Skip to main content

Induced Mutagenesis-A Reliable Technology to Overcome the Limitations of Low Genetic Variability in Lentils

  • Chapter
  • First Online:
Advanced Crop Improvement, Volume 2

Abstract

Practices of agriculture and plant breeding approaches are indispensable for feeding the populaces of the world. In agriculture, the grain legumes occupy a unique position for their value as food and fodder, their role in biological nitrogen fixation, and as industrial raw materials. There are several reasons for the low productivity of pulses, which include a lack of high yielding genotypes, the vagaries of the monsoon, sowing on marginal lands under rain-fed conditions, negligence of plant protection, and imbalances of plant nutrients. Lack of genetic variability limits the scope of selection for better genotypes. For improvement in seed yield, genetic reconstitution of such crops is required to evolve better plant types. Mutation breeding has proven beneficial to upsurge the existing germplasm variability for improving certain specific traits of the varieties. By integrating molecular high throughput mutation screening techniques, induced mutations could increase the required genetic diversity for the improvement of pulses, particularly lentils.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Amin, R., Laskar, R. A., Khursheed, S., Raina, A., & Khan, S. (2016). Genetic sensitivity towards MMS mutagenesis assessed through in vitro growth and cytological test in Nigella Sativa L. Life Sciences International Research Journal, 3, 2347–8691.

    Google Scholar 

  • Amin, R., Wani, M. R., Raina, A., Khursheed, S., & Khan, S. (2019). Induced morphological and chromosomal diversity in the mutagenized population of black cumin (Nigella sativa L.) using single and combination treatments of gamma rays and ethylmethane sulfonate. Jordan Journal of Biological Sciences, 12(1), 23–30.

    CAS  Google Scholar 

  • Arumuganathan, K., & Earle, E. D. (1991). Nuclear DNA content of some important plant species. Plant Molecular Biology, 9(3), 208–218.

    Article  CAS  Google Scholar 

  • Ashutosh, T., & Dubey, D. K. (1992). Effects of separate and simultaneous application of gamma rays and N-nitroso-N-methyl urea on germination, growth, fertility and yield of two lentil varieties. LENS Newsletters, 19(1), 9–13.

    Google Scholar 

  • Bravo, A. (1983). Development of disease-resistant lines of grain legumes through mutation breeding. Induced mutations for disease resistance in crop plants II (pp. 153–156). IAEA.

    Google Scholar 

  • Dixit, P. (1985). Studies on mutagenesis and polygenic variability induced by separate and synergistic action of a chemical and physical mutagen in lentil (Lens culinaris Medik) var. T-36. Ph. D. Thesis, Kanpur University, Kanpur.

    Google Scholar 

  • Dixit, P., & Dubey, D. K. (1983a). The meiotic consequences of chromosomal aberrations induced by separate and simultaneous applications of gamma rays and NMU in lentil (Lens culinaris Med.). Advances in Life Sciences, 2(1), 47–51.

    CAS  Google Scholar 

  • Dixit, P., & Dubey, D. K. (1983b). Seedling mutations induced by separate and simultaneous application of gamma rays and NMU in lentil (Lens culinaris Med.) var. T-36. Pulse Crops Newsletters, 3, 14–17.

    Google Scholar 

  • Dixit, P., & Dubey, D. K. (1984). Effect of chemical mutagens on the somatic chromosome and mitosis in lentil (Lens culinaris Med.). Advances in Life Sciences, 11, 13–15.

    Google Scholar 

  • Dixit, P., & Dubey, D. K. (1986). Chlorophyll and seedling morphology mutations induced by separate and simultaneous applications of gamma rays and NMU in lentil. LENS Newsletters, 13(1), 5–8.

    Google Scholar 

  • Erskine, W., Rihawe, S., & Capper, B. S. (1990). Variation in lentil straw quality. Animal Feed Science and Technology, 28, 61–69.

    Article  Google Scholar 

  • FAO. (2017). Food and Agriculture Organization of the United Nations. 2017. Food and Agriculture Organization of the United Nations.

    Google Scholar 

  • Faris, M. A. E., Takruri, H. R., & Issa, A. Y. (2012). Role of lentils (Lens culinaris L.) in human health and nutrition: A review. Springer.

