Skip to main content

Biofortification of Legume Hybrids Obtained Through Intergeneric Hybridization

  • Chapter
  • First Online:
Legumes Biofortification

Abstract

Agricultural biotechnology has allowed scientists to introduce novel features into commonly consumed staple crops to enhance their productivity. One of the most critical applications for obtaining high-yielding cultivars is hybridization. Intergeneric hybrids are progenies obtained from parents who belong to distinct genera. The fertilization of distant relatives could pose a problem. Because of a lack of genetic information in one parent, incompatibility between parents can develop, resulting in pre- and postpollination occurrences. Pollen germination failure, poor pollen penetration through stigma, poor pollen tube growth, and pollen arresting in gynoecium are prefertilization barriers. Inadequate endosperm growth resulting in embryo abortion owing to a lack of nutrition, hybrid sterility, and lethality induced by chromosomal or genetic variations are instances of postfertilization barriers. Biofortification can be an alternative method to prevent these problems. This review focuses on the following topics: (i) the importance of hybridization for crop development; (ii) problems encountered in the hybridization of crop plants, including legumes; and (iii) the importance of mineral nutrition in legume hybrids.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Alvarez JB, Guzmán C (2018) Interspecific and intergeneric hybridization as a source of variation for wheat grain quality improvement. Theor Appl Genet 131(2):225–251. https://doi.org/10.1007/s00122-017-3042-x

    Article  PubMed  Google Scholar 

  • Ariza-Nieto M, Blair MW, Welch RM, Glahn RP (2007) Screening of iron bioavailability patterns in eight bean (Phaseolus vulgaris L.) genotypes using the Caco-2 cell in vitro model. J Agric Food Chem 55(19):7950–7956

    Article  CAS  PubMed  Google Scholar 

  • Arslan M (2019) Küresel İklim Değişikliğinin Olumsuz Etkilerine Karşı Ümitvar Baklagiller olarak Mürdümük (Lathyrus sativus L.) ve Burçak (Vicia ervilia L.)’ın Önemi. Adnan Menderes Üniversitesi Ziraat Fakültesi Dergisi 16(1):97–104

    Article  Google Scholar 

  • Bajaj Y (1990) In vitro production of haploids and their use in cell genetics and plant breeding. İçinde Haploids in crop improvement I (ss. 3–44). Springer

    Google Scholar 

  • Ballesfin MLE et al (2018) Development of an intergeneric hybrid between Oryza sativa L. and Leersia perrieri (A. Camus) Launert, p. 18045

    Google Scholar 

  • Bang S et al (2007) Production and characterization of intergeneric hybrids between Brassica oleracea and a wild relative Moricandia arvensis. Plant Breed 126(1):101–103

    Article  CAS  Google Scholar 

  • Bang SW, Ueno O, Wada Y, Hong SK, Kaneko Y, Matsuzawa Y (2009) Production of Raphanus sativus (C3)-Moricandia arvensis (C3-C4 intermediate) monosomic and disomic addition lines with each parental cytoplasmic background and their photorespiratory characteristics. Plant Prod Sci 12(1):70–79

    Article  CAS  Google Scholar 

  • Basal H (2002) Gossypollu bitki gossypolsuz tohum özelliğinin kültürü yapılan pamuk (Gossypium hirsutum L.) türlerine aktarılması. Mustafa Kemal Üniversitesi Ziraat Fakültesi Dergisi 7(1–2):45–50

    Google Scholar 

  • Belete T (2018) A review on somatic hybridization and its utilization in crop improvement. Int J African Asian Stud 43:24–34

    Google Scholar 

  • Benke AP et al (2021) Interspecific hybridization in Allium crops: status and prospectus. Genet Resour Crop Evol:1–9

    Google Scholar 

  • Bhojwani SS, Razdan MK (1986) Plant tissue culture: theory and practice. Elsevier

    Google Scholar 

  • Blair MW (2013) Mineral biofortification strategies for food staples: the example of common bean. J Agric Food Chem 61(35):8287–8294. https://doi.org/10.1021/jf400774y

