Skip to main content

Abstract

To increase the production of food by a minimum of 70 % for the next decades is a big challenge. There is an urgent need to eradicate the hunger of an increasing human population, which is becoming disturbing because of climate change, decreasing water resources, a decline of arable land, and by the serious health and environmental hazard due to the use of agrochemicals. Increased production of quality food with low input is deemed to be a very fascinating option. On the other hand, the limitation of variations in plant crops, especially staple crops, limits the options of uncovering new alleles of genes. Hence, new variations among plant crops with new gene combinations and induced mutation is the better option thus far. Induced mutation uncovers the new combination of genes that result in a new breed with superior traits to the parents. In addition to that, cell and molecular biology methods are increasing the effectiveness and efficiency of mutation induction and detection of novel alleles of genes. Different mutagens mainly include physical and chemical mutagens and are now being applied by researchers for plant mutagenesis. This chapter reviews the methodology of mutation induction, mutagens that are being used for this purpose, and how they help us to improve the crop.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Adamu A, Aliyu H (2007) Morphogical effects of sodium azide on tomato (Lycopersicon esculentum Mill). Sci World J 2(4):9–12

    Google Scholar 

  • Adegoke J (1984) Bridge induction by sodium azide in Allium cepa Nig. J Genet 5:86

    Google Scholar 

  • Ahloowalia BS, Maluszynski M (2001) Induced mutations – a new paradigm in plant breeding. Euphytica 118:167–173

    Article  CAS  Google Scholar 

  • Ahoowalia B (1967) Colchicine induced in polyploids in ryegrass Lolium perenne. L Euphytica 16:49–60

    Article  Google Scholar 

  • Al-Qurainy F, Khan S (2009) Mutagenic effects of sodium azide and its application in crop improvement. World Appl Sci J 6(12):1589–1601

    CAS  Google Scholar 

  • Ando A, Montalván R (2001) Gamma-ray radiation and sodium azide (NaN3) mutagenic efficiency in rice. Crop Breed Appl Biotechnol 1(4):339–346

    Article  Google Scholar 

  • Anonymous (1995) Bureau of economic and agricultural statistics. Bangkok

    Google Scholar 

  • Arenaz P, Hallberg L, Mancillas F, Gutierrez G, Garcia S (1989) Sodium azide mutagenesis in mammals: inability of mammalian cells to convert azide to a mutagenic intermediate. Mutat Res Lett 227(1):63–67

    Article  CAS  Google Scholar 

  • Auerbach C, Robson JM (1946a) Chemical production of mutations. Nature 157(3984):302

    Article  PubMed  CAS  Google Scholar 

  • Auerbach C, Robson JM (1946b) The production of mutations by chemical substances. Proc R Soc Edinb B Biol 62:271–283

    Google Scholar 

  • Auerbach C, Robson J (1947) Tests of chemical substances for mutagenic action. Proc R Soc Edinb B Biol 62:284

    CAS  Google Scholar 

  • Barro F, Fernandez-Escobar J, De La Vega M, Martin A (2001) Doubled haploid lines of Brassica carinata with modified erucic acid content through mutagenesis by EMS treatment of isolated microspores. Plant Breed 120(3):262–264

    Article  CAS  Google Scholar 

  • Barro F, Fernandez-Escobar J, De la Vega M, Martin A (2003) Modification of glucosinolate and erucic acid contents in doubled haploid lines of Brassica carinata by UV treatment of isolated microspores. Euphytica 129(1):1–6

    Article  CAS  Google Scholar 

  • Beddington J, Asaduzzaman M, Fernandez A, Clark M, Guillou M, Jahn M, Erda L, Mamo T, Van BN, Nobre C (2011) Achieving food security in the face of climate change: summary for policy makers from the Commission on Sustainable Agriculture and Climate Change

    Google Scholar 

  • Benedict JH, Altman DW (2001) Commercialization of transgenic cotton expressing insecticidal crystal protein. Genetic improvement of cotton USDA-ARS. Oxford & IBH, New Delhi, pp 136–201

    Google Scholar 

  • Bhattacharyya MK, Smith AM, Ellis T, Hedley C, Martin C (1990) The wrinkled-seed character of pea described by Mendel is caused by a transposon-like insertion in a gene encoding starch-branching enzyme. Cell 60(1):115–122

    Article  PubMed  CAS  Google Scholar 

  • Blixt S (1972) Mutation genetics in Pisum. Agri Hortique Genetica 30:1–293

    Google Scholar 

  • Bregitzer P, Zhang S, Cho MJ, Lemaux PG (2002) Reduced somaclonal variation in barley is associated with culturing highly differentiated, meristematic tissues. Crop Sci 42:1303–1308