    Book  Google Scholar 

  • Ford, R., Redden, R. J., Materne, M., & Taylor, P. W. J. (2007). Lentil. In C. Kole (Ed.), Pulses, sugar and tuber crops (pp. 91–108). Springer.

    Chapter  Google Scholar 

  • Gottschalk, W. (1986). Experimental mutagenesis in plant breeding. In A. B. Prasad (Ed.), Mutagenesis: Basic and applied (pp. 81–96). Print House.

    Google Scholar 

  • Goyal, S., Wani, M. R., Laskar, R. A., Raina, A., & Khan, S. (2019a). Assessment on cytotoxic and mutagenic potency of gamma rays and EMS in Vigna mungo L. Hepper. BiotecnologĂ­a Vegetal, 19, 193–204.

    Google Scholar 

  • Goyal, S., Wani, M. R., Laskar, R. A., Raina, A., Amin, R., & Khan, S. (2019b). Induction of morphological mutations and mutant phenotyping in black gram [Vigna mungo (L.) Hepper] using gamma rays and EMS. Vegetos, 32(4), 464–472.

    Article  Google Scholar 

  • Goyal, S., Wani, M. R., Laskar, R. A., Raina, A., & Khan, S. (2020a). Mutagenic effectiveness and efficiency of individual and combination treatments of gamma rays and ethyl methanesulfonate in black gram [Vigna mungo (L.) Hepper]. Advances in Zoology and Botany, 8(3), 163–168.

    Google Scholar 

  • Goyal, S., Wani, M. R., Laskar, R. A., Raina, A., & Khan, S. (2020b). Performance evaluation of induced mutant lines of black gram (Vigna mungo (L.) Hepper). Acta Fytotechnica et Zootechnica, 23(2), 70–77.

    Article  Google Scholar 

  • Goyal, S., Wani, M. R., Raina, A., Laskar, R. A., & Khan, S. (2021a). Phenotypic diversity in mutagenized population of urdbean (Vigna mungo (L.) Hepper). Heliyon, 7, e06356.

    Article  PubMed  PubMed Central  Google Scholar 

  • Goyal, S., Wani, M. R., Raina, A., Laskar, R. A., & Khan, S. (2021b). Quantitative assessments on induced high yielding mutant lines in urdbean (Vigna mungo (L.) hepper). Legume Science, e125.

    Google Scholar 

  • Gustaffson, A. (1947). Mutations in agricultural plants. Hereditas, 33, 1–100.

    Article  Google Scholar 

  • Haddad, N., Muehlbauer, F. J., & Hampton, R. O. (1978). Inheritance of resistance to pea seed-borne mosaic virus in lentils. Crop Science, 18, 613–615.

    Article  Google Scholar 

  • Hoque, M. E., Mishra, S. K., Kumar, Y., Kumar, R., Tomar, S. M. S., & Sharma, B. (2002). Inheritance and linkage of leaf colour and plant pubescence in lentil (Lens culinaris Medik.). Indian Journal of Genetics, 62, 140–142.

    Google Scholar 

  • Jalil, M. A., & Yamaguchi, H. (1964). Experiments on the induction of polygenic mutations with successive irradiation in rice. Phyton, 21(2), 149–155.

    Google Scholar 

  • Jeena, A. S., & Singh, L. S. (2000). Field evaluation of wild relatives of lentil. Indian Journal of Pulses Research, 1, 50–51.

    Google Scholar 

  • Kalia, N. R., & Gupta, V. P. (1988). Differential radiosensitivity in microsperma and macrosperma lentils. LENS Newsletters, 16(1), 16–18.

    Google Scholar 

  • Kalia, N. R., & Gupta, V. P. (1989). Induced polygenic variations in lentil. LENS Newsletters, 16(1), 16–18.

    Google Scholar 

  • Khadke, S. G., & Kothekar, V. S. (2011). Genetic improvement of moth bean (Vigna aconitifolia (Jacq.) Marechal) through mutation breeding. In S. Khan & M. I. Kozgar (Eds.), Breeding of pulse crops (pp. 34–54). Kalyani Publishers.

