Skip to main content
Log in

Functional analysis of an Arabidopsis transcription factor WRKY25 in heat stress

  • Biotic and Abiotic Stress
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

The WRKY family is one of the major groups of plant-specific transcriptional regulators. Arabidopsis thaliana WRKY25, which is induced by heat stress, is one of the group I WRKY proteins and responds to both abiotic and biotic stress. This study has examined the regulatory role of WRKY25 using wrky25 mutant and over-expressing WRKY25 transgenic A. thaliana. After 45°C for different time periods, wrky25 null mutants showed a moderate increase in thermosensitivity with decreased germination, reduced hypocotyl and root growth, and enhanced conductivity compared to those of wide-type, while WRKY25 over-expressed transgenic seeds exhibited enhanced thermotolerance. Northern blot analysis of wrky25 mutants and WRKY25 over-expressing plants identified putative genes regulated by WRKY25. In consistence with the implication of WRKY25 in heat tolerance, the expression level of six heat-inducible genes and two oxidative stress-responsive genes was more or less down-regulated in wrky25 mutants during heat stress. Among them, heat shock protein Hsp101, heat shock transcription factor HsfB2a, and cytosolic ascrobate peroxidase APX1 were reduced more obviously than other detected genes. Meanwhile, over-expression of WRKY25 increased the expression of HsfA2, HsfB1, HsfB2a, and Hsp101 slightly or moderately. Together, these findings reveal that WRKY25 plays a partial role in thermotolerance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

APX:

Cytosolic ascorbate peroxidase

EL:

Electrolyte leakage

HS:

Heat shock

Hsf:

Heat shock transcription factor

Hsp:

Heat shock protein

MBF1c:

Coactivator multiprotein bridging factor 1c

ROS:

Reactive oxygen species

SA:

Salicylic acid

References

  • Alonso JM, Stepanova AN, Leisse TJ, Kim CJ, Chen H, Shinn P, Stevenson DK, Zimmerman J, Barajas P, Cheuk R, Gadrinab C, Heller C, Jeske A, Koesema E, Meyers CC, Parker H, Prednis L, Ansari Y, Choy N, Deen H, Geralt M, Hazari N, Hom E, Karnes M, Mulholland C, Ndubaku R, Schmidt I, Guzman P, Aguilar-Henonin L, Schmid M, Weigel D, Carter DE, Marchand T, Risseeuw E, Borgden D, Zeko A, Crosby WL, Berry CC, Ecker JR (2003) Genome-wide insertional mutagenesis of Arabidopsis thaliana. Science 301:653–657

    Article  PubMed  Google Scholar 

  • Andreasson E, Jenkins T, Brodersen P, Thorgrimsen S, Petersen NH, Zhu S, Qiu JL, Micheelsen P, Rocher A, Pertersen M, Newman MA, Bjorn Nielsen H, Hirt H, Somssich I, Mattsson O, Mundy J (2005) The MAP kinase substrate MKS1 is a regulator of plant defense responses. EMBO J 24:2579–2589

    Article  PubMed  CAS  Google Scholar 

  • Baniwal SK, Bharti K, Chan KY, Fauth M, Ganguli A, Kotak S, Mishra SK, Nover L, Port M, Scharf KD, Tripp J, Weber C, Zielinski D, Koskull-Döring PV (2004) Heat stress response in plants: a complex game with chaperones and more than twenty heat stress transcription factors. J Biosci 29:471–487

    Article  PubMed  CAS  Google Scholar 

  • Busch W, Wunderlich M, Schöffl F (2005) Identification of novel heat shock factor-dependent genes and biochemical pathways in Arabidopsis thaliana. Plant J 41:1–14

    Article  PubMed  CAS  Google Scholar 

  • Chen C, Chen Z (2002) Potentiation of developmentally regulated plant defense response by AtWRKY18, a pathogen-induced Arabidopsis transcription factor. Plant Physiol 129:706–716

    Article  PubMed  CAS  Google Scholar 

  • Clarke SM, Mur AJ, Wood JE, Scott M (2004) Salicylic acid dependent signaling promotes basal thermotolerance but is not essential for acquired thermotolerance in Arabidopsis thaliana. Plant J 38:432–447

    Article  PubMed  CAS  Google Scholar 

  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743

    Article  PubMed  CAS  Google Scholar 

  • Dat JF, Delgado L, Foyer CH, Scott IM (1998a) Parallel changes in H2O2 and catalase during thermotolerance induced by salicylic acid or heat acclimation in mustard seedlings. Plant Physiol 116:1351–1357

    Article  PubMed  CAS  Google Scholar 

  • Dat JF, Foyer CH, Scott IM (1998b) Changes in salicylic acid and antioxidants during induced thermotolerance in mustard seedlings. Plant Physiol 118:1455–1461