    Article  Google Scholar 

  • Caldwell DG, McCallum N, Shaw P, Muehlbauer GJ, Marshall DF, Waugh R (2004) A structured mutant population for forward and reverse genetics in Barley (Hordeum vulgare L.). Plant J 40(1):143–150

    Article  PubMed  CAS  Google Scholar 

  • Castillo AM, Cistue L, Valles MP, Sanz JM, Romagosa I, Molina-Cano JL (2001) Efficient production of androgenic doubled-haploid mutants in barley by the application of sodium azide to anther and microspore cultures. Plant Cell Rep 20(2):105–111

    Article  CAS  Google Scholar 

  • Chakrabarti SN (1995) Mutation breeding in India with particular reference to PNR rice varieties. J Nucl Agric Biol 24:73–82

    Google Scholar 

  • Chaudhury AM, Ming L, Miller C, Craig S, Dennis ES, Peacock WJ (1997) Fertilization-independent seed development in Arabidopsis thaliana. Proc Natl Acad Sci USA 94(8):4223–4228

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Chawade A, Sikora P, Bräutigam M, Larsson M, Vivekanand V, Nakash MA, Chen T, Olsson O (2010) Development and characterization of an oat TILLING-population and identification of mutations in lignin and β-glucan biosynthesis genes. BMC Plant Biol 10(1):86

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Chopra V (2005) Mutagenesis: investigating the process and processing the outcome for crop improvement. Curr Sci 89(2):353–359

    CAS  Google Scholar 

  • Creech RG (1965) Genetic control of carbohydrate synthesis in maize endosperm. Genetics 52(6):1175–1186

    PubMed Central  PubMed  CAS  Google Scholar 

  • Dribnenki J, Green A, Atlin G (1996) Linola™ 989 low linolenic flax. Can J Plant Sci 76(2):329–331

    Article  Google Scholar 

  • Elise S, Etienne-Pascal J, de Fernanda C-N, Gérard D, Julia F (2005) The Medicago truncatula SUNN gene encodes a CLV1-like leucine-rich repeat receptor kinase that regulates nodule number and root length. Plant Mol Biol 58(6):809–822

    Article  CAS  Google Scholar 

  • FAO-IAEA (2011) Mutant variety database. http://mvgs.iaea.org/AboutMutantVarieties.aspx

  • Ferrie AMR (1999) Combining microspores and mutagenesis. In: PBI Bulletin National Research. Council of Canada, 110 Gymnasium Place, Saskatoon, Saskatchewan, Canada

    Google Scholar 

  • Ganesan M, Jayabalan N (2004) Evaluation of haemoglobin (erythrogen): for improved somatic embryogenesis and plant regeneration in cotton (Gossypium hirsutum L. cv. SVPR 2). Plant Cell Rep 23(4):181–187

    Article  PubMed  CAS  Google Scholar 

  • Giroux MJ, Morris CF (1998) Wheat grain hardness results from highly conserved mutations in the friabilin components puroindoline a and b. Proc Natl Acad Sci USA 95(11):6262–6266

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Grant WF, Salamone MF (1994) Comparative mutagenicity of chemicals selected for test in the International Program on chemical safety's collaborative study on plant systems for the detection of environmental mutagens. Mutat Res 310(2):187–209

    Article  PubMed  CAS  Google Scholar 

  • Green A (1986) A mutant genotype of flax (Linum usitatissimum L.) containing very low levels of linolenic acid in its seed oil. Can J Plant Sci 66(3):499–503

    Article  CAS  Google Scholar 

  • Hannah C, Giroux M, Boyer C (1993) Biotechnological modification of carbohydrates for sweet corn and maize improvement. Sci Hortic 55:177–197

    Article  CAS  Google Scholar 

  • Hase Y, Shimono K, Inoue M, Tanaka A, Watanabe H (1999) Biological effects of ion beams in Nicotiana tabacum L. Radiat Environ Biophys 38(2):111–115

    Article  PubMed  CAS  Google Scholar 

  • He Y, Wan GL, Jin ZL, Xu L, Tang GX, Zhou WJ (2007) Mutagenic treatments of cotyledons for in vitro plant regeneration in oilseed rape. In: GCIRC Proceedings of the 12th international rapeseed congress, vol II, GCIRC, Wuhan (China), Science Press, Monmouth Junction, NJ, pp 54–57