    Article  CAS  PubMed  Google Scholar 

  • Blair MW, Izquierdo P (2012) Use of the advanced backcross-QTL method to transfer seed mineral accumulation nutrition traits from wild to Andean cultivated common beans. Theor Appl Genet 125(5):1015–1031

    Article  PubMed  Google Scholar 

  • Bomblies K (2006) Hybrid incompatibility: when opposites attract with a fatal outcome. Curr Biol 16(14):R542–R544

    Article  CAS  PubMed  Google Scholar 

  • Bomblies K (2009) Too much of a good thing? Hybrid necrosis as a by-product of plant immune system diversification. Botany 87(11):1013–1022

    Article  CAS  Google Scholar 

  • Bouis HE, Saltzman A (2017) Improving nutrition through biofortification: a review of evidence from HarvestPlus, 2003 through 2016. Glob Food Sec 12:49–58

    Article  PubMed  PubMed Central  Google Scholar 

  • Brown J et al (1997) Intergeneric hybridization between Sinapis alba and Brassica napus. Euphytica 93(2):163–168

    Article  Google Scholar 

  • Cakmak I, Yilmaz A, Kalayci M, Ekiz H, Torun B, Braun H (1996) Zinc deficiency as a critical problem in wheat production in Central Anatolia. Plant Soil 180(2):165–172

    Article  CAS  Google Scholar 

  • Chapman MA, Burke JM (2007) Genetic divergence and hybrid speciation. Evolution 61(7):1773–1780

    Article  PubMed  Google Scholar 

  • Chen C, E Z, Lin H-X (2016) Evolution and molecular control of hybrid incompatibility in plants. Front Plant Sci 7:1208

    Article  PubMed  PubMed Central  Google Scholar 

  • Chetelat RT, Cisneros P, Stamova L, Rick CM (1997) A male-fertile Lycopersicon esculentum × Solanum lycopersicoides hybrid enables direct backcrossing to tomato at the diploid level. Euphytica 95(1):99–108

    Article  Google Scholar 

  • Christie BR (1987) CRC handbook of plant science in agriculture. CRC series in agriculture (USA)

    Google Scholar 

  • D’Hont A et al (1995) Identification and characterisation of sugarcane intergeneric hybrids, Saccharum officinarum x Erianthus arundinaceus, with molecular markers and DNA in situ hybridisation. Theor Appl Genet 91(2):320–326

    Article  PubMed  Google Scholar 

  • de Fernandes MI, Zanatta AC, Prestes AM, Caetano VD, Barcellos AL, Angra DC, Pandolfi V (2000) Cytogenetics and immature embryo culture at Embrapa Trigo breeding program: transfer of disease resistance from related species by artificial resynthesis of hexaploid wheat (Triticum aestivum L. em. Thell). Genet Mol Biol 23(4):1051–1062

    Article  Google Scholar 

  • Demir İ (1990) Genel Bitki Islahı Ege Üniversitesi Ziraat Fakültesi Yayınları. Ofset Basımevi, 367

    Google Scholar 

  • Deniz B, Özer İ (1990) Yumak ile çim cinslerinde türler ve cinsler arası melezlemeler. Atatürk Üniversitesi Ziraat Fakültesi Dergisi 21(1)

    Google Scholar 

  • Dwivedi SL, Sahrawat KL, Rai KN, Blair MW, Andersson MS, Pfeiffer W (2012) Nutritionally enhanced staple food crops

    Google Scholar 

  • Fahleson J, Eriksson I, Glimelius K (1994) Intertribal somatic hybrids between Brassica napus and Barbarea vulgaris—production of in vitro plantlets. Plant Cell Reports 13(7):411–416

    Article  CAS  PubMed  Google Scholar 

  • Feuillet C, Langridge P, Waugh R (2008) Cereal breeding takes a walk on the wild side. Trends Genet 24(1):24–32