    Google Scholar 

  • Khan, S., & Wani, M. R. (2005). Genetic variability and correlations studies in chickpea mutants. Journal of Cytology and Genetics, 6, 155–160.

    Google Scholar 

  • Khan, S., & Wani, M. R. (2006). MMS and SA induced genetic variability for quantitative traits in mungbean. Indian Journal of Pulses Research, 19(1), 50–52.

    Google Scholar 

  • Khan, S., Wani, M. R., & Parveen, K. (2004). Induced genetic variability for quantitative traits in Vigna radiata (L.) Wilczek. Pakistan Journal of Botany, 36(4), 845–850.

    Google Scholar 

  • Khan, S., Wani, M. R., & Parveen, K. (2006). Sodium azide induced high yielding early mutant in lentil. Agricultural Science Digest, 26(1), 65–66.

    Google Scholar 

  • Khursheed, S., Laskar, R. A., Raina, A., Amin, R., & Khan, S. (2015). Comparative analysis of cytological abnormalities induced in Vicia faba L. genotypes using physical and chemical mutagenesis. Chromosome Science, 18(3–4), 47–51.

    CAS  Google Scholar 

  • Khursheed, S., Raina, A., & Khan, S. (2016). Improvement of yield and mineral content in two cultivars of Vicia faba L. through physical and chemical mutagenesis and their character association analysis. Archives of Current Research International, 4(1), 1–7.

    Article  Google Scholar 

  • Khursheed, S., Raina, A., Amin, R., Wani, M. R., & Khan, S. (2018a). Quantitative analysis of genetic parameters in the mutagenized population of faba bean (Vicia faba L.). Research on Crops, 19(2), 276–284.

    Article  Google Scholar 

  • Khursheed, S., Raina, A., Laskar, R. A., & Khan, S. (2018b). Effect of gamma radiation and EMS on mutation rate: their effectiveness and efficiency in faba bean (Vicia faba L.). Caryologia, 71(4), 397–404.

    Article  Google Scholar 

  • Khursheed, S., Raina, A., & Khan, S. (2018c). Physiological response of two cultivars of faba bean using physical and chemical mutagenesis. International Journal of Advanced Research in Engineering, 7(4), 897–905.

    Google Scholar 

  • Khursheed, S., Raina, A., Parveen, K., & Khan, S. (2019). Induced phenotypic diversity in the mutagenized populations of faba bean using physical and chemical mutagenesis. Journal of the Saudi Society of Agricultural Sciences, 18(2), 113–119. https://doi.org/10.1016/j.jssas.2017.03.001

    Article  Google Scholar 

  • Kumar, Y., Mishra, S. K., Tyagi, M. C., & Sharma, B. (2004). Detection of two linkage groups in lentil (Lens culinaris Medik.). Indian Journal of Genetics, 64, 306–309.

    CAS  Google Scholar 

  • Kumar, Y., Mishra, S. K., Tyagi, M. C., Singh, S. P., & Sharma, B. (2005a). Inheritance of genes for three pigmentation traits in lentil (Lens culinaris Medik.). Journal of Genetics and Breeding, 59, 107–111.

    CAS  Google Scholar 

  • Kumar, Y., Mishra, S. K., Tyagi, M. C., Singh, S. P., & Sharma, B. (2005b). Linkage between genes for leaf colour, plant pubescence, number of leaflets and plant height in lentil (Lens culinaris Medik.). Euphytica, 145, 41–48.

    Article  Google Scholar 

  • Ladizinsky, G. (1979a). The genetics of several morphological markers in lentil. The Journal of Heredity, 70, 135–137.

    Article  Google Scholar 

  • Ladizinsky, G. (1979b). The origin of lentil and its wild gene pool. Euphytica, 28(1), 179–187.

    Article  Google Scholar 

  • Laskar, R. A., & Khan, S. (2017). Mutagenic effectiveness and efficiency of gamma rays and HZ with phenotyping of induced mutations in lentil cultivars. International Letters of Natural Sciences, 64, 17–31.

    Article  Google Scholar 

  • Laskar, R. A., Khan, S., Khursheed, S., Raina, A., & Amin, R. (2015). Quantitative analysis of induced phenotypic diversity in chickpea using physical and chemical mutagenesis. Journal of Agronomy, 14(3), 102–111.