    Article  PubMed  CAS  Google Scholar 

  • Davletova S, Rizhsky L, Liang H, Sheng Z, Oliver DJ, Coutu J, Shulaev V, Schlauch K, Mittler R (2005) Cytosolic ascorbate peroxidase 1 is a central component of the reactive oxygen gene network of Arabidopsis. Plant Cell 17:268–281

    Article  PubMed  CAS  Google Scholar 

  • Dong J, Chen C, Chen Z (2003) Expression profiles of the Arabidopsis WRKY gene superfamily during plant defense response. Plant Mol Biol 51:21–37

    Article  PubMed  CAS  Google Scholar 

  • Eulgem T, Somssich IE (2007) Networks of WRKY transcription factors in defense signaling. Curr Opin Plant Biol 10:366–371

    Article  PubMed  CAS  Google Scholar 

  • Eulgem T, Rushton PJ, Robatzek S, Somssich IE (2000) The WRKY superfamily of plant transcription factors. Trends Plant Sci 5:199–206

    Article  PubMed  CAS  Google Scholar 

  • Foyer CH, Noctor G (2005) Redox homeostasis and antioxidant signaling: a metabolic interface between stress perception and physiological responses. Plant Cell 17:1866–1875

    Article  PubMed  CAS  Google Scholar 

  • Gadjev I, Vanderauwera S, Gechev TS, Laloi C, Minkov IN, Shulaev V, mApel K, Inze D, Mittler R, Van Breusegem F (2006) Transcriptomic footprints disclose specificity of reactive oxygen species signaling in Arabidopsis. Plant Physiol 141:436–445

    Article  PubMed  CAS  Google Scholar 

  • Hong SW, Vierling E (2000) Mutants of Arabidopsis thaliana defective in the acquisition of tolerance to high temperature stress. Proc Natl Acad Sci USA 97:4392–4397

    Article  PubMed  CAS  Google Scholar 

  • Hong SW, Lee U, Vierling E (2003) Arabidopsis hot mutants define multiple functions required for acclimation to high temperatures. Plant Physiol 132:757–767

    Article  PubMed  CAS  Google Scholar 

  • Howarth CJ, Pollock CJ, Peacock JM (1997) Development of laboratory-based methods for assessing seedling thermotolerance in pearl millet. New Phytol 137:129–139

    Article  Google Scholar 

  • Jiang Y, Deyholos MK (2009) Functional characterization of Arabidopsis NaCl-inducible WRKY25 and WRKY33 transcription factors in abiotic stresses. Plant Mol Biol. doi:10.1007/s11103-008-9408-3

  • Koskull-Döring PV, Scharf KD, Nover L (2007) The diversity of plants heat stress transcription factors. Trends Plant Sci 12:452–457

    Article  Google Scholar 

  • Larkindale J, Knight MR (2002) Protection against heat stress-induced oxidative damage in Arabidopsis involves calcium, abscisic acid, ethylene, and salicylic acid. Plant Physiol 128:682–695

    Article  PubMed  CAS  Google Scholar 

  • Larkindale J, Vierling E (2008) Core genome responses involved in acclimation to high temperature. Plant Physiol 146:748–761

    Article  PubMed  CAS  Google Scholar 

  • Larkindale J, Hall JD, Knight MR, Vierling E (2005a) Heat stress Phenotype of Arabidopsis mutants implicate multiple signaling pathway in the acquisition of thermotolerance. Plant Physiol 138:882–897

    Article  PubMed  CAS  Google Scholar 

  • Larkindale J, Mishkind M, Vierling E (2005b) Plant responses to high temperature. In: Jenks M, Hasegawz P (eds) Plant abiotic stress. Blackwells, Oxford

    Google Scholar 

  • Lim CJ, Hwang JE, Chen H, Hong JK, Yang KA, Choi MS, Lee KO, Chung WS, Lee SY, Lim CO (2007) Over-expression of Arabidopsis DRE/CRT-binding transcription factor DREB2C enhances thermotolerance. Biochem Biophys Res Commun 362:431–436

    Article  PubMed  CAS  Google Scholar 

  • Liu HT, Liu YY, Pan QH, Yang HR, Zhan JC, Huang WD (2006) Novel interrelationship between salicylic acid, abscisic acid, and PIP2-specific phospholipase C in heat acclimation-induced thermotolerance in pea leaves. J Exp Bot 57:3336–3347

    Google Scholar 

  • Miller G, Shulaev V, Mittler R (2008) Reactive oxygen signaling and abiotic stress. Physiologia Plantarum. doi:10.1111/j.1399-3054.2008.01090.x

  • Ogawa D, Yamaguchi K, Nishiuchi T (2007) High-level overexpression of the Arabidopsis HsfA2 gene confers not only increased thermotolerance but also salt/osmotic stress tolerance and enhanced callus growth. J Exp Bot 58:3373–3383