    Article  CAS  PubMed  Google Scholar 

  • Grosser J, Chandler JL (2000) Somatic hybridization of high yield, cold-hardy and disease resistant parents for citrus rootstock improvement. J Horticult Sci Biotechnol 75(6):641–644

    Article  Google Scholar 

  • Grosser J, Chandler J (2002) New Citrus rootstocks via protoplast fusion in XXVI International Horticultural Congress: Genetics and Breeding of Tree Fruits and Nuts 622

    Google Scholar 

  • Hajjar R, Hodgkin T (2007) The use of wild relatives in crop improvement: a survey of developments over the last 20 years. Euphytica 156(1):1–13

    Article  Google Scholar 

  • Hoffmann-Tsay S-S et al (1994) Design, synthesis and application of surface-active chemicals for the promotion of electrofusion of plant protoplasts. Bioelectrochem Bioenerget 34(2):115–122

    Article  CAS  Google Scholar 

  • Hossain A, EL Sabagh A, Erman M, Fahad S, Islam T, Bhatt R, Hasanuzzaman M (2020) Nutrient management for improving abiotic stress tolerance in legumes of the family Fabaceae. In: Hasanuzzaman IM, Araújo S, Gill SS (eds) The plant family Fabaceae: biology and physiological responses to environmental stresses. Springer, pp 393–415. https://doi.org/10.1007/978-981-15-4752-2_15

    Chapter  Google Scholar 

  • Hu Q et al (2002) Intergeneric hybrids between Brassica napus and Orychophragmus violaceus containing traits of agronomic importance for oilseed rape breeding. Theor Appl Genet 105(6):834–840

    Article  CAS  PubMed  Google Scholar 

  • Ji Y, Pertuzé R, Chetelat RT (2004) Genome differentiation by GISH in interspecific and intergeneric hybrids of tomato and related nightshades. Chromosom Res 12(2):107–116

    Article  CAS  Google Scholar 

  • Johnson AAT, Veilleux RE (2001) Somatic hybridization and application in plant breeding. John Wiley & Sons

    Google Scholar 

  • Johnston S, Den Nijs T, Peloquin S, Hanneman R (1980) The significance of genic balance to endosperm development in interspecific crosses. Theor Appl Genet 57(1):5–9

    Article  CAS  PubMed  Google Scholar 

  • Kalloo G (1991) Interspecific and intergeneric hybridization in tomato. In: Genetic improvement of tomato. Springer, pp 73–82

    Chapter  Google Scholar 

  • Kaneko Y, Bang SW (2014) Interspecific and intergeneric hybridization and chromosomal engineering of Brassicaceae crops. Breed Sci 64(1):14–22. https://doi.org/10.1270/jsbbs.64.14

    Article  PubMed  PubMed Central  Google Scholar 

  • Karpechenko GD (1928) Polyploid hybrids of Raphanus sativus L. x Brassica oleracea L. Zeitschrift für induktive Abstammungs-und Vererbungslehre 48(1):1–85

    Google Scholar 

  • Kinoshita T (2007) Reproductive barrier and genomic imprinting in the endosperm of flowering plants. Genes Genet Syst 82(3):177–186

    Article  CAS  PubMed  Google Scholar 

  • Kisaka H et al (1998) Intergeneric somatic hybridization of rice (Oryza sativa L) and barley (Hordeum vulgare L) by protoplast fusion. Plant Cell Reports 17(5):362–367

    Article  CAS  PubMed  Google Scholar 

  • Knobloch IW (1972) Intergeneric hybridization in flowering plants. Taxon 21(1):97–103

    Article  Google Scholar 

  • Koca AS (2015) Çeltikte (Oryza sativa L.) endosperm destekli olgun embriyo kültüründe kallus oluşumu ve bitki rejenerasyonuna tohum iriliğinin etkisi

    Google Scholar 

  • Krapovickas A, Rigoni VA (1957) Nuevas especies de Arachis: Vinculadas al problema del origen del maní. Darwin 11(3):431–455