    Article  CAS  Google Scholar 

  • Laskar, R. A., Laskar, A. A., Raina, A., & Amin, R. (2018a). Induced mutation analysis with biochemical and molecular characterization of high yielding lentil mutant lines. International Journal of Biological Macromolecules, 109, 167–179.

    Article  CAS  PubMed  Google Scholar 

  • Laskar, R. A., Wani, M. R., Raina, A., Amin, R., & Khan, S. (2018b). Morphological characterization of gamma rays induced multipodding mutant (mp) in lentil cultivar Pant L- 406. International Journal of Radiation Biology, 94(11), 1049–1053.

    Google Scholar 

  • Laskar, R. A., Khan, S., Deb, C. R., Tomlekova, N., Wani, M. R., Raina, A., & Amin, R. (2019). Lentil (Lens culinaris Medik.) diversity, cytogenetics and breeding. In J. M. Al-Khayri et al. (Eds.), Advances in plant breeding: Legumes. Springer. https://doi.org/10.1007/978-3-030-23400-3_9

  • Lawrence, C. W. (1965). Radiation-induced polygenic mutations. The use of induced mutations in plant breeding. Radiation Botany, 5(Suppl), 491–496.

    Google Scholar 

  • Malik, I. A., Ali, G. S. Y., & Saleem, M. (1988). Serrated leaf mutants in Vigna radiata (L.) Wilczek. Mutation Breeding Newsletter, 32, 11–12.

    Google Scholar 

  • Materne, M., & McNeil, D. (2007). Breeding methods and achievements. In S. S. Yadav, D. McNeil, & P. C. Stevenson (Eds.), Lentil – An ancient crop for modern times (pp. 241–253). Spinger.

    Chapter  Google Scholar 

  • Mather, K., & Jinks, J. (1971). Biometrical genetics (2nd ed.). Chapman and Hall.

    Book  Google Scholar 

  • Muehlbauer, F. J., & Slinkard, A. E. (1981). Genetic and breeding methodology. In C. Webb & G. C. Hawtin (Eds.), Lentils (pp. 69–90). CAB.

    Google Scholar 

  • Muehlbauer, F. J., Kaiser, W. J., Clement, S. L., & Summerfield, R. J. (1995). Production and breeding of lentil. Advances in Agronomy, 54, 283–332.

    Article  Google Scholar 

  • Muehlbauer, F. J., Cho, S., Sarker, A., McPhee, K. E., Coyne, C. J., Rajesh, P. N., & Ford, R. (2006). Application of biotechnology in breeding lentil for resistance to biotic and abiotic stress. Euphytica, 147, 149–165.

    Article  Google Scholar 

  • Paul, A., & Singh, D. P. (2002). Induced chlorophyll mutations in lentil (Lens culinaris Medik). Indian Journal of Genetics, 62(3), 263–264.

    Google Scholar 

  • Raina, A., & Danish, M. (2018). Mutagenesis in plant breeding for disease and pathogen resistance. Agricultural Research & Technology, 13(1), 12–13.

    Google Scholar 

  • Raina, A., & Khan, S. (2020). Increasing rice grain yield under biotic stresses: Mutagenesis, transgenics and genomics approaches. In C. Aryadeep (Ed.), Rice research for quality improvement: Genomics and genetic engineering (pp. 149–178). Springer. https://doi.org/10.1007/978-981-15-5337-0_8

    Chapter  Google Scholar 

  • Raina, A., Laskar, R. A., Khursheed, S., Amin, R., Tantray, Y. R., Parveen, K., & Khan, S. (2016). Role of mutation breeding in crop improvement-past, present and future. Asian Research Journal of Agriculture, 2(2), 1–13.

    Google Scholar 

  • Raina, A., Laskar, R. A., Khursheed, S., Khan, S., Parveen, K., Amin, R., & Khan, S. (2017). Induced physical and chemical mutagenesis for improvement of yield attributing traits and their correlation analysis in chickpea. International Letters of Natural Sciences, 61, 14–22.

