin response in transgenic rice plants; Cell Res. 18 508–521

    Article  CAS  PubMed  Google Scholar 

  • Zhou Q Y, Tian A G, Zou H F, Xie Z M, Lei G, Huang J, Wang C M, Wang H W et al. 2008 Soybean WRKY-type transcription factor genes, GmWRKY13, GmWRKY21, and GmWRKY54, confer differential tolerance to abiotic stresses in transgenic Arabidopsis plants; Plant Biotechnol. J. 6 486–503

    Article  CAS  PubMed  Google Scholar 

  • Zou X L, Shen Q J X and Neuman D 2007 An ABA inducible WRKY gene integrates responses of creosote bush Larrea tridentata to elevated CO2 and abiotic stresses; Plant Sci. 172 997–1004

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diqiu Yu.

Additional information

These authors contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Song, Y., Chen, L., Zhang, L. et al. Overexpression of OsWRKY72 gene interferes in the abscisic acid signal and auxin transport pathway of Arabidopsis . J Biosci 35, 459–471 (2010). https://doi.org/10.1007/s12038-010-0051-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12038-010-0051-1

Keywords

Navigation