    Google Scholar 

  • Kumar S, Pandey G (2020) Biofortification of pulses and legumes to enhance nutrition. Heliyon 6(3):e03682. https://doi.org/10.1016/j.heliyon.2020.e03682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ladizinsky G, Adler A (1976) The origin of chickpea Cicer arietinum L. Euphytica 25(1):211–217

    Article  Google Scholar 

  • Leino M et al (2003) Brassica napus lines with rearranged Arabidopsis mitochondria display CMS and a range of developmental aberrations. Theor Appl Genet 106(7):1156–1163

    Article  CAS  PubMed  Google Scholar 

  • McComb JA (1975) Is intergeneric hybridization in the Leguminosae possible? Euphytica 24(2):497–502. https://doi.org/10.1007/BF00028219

    Article  Google Scholar 

  • Melchers G, Labib G (1974) Somatic hybridisation of plants by fusion of protoplasts. Mol Gener Genet 135(4):277–294

    Article  Google Scholar 

  • Nair RM, Yang R, Easdown WJ, Thavarajah D, Thavarajah P, de Hughes JA, Keatinge J (2013) Biofortification of mungbean (Vigna radiata) as a whole food to enhance human health. J Sci Food Agric 93(8):1805–1813

    Article  CAS  PubMed  Google Scholar 

  • Nishiyama I, Yabuno T (1978) Causal relationships between the polar nuclei in double fertilization and interspecific cross-incompatibility in Avena. Cytologia 43(2):453–466

    Article  Google Scholar 

  • Obata H, Kawamura S, Senoo K, Tanaka A (1999) Changes in the level of protein and activity of Cu/Zn-superoxide dismutase in zinc deficient rice plant, Oryza sativa L. Soil Sci Plant Nutr 45(4):891–896

    Article  CAS  Google Scholar 

  • Orczyk W et al (2003) Somatic hybrids of Solanum tuberosum–application to genetics and breeding. Plant Cell Tissue Organ Cult 74(1):1–13

    Article  CAS  Google Scholar 

  • Pfeiffer WH, McClafferty B (2007) HarvestPlus: breeding crops for better nutrition. Crop Sci 47:S-88

    Article  Google Scholar 

  • Pierik RLM (1997) In vitro culture of higher plants. Springer Science & Business media

    Book  Google Scholar 

  • Raman V (1959) Studies in the genus Arachis. VI. Investigation on 30-chromosomed interspecific hybrids. Indian Oilseeds J 3:157–161

    Google Scholar 

  • Rick C (1979) Biosystematic studies in Lycopersicon and closely related species for Solanum

    Google Scholar 

  • Rieseberg LH (1995) The role of hybridization in evolution: old wine in new skins. Am J Bot 82(7):944–953

    Article  Google Scholar 

  • Rieseberg LH, Carney SE (1998) Plant hybridization. New Phytol 140(4):599–624. https://doi.org/10.1046/j.1469-8137.1998.00315.x

    Article  PubMed  Google Scholar 

  • Rieseberg LH et al (2003) Major ecological transitions in wild sunflowers facilitated by hybridization. Science 301(5637):1211–1216

    Article  CAS  PubMed  Google Scholar 

  • Saginadze G (1961) Hybridization of Phaseolus vulgaris (L.) Savi x Glycine hispida (Moench.) Maz. Preliminary communication. Tbilisskii Bot Inst Trudy 21:301–308

    Google Scholar 

  • Saxena KB, Kumar RV, Tikle AN, Saxena MK, Gautam VS, Rao SK, Khare DK, Chauhan YS, Saxena RK, Reddy BVS (2013) ICPH 2671–the world’s first commercial food legume hybrid. Plant Breed 132(5):479–485

    Article  Google Scholar 

  • Schneider A, Molnár I, Molnár-Láng M (2008) Utilisation of Aegilops (goatgrass) species to widen the genetic diversity of cultivated wheat. Euphytica 163(1):1–19