    Article  Google Scholar 

  • Raina, A., Khan, S., Laskar, R. A., Wani, M. R., & Mushtaq, W. (2019). Chickpea (Cicer arietinum L.) cytogenetics, genetic diversity and breeding. In J. M. Al-Khayri et al. (Eds.), Advances in plant breeding: Legumes. Springer. https://doi.org/10.1007/978-3-030-23400-3_3

  • Raina, A., Laskar, R. A., Tantray, Y. R., Khursheed, S., Wani, M. R., & Khan, S. (2020a). Characterization of induced high yielding cowpea mutant lines using physiological, biochemical and molecular markers. Scientific Reports, 10(1), 1–22.

    Article  Google Scholar 

  • Raina, A., Khan, S., Sahu, P., & Roa, R. (2020b). Increasing rice grain yield under abiotic stresses: Mutagenesis, transgenics and genomics approaches. In C. Aryadeep (Ed.), Rice research for quality improvement: Genomics and genetic engineering (pp. 753–777). Springer. https://doi.org/10.1007/978-981-15-4120-9_31

    Chapter  Google Scholar 

  • Raina, A., Sahu, D., Parmeshwar, K., Laskar, R. A., Rajora, N., Soa, R., Khan, S., & Ganai, R. A. (2021). Mechanisms of genome maintenance in plants: playing it safe with breaks and bumps. Frontiers in Genetics, 12, 675686. https://doi.org/10.3389/fgene.2021.675686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raina, A., Laskar, R. A., Wani, M. R., Jan, B. L., Ali, S., & Khan, S. (2022a). Gamma rays and sodium azide induced genetic variability in high yielding and biofortified mutant lines in cowpea (Vigna unguiculata (L.) Walp.). Frontiers in Plant Science, 13, 911049. https://doi.org/10.3389/fpls.2022.911049

  • Raina, A., Laskar, R. A., Wani, M. R., Jan, B. L., Ali, S., & Khan, S. (2022b). Comparative mutagenic effectiveness and efficiency of gamma rays and sodium azide in inducing chlorophyll and morphological mutants of cowpea. Plants, 11, 1322. https://doi.org/10.3390/plants11101322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raina, A., Laskar, R. A., Wani, M. R., & Khan, S. (2022c). Chemical mutagenesis: Role in breeding and biofortification of lentil (Lens culinaris Medik) mutant lines. Molecular Biology Reports, 49(12), 11313–11325. https://doi.org/10.1007/s11033-022-07678-6

  • Raina, A., Laskar, R. A., Wani, M. R., & Khan, S. (2022d). Plant breeding strategies for abiotic stress tolerance in cereals. In A. Roychoudhury, T. Aftab, & K. Acharya (Eds.), Omics approach to manage abiotic stress in cereals (pp. 151–177). Springer. https://doi.org/10.1007/978-981-19-0140-9_8

    Chapter  Google Scholar 

  • Rajput, M. A., & Siddiqui, K. A. (1981). Mutation breeding of soybean for high yield and oil content. In: Proceedings of induced mutations for improvement of grain legume production. 2nd research coordination meeting, Thailand, pp. 117–124.

    Google Scholar 

  • Ramesh, B., & Dhananjay, S. (1996). Developmental morphology of induced semidwarf and stunted mutants in lentil. Indian Journal of Genetics, 56(3), 335–340.

    Google Scholar 

  • Rasik, S., Raina, A., Laskar, R. A., Wani, M. R., Reshi, Z., & Khan, S. (2022). Lower doses of Sodium azide and methyl methanesulphonate improved yield and pigment contents in vegetable cowpea (Vigna unguiculata (L.) Walp.). South African Journal of Botany, 148, 727–736. https://doi.org/10.1016/j.sajb.2022.04.034

  • Reddy, V. R. K., & Annadurai, M. (1992). Cytological effects of different mutagens in lentil (Lens culinaris Medik). Cytologia, 57, 213–216.

    Article  CAS  Google Scholar 

  • Reddy, V. R. K., Thresiamma, P. J., & Edwin, R. (1993). A comparative study of microsperma and macrosperma lentils I. Chlorophyll mutations. The Journal of Indian Botanical Society, 72, 25–28.

    Google Scholar 

  • Sarker, A., & Sharma, B. (1986). Induced macro-mutations in lentil (Lens culinaris Medik). Bangladesh association for the advancement of science, Dhaka Conference. Section 1 Dhaka, BAAS, 1986–87.