    Article  PubMed  CAS  Google Scholar 

  • Panchuk II, Volkov RA, SchÖffl F (2002) Heat stress- and heat shock transcription factor-dependent expression and activity of ascorbate peroxidase in Arabidopsis. Plant Physiol 129:838–853

    Article  PubMed  CAS  Google Scholar 

  • Pnueli L, Liang H, Rozenberg M, Mittler R (2003) Growth suppression, altered stomatal responses, and augmented induction of heat shock proteins in cytosolic ascorbate peroxidase (Apx1)-deficient Arabidopsis plants. Plant J 34:187–203

    Article  PubMed  CAS  Google Scholar 

  • Rieping M, SchÖffl F (1992) Synergistic effect of upstream sequences, CCAAT box elements, and HSE sequences for enhanced expression of chimaeric heat shock genes in transgenic tobacco. Mol Gen Genet 231:226–232

    PubMed  CAS  Google Scholar 

  • Rizhsky L, Liang H, Mittler R (2002) The combined effect of drought stress and heat shock on gene expression in tobacco. Plant Physiol 130:1143–1151

    Article  PubMed  CAS  Google Scholar 

  • Rizhsky L, Davletova S, Liang H, Mittler R (2004) The zinc finger protein Zat12 is required for cytosolic ascorbate peroxidase 1 during oxidative stress in Arabidopsis. J Biol Chem 279:11736–11743

    Article  PubMed  CAS  Google Scholar 

  • Sakuma Y, Maruyama K, Qin F, Osakabe Y, Shinozaki K, Yamaguchi-Shinozaki K (2006) Dual function of an Arabidopsis transcription factor DREB2A in water-stress-responsive and heat-stress-responsive gene expression. Proc Natl Acad Sci USA 103:18822–18827

    Article  PubMed  CAS  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold spring harbor laboratory press, Cold Spring Harbor

    Google Scholar 

  • Suzuki N, Rizhsky L, Liang H, Shuman J, Shulaev V, Mittler R (2005) Enhanced tolerance to environmental stress in transgenic plants expressing the transcriptional coactivator multiprotein bridging factor 1c. Plant Physiol 139:1313–1322

    Article  PubMed  CAS  Google Scholar 

  • Suzuki N, Bajad S, Shuman J, Shulaev V, Mittler R (2008) The transcriptional co-activator MBF1c is a key regulator of the thermotolerance in Arabidopsis thaliana. J Biol Chem 283:9269–9275

    Article  PubMed  CAS  Google Scholar 

  • Yoshida T, Sakuma Y, Todaka D, Maruyama K, Qin F, Mizoi J, Kidokoro S, Fujita Y, Shinozaki K, Yamaguchi-Shinozaki K (2008) Functional analysis of an Arabidopsis heat-shock transcription factor HsfA3 in the transcriptional cascade downstream of the DREB2A stress-regulatory system. Biochem Biophys Res Commun 368:515–521

    Article  PubMed  CAS  Google Scholar 

  • Yu DQ, Chen C, Chen ZX (2001) Evidence for an important role of WRKY DNA binding proteins in the regulation of NPR1 gene expression. Plant cell 13:1527–1540

    Article  PubMed  CAS  Google Scholar 

  • Zheng Z, Oamar SA, Chen Z, Mengiste T (2006) Arabidopsis WRKY33 trancription factor is required for resistance to necrotrophic fungal pathogens. Plant J 45:592–605

    Article  Google Scholar 

  • Zheng Z, Mosher SL, Fan B, Klessing DF, Chen Z (2007) Functional analysis Arabidopsis WRKY25 transcription factor in plant defense against Pseudomonas syringae. BMC Plant Biol. doi:10.1186/1471-2229-7-2

Download references

Acknowledgments

We thank Dr. Zhixiang Chen (Department of Botany and Plant physiology of Purdue University) for Arabidopsis wrky25. This work was supported by the National Natural Sciences Foundation of China (grant number 30671468), the Science Foundation of the Chinese Academy of Sciences (grant no. KSCX2-YW-N-007), the Natural Science Foundation of Yunnan Province (grant no. 2003C0342 M), the Major Science & Technology Project of Beijing Municipal Science & Technology Commission (grant number D07060500160701), and the Hundred Talents Program of the Chinese Academy of Sciences. This MS has been edited by International Science Editing, Ireland.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Weidong Huang or Diqiu Yu.

Additional information

Communicated by R. Schmidt.

S. Li and Q. Fu contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, S., Fu, Q., Huang, W. et al. Functional analysis of an Arabidopsis transcription factor WRKY25 in heat stress. Plant Cell Rep 28, 683–693 (2009). https://doi.org/10.1007/s00299-008-0666-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-008-0666-y

Keywords

Navigation