    Article  CAS  Google Scholar 

  • Shakiba E, Eizenga GC (2014) Genetics, and U. Improvement. InTech, Unraveling the secrets of rice wild species, pp 1–58

    Google Scholar 

  • Shuro AR (2018) Review paper on the role of somatic hybridization in crop improvement

    Google Scholar 

  • Sikka S, Joshi AB (1960) Cotton breeding in India, A Monograph, vol 1, New Delhi, pp 336–340

    Google Scholar 

  • Smartt J (1979) Interspecific hybridization in the grain legumes—a review. Econ Bot 33(3):329–337

    Article  Google Scholar 

  • Soltis PS, Soltis DE (2009) The role of hybridization in plant speciation. Annu Rev Plant Biol 60:561–588

    Article  CAS  PubMed  Google Scholar 

  • Stebbins G (1971) Chromosomal evolution in higher plants. Addison-Wesley, Reading

    Google Scholar 

  • Tel-Zur N et al (2012) Intergeneric hybridization within the tribe Hylocereeae, subfamily Cactoideae (Cactaceae). Israel J Plant Sci 60(3):325–334

    Google Scholar 

  • Tomar UK, Dantu PK (2010) Protoplast culture and somatic hybridization. In: Cellular and biochemical science. IK International House Pvt. Ltd, New Delhi, pp 876–891

    Google Scholar 

  • Tonosaki K, Michiba K, Bang S, Kitashiba H, Kaneko Y, Nishio T (2013) Genetic analysis of hybrid seed formation ability of Brassica rapa in intergeneric crossings with Raphanus sativus. Theor Appl Genet 126(3):837–846

    Article  CAS  PubMed  Google Scholar 

  • Tsitsin (1946) Studies on vegetative and sexual hybridization between herbaceous and woody plants

    Google Scholar 

  • Tsunoda S, Hinata K, Gómez-Campo C (1980) Brassica crops and wild allies

    Google Scholar 

  • Uysal H, Seyis F, Orhan K (2007) Tarla bitkilerinde melezleme bariyerlerinin aşilmasinda alternatif bir yöntem: Embriyo kültürü. Anadolu Tarım Bilimleri Dergisi 22(1):116–122

    Google Scholar 

  • Varisai Muhammad S (1973) Cytogenetic investigations in the genus Arachis L. α. Triploid hybrids and their derivatives. Madras Agr J 60:1414–1427

    Google Scholar 

  • Veltcheva M et al (2005) In vitro regeneration and genetic transformation of common bean (Phaseolus vulgaris L.)—Problems and progress. Sci Horticult 107(1):2–10

    Article  CAS  Google Scholar 

  • Vural M, Erdem O, Ergin E, Erkol I (2015) Baklagillerin Kraliçesi Eber Sarısı-Piyan (Thermopsis turcica) Tür Koruma Eylem Planı. Doğa Koruma Milli Parklar Genel Müdürlüğü, Afyonkarahisar Şube Müdürlüğü, Afyon

    Google Scholar 

  • Wilmar J, Hellendoorn M (1968) Embryo culture of Brussels sprouts for breeding. Euphytica 17(1):28–37

    Article  Google Scholar 

  • Xia G et al (2001) Study on salt tolerance of F3–F5 hybrids originated from somatic hybridization between wheat and Agropyron elongatum. Shandong Agric Sci 39(6):12–14

    Google Scholar 

  • Zadrail K (1960) Cocak’—A vetch with lentil-like seeds as an edible legume and as a forage plant

    Google Scholar 

  • Zeigler RS et al (2013) Food security, climate change and genetic resources. In: Plant genetic resources and climate change. CABI, Wallingford, pp 1–15

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dilek Tekdal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Küçükrecep, A., Yıldız, Ş., Tekdal, D. (2023). Biofortification of Legume Hybrids Obtained Through Intergeneric Hybridization. In: Nadeem, M.A., et al. Legumes Biofortification. Springer, Cham. https://doi.org/10.1007/978-3-031-33957-8_10

Download citation

Publish with us

Policies and ethics