    Google Scholar 

  • Sarker, A., & Sharma, B. (1988). Efficiency of early generation selection for induced polygenic mutations in lentil (Lens culinaris Medik.). Indian Journal of Genetics, 48(2), 155–159.

    Google Scholar 

  • Sarker, A., & Sharma, B. (1989). Frequency and spectrum of chlorophyll mutations in lentil (Lens culinaris Medik). Thai Journal of Agricultural Science, 22(2), 107–111.

    Google Scholar 

  • Sarker, A., Erskine, W., Sharma, B., & Tyagi, M. C. (1999). Inheritance and linkage relationships of days to flowering and morphological loci in lentil (Lens culinaris Medikus subsp. culinaris). The Journal of Heredity, 90, 270–275.

    Article  Google Scholar 

  • Scossiroli, R. E. (1966). The use of induced genetic variability for quantitative traits after seed irradiation in Triticum durum Savremen. Poljopr, 14, 221–234.

    Google Scholar 

  • Sellapillai, L., Dhanarajan, A., Raina, A., & Ganesan, A. (2022). Gamma ray induced positive alterations in morphogenetic and yield attributing traits of finger millet (Eleusine coracana (L.) Gaertn.) in M2 generation. Plant Science Today, 9(4), 939–949.

    Google Scholar 

  • Sellapillaibanumathi, L., Dhanarajan, A., Raina, A., & Ganesan, A. (2022). Effects of gamma radiations on morphological and physiological traits of finger millet (Eleusine coracana (L.) Gaertn.). Plant Science Today, 9(1), 89–95.

    CAS  Google Scholar 

  • Sharma, S. K. (1990). Mutation breeding in lentil. In I. A. Khan & S. A. Farook (Eds.), Genetic improvement of pulse crops (pp. 251–270). Premier Pub. House.

    Google Scholar 

  • Sharma, B. (1997). Effective use of induced polygenic variability for quantitative traits in plant breeding. In R. L. Kapoor & M. L. Saini (Eds.), Plant breeding and crop improvement (Vol. II, p. 11). CBS Publishers and Distributors.

    Google Scholar 

  • Sharma, S. K., & Sharma, B. (1978a). Induction of tendril mutations in lentil (Lens culinaris Medik). Current Science, 47(22), 864–866.

    Google Scholar 

  • Sharma, S. K., & Sharma, B. (1978b). Homologous leaf mutations induced in large and small seeded lentils and their effect on quantitative characters. Indian Journal of Agricultural Sciences, 48, 751–756.

    Google Scholar 

  • Sharma, S. K., & Sharma, B. (1979). Leaf mutations induced with NMU and gamma rays in lentil (Lens culinaris Medik). Current Science, 48(20), 916–917.

    Google Scholar 

  • Sharma, S. K., & Sharma, B. (1981a). Induced mutations of physiological nature in lentil. Indian Journal of Genetics, 40(1), 290–294.

    Google Scholar 

  • Sharma, S. K., & Sharma, B. (1981b). Induced chlorophyll mutations in Lens culinaris var. microsperma and macrosperma. Indian Journal of Genetics, 41, 328–333.

    CAS  Google Scholar 

  • Sharma, S. K., & Sharma, B. (1981c). Note on the induced leaf variants in lentil. Indian Journal of Agricultural Sciences, 51, 805–807.

    Google Scholar 

  • Sharma, S. K., & Sharma, B. (1982). NMU induced dwarf mutations in lentil. Science and Culture, 47, 230–231.

    CAS  Google Scholar 

  • Sharma, S. K., & Sharma, B. (1983). Induced fasciation in lentil. Genetica Agraria, 37, 319–326.

    Google Scholar 

  • Sharma, S. K., & Sharma, B. (1986). Mutagen sensitivity and mutability in lentil. Theoretical and Applied Genetics, 71, 820–825.

    Article  CAS  PubMed  Google Scholar 

  • Siddiqui, B. A., & Khan, S. (1999). Breeding in crop plants: mutations and in vitro mutation breeding (1st ed.). Kalyani Publishers.

    Google Scholar 

  • Sinclair, T. R., & Vadez, V. (2012). The future of grain legumes in cropping systems. Crop Pasture, 63, 501–512.

    Article  Google Scholar 

  • Sindhu, J. S., & Slinkard, A. E. (1983). Lentils and their wild relatives. LENS Newsletters, 10, l.

    Google Scholar 

  • Singh, D., & Singh, J. (1989). Effect of gamma rays, EMS and hydroxylamine on type and frequency of chlorophyll mutations in lentil (Lens culinaris Medik). Lentil Experimental News Service, 16(2), 3–5.

    Google Scholar 

  • Singh, D., Singh, R. M., & Singh, J. (1989). Effect of gamma rays, ethylmethane sulphonate and hydroxylamine on type and frequency of chlorophyll mutations in lentil. LENS Newsletters, 6, 3–4.

    Google Scholar 

  • Sinha, R. P., & Chaudhary, S. K. (1987). Sensitivity of lentil genotypes to radiation. LENS Newsletters, 14, 7–9.

    Google Scholar 

  • Sinha, R. P., & Chowdhary, S. K. (1984). Variability in lentil germplasm. LENS Newsletters, 13–14.

    Google Scholar 

  • Sinha, S. S. N., & Godward, M. B. E. (1968). Radiation studies in Lens culinaris. Journal of Cytology and Genetics, 3, 80–91.

    Google Scholar 

  • Sinha, S. S. N., & Godward, M. B. E. (1972). Radiation studies in Lens culinaris. Meiotic abnormalities induced due to gamma radiation and its consequences. Cytologia, 37, 685–695.

    Article  Google Scholar 

  • Sinha, R. P., Chaudhary, S. K., & Sharma, R. N. (1987). Inheritance of cotyledon colour in lentil. LENS Newsletters, 4, 3–6.

    Google Scholar 

  • Solanki, I. S. (2005). Isolation of macromutations and mutagenic effectiveness and efficiency in lentil (Lens culinaris Medik). National Journal of Plant Improvement, 7(2), 81–84.

    Google Scholar 

  • Solanki, I. S., & Phogat, D. S. (2005). Chlorophyll mutation induction and mutagenic effectiveness and efficiency in lentil (Lens culinaris Medik). Indian Journal of Genetics, 65(4), 264–268.

    Google Scholar 

  • Solanki, I. S., & Sharma, B. (1999). Induction and isolation of morphological mutations in different damage groups in lentil (Lens culinaris Medik). Indian Journal of Genetics, 59(4), 479–485.

    Google Scholar 

  • Solanki, I. S., & Sharma, B. (2001). Frequency and spectrum of chlorophyll mutations in macrosperma lentil (Lens culinaris Medik). Indian Journal of Genetics, 61(3), 283–286.

    CAS  Google Scholar 

  • Solanki, I. S., Phogat, D. S., & Waldia, R. S. (2004). Frequency and spectrum of morphological mutations and effectiveness and efficiency of chemical mutagens in macrosperma lentil. National Journal of Plant Improvement, 6(1), 22–25.

    Google Scholar 

  • Swarup, I., Goswami, H. K., & Lai, M. S. (1991). Genetic analysis of yield and its contributing characters in lentil. LENS, 7–10.

    Google Scholar 

  • Tahir, M., Muehlbauer, F. J., & Spaeth, S. C. (1994). Association of isozyme markers with quantitative trait loci in random single seed derived lines of lentil (Lens culinaris Medik.). Euphytica, 75, 111–119.

    Article  Google Scholar 

  • Tantray, A. Y., Raina, A., Khursheed, S., Amin, R., & Khan, S. (2017). Chemical mutagen affects pollination and locule formation in capsules of black cumin (Nigella sativa L.). International Journal of Agricultural Science, 8(1), 108–117.

    Google Scholar 

  • Tivoli, B., Baranger, A., Avila, C. M., Banniza, S., Barbetti, M., Chen, W. D., Davidson, J., Lindeck, K., Kharrat, M., Rubiales, D., Sadiki, M., Sillero, J. C., Sweetingham, M., & Muehlbauer, F. J. (2006). Screening techniques and sources of resistance to foliar diseases caused by major necrotrophic fungi in grain legumes. Euphytica, 147, 223–253.

    Article  Google Scholar 

  • Tripathi, A. (1995). Studies on macro and micro mutations induced by individual and combined action of ethylmethane sulphonate and gamma rays in lentil (Lens culinaris Med.). Ph. D. Thesis, Kanpur University, Kanpur.

    Google Scholar 

  • Tripathi, A., & Dubey, D. K. (1992). Frequency and spectrum of mutations induced by separate and simultaneous applications of gamma rays, ethylmethane sulphonate (EMS) in two microsperma varieties of lentil. LENS, 19(1), 3–8.

    Google Scholar 

  • Tufail, M., Malik, I. A., Choudhary, M., Ashraf, M., & Saleem, M. (1998). Genetic resources and breeding of lentil in Pakistan. Symposium-Indian Institute of Pulses Research, Kanpur.

    Google Scholar 

  • Tyagi, B. S., & Gupta, P. K. (1991). Induced mutations for fasciation in lentil (Lens culinaris Medik). Indian Journal of Genetics, 51(3), 326–331.

    Google Scholar 

  • Tyagi, N. K., & Ramesh, B. (1998). Characteristic and development morphology of reduced plant height mutants in lentil. LENS Newsletters, 21, 6–10.

    Google Scholar 

  • Tyagi, M. C., & Sharma, B. (1981). Effect of photoperiod and vernalization on flowering and maturity in macrosperma lentils. Pulse Points Newsletters, 1(2), 40–41.

    Google Scholar 

  • Vandana, Tripathi, A., & Dubey, D. K. (1994). Frequency and spectrum of mutations induced by ethylmethane sulphonate (EMS) and diethyl sulphate (DES) in lentil var. K-85. LENS, 21(1), 16–19.

    Google Scholar 

  • Wani, M. R. (2018). Early maturing mutants of chickpea (Cicer arietinum L.) induced by chemical mutagens. Indian Journal of Agricultural Sciences, 88(4), 635–640.

    Article  CAS  Google Scholar 

  • Wani, M. R. (2020). Characterization of chlorophyll deficient mutants in mungbean (Vigna radiata (L.) Wilczek). Bangladesh Journal of Botany, 49(4), 1013–1019.

    Article  Google Scholar 

  • Wani, M. R. (2021). Comparative biological sensitivity and mutability of chemo-mutagens in lentil (Lens culinaris Medik). Legume Research, 44(1), 26–30. https://doi.org/10.18805/LR-4058

    Article  Google Scholar 

  • Wani, M. R., & Khan, S. (2003). Chlorophyll mutations in lentil. Tropical Agriculturist, 154, 21–26.

    Google Scholar 

  • Wani, M. R., Dar, A. R., Tak, A., Amin, I., Shah, N. H., Rehman, R., Baba, M. Y., Raina, A., Laskar, R., Kozgar, M. I., & Khan, S. (2017). Chemo-induced pod and seed mutants in mungbean (Vigna radiata L. Wilczek). SAARC Journal of Agriculture, 15(2), 57–67.

    Article  Google Scholar 

  • Wani, M. R., Laskar, R. A., Raina, A., Khan, S., & Khan, T. U. (2021). Application of chemical mutagenesis for improvement of productivity traits in lentil (Lens culinaris Medik). Annals of Biology, 37(1), 69–75.

    Google Scholar 

  • Yamaguchi, H. (2005). Use of induced mutations for crop improvement: Revisited. In S. K. Datta (Ed.), Role of classical mutation breeding in crop improvement (pp. 1–19). Daya Publishing House.

    Google Scholar 

  • Zamir, D., & Ladizinsky, G. (1984). Genetics of allozyme variants and linkage groups in lentil. Euphytica, 33, 329–336.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wani, M.R., Raina, A., Tomlekova, N., Laskar, R.A., Feroz, M., Khan, S. (2023). Induced Mutagenesis-A Reliable Technology to Overcome the Limitations of Low Genetic Variability in Lentils. In: Raina, A., Wani, M.R., Laskar, R.A., Tomlekova, N., Khan, S. (eds) Advanced Crop Improvement, Volume 2. Springer, Cham. https://doi.org/10.1007/978-3-031-26669-0_9

Download citation

Publish with us

Policies and ethics