    Google Scholar 

  • Hertel TW, Burke MB, Lobell DB (2010) The poverty implications of climate-induced crop yield changes by 2030. Glob Environ Chang 20(4):577–585

    Article  Google Scholar 

  • Hofmann NE, Raja R, Nelson RL, Korban SS (2004) Mutagenesis of embryogenic cultures of soybean and detecting polymorphisms using RAPD markers. Biol Plant 48(2):173–177

    Article  CAS  Google Scholar 

  • IAEA (1977) Technical report series No. 119, 289 pp. International Atomic Energy Agency, Vienna, Austria

    Google Scholar 

  • Iqbal MCM, Mollers C, Robbelen G (1994) Increased embryogenesis after colchicine treatment of microspore cultures of Brassica napus L. J Plant Physiol 143:222–226

    Article  CAS  Google Scholar 

  • Jayabalan N, Anthony P, Davey M, Power J, Lowe K (2004) Hemoglobin promotes somatic embryogenesis in peanut cultures. Artif Cells Blood Substit Biotechnol 32(1):149–157

    Article  CAS  Google Scholar 

  • Jia C, Li A (2008) Effect of gamma radiation on mutant induction of Fagopyrum dibotrys Hara. Photosynthetica 46(3):363–369

    Article  CAS  Google Scholar 

  • Jones JA, Starkey JR, Kleinhofs A (1980) Toxicity and mutagenicity of sodium azide in mammalian cell cultures. Mutat Res 77(3):293–299

    Article  PubMed  CAS  Google Scholar 

  • Joseph R, Yeoh HH, Loh CS (2004) Induced mutations in cassava using somatic embryos and the identification of mutant plants with altered starch yield and composition. Plant Cell Rep 23(1–2):91–98

    PubMed  CAS  Google Scholar 

  • Kaul M, Bhan A (1977) Mutagenic effectiveness and efficiency of EMS, DES and gamma-rays in rice. Theor Appl Genet 50(5):241–246

    Article  PubMed  CAS  Google Scholar 

  • Khan S, Goyal S (2009) Improvement of mungbean varieties through induced mutations. African J Plant Sci 3(8):174–180

    Google Scholar 

  • Khan S, Al-Qurainy F, Anwar F (2009) Sodium azide: a chemical mutagen for enhancement of agronomic traits of crop plants. Environ Int J Sci Technol 4:1–21

    CAS  Google Scholar 

  • Kharkwal M, Shu Q (2009) The role of induced mutations in world food security. In: Shu QY (ed) Induced plant mutations in the genomics era. Food and Agriculture Organization of the United Nations, Rome, pp 33–38

    Google Scholar 

  • Kihlman B (1959) The effect of respiratory inhibitors and chelating agents on the frequencies of chromosomal aberrations produced by X-rays in Vicia. J Biophys Biochem Cytol 5(3):479–490

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Kleinhofs A, Sander C, Nilan R, Konzak C (1974) Azide mutagenicity – mechanism and nature of mutants produced. Polyploidy and induced mutations in plant breeding proceedings

    Google Scholar 

  • Kleinhofs A, Owais W, Nilan R (1978) Azide. Mutat Res 55(3):165–195

    Article  PubMed  CAS  Google Scholar 

  • Konzak CF, Wickham IM, Dekock M (1972) Advances in methods of mutagen treatment. Induced Mutations and Plant Improvement 1970

    Google Scholar 

  • Kopecky D, Vagera J (2005) The use of mutagens to increase the efficiency of the androgenic progeny production in Solanum nigrum. Biol Plant 49(2):181–186

    Article  Google Scholar 

  • Kott LS (1996) Production of mutants using the rapeseed doubled haploid system. In: Induced Mutation and Molecular Techniques for Crop improvement. IAEA/FAO Proceedings of an international symposium on the use of induced mutations and molecular techniques for crop improvement, Vienne, Austria, pp 505–515

    Google Scholar 

  • Krusell L, Madsen LH, Sato S, Aubert G, Genua A, Szczyglowski K, Duc G, Kaneko T, Tabata S, de Bruijn F (2002) Shoot control of root development and nodulation is mediated by a receptor-like kinase. Nature 420(6914):422–426

    Article  PubMed  CAS  Google Scholar 

  • Latado RR, Adames AH, Neto AT (2004) In vitro mutation of chrysanthemum (Dendranthema grandifl ora Tzvelev) with ethylmethanesulphonate (EMS) in immature fl oral pedicels. Plant Cell Tissue Organ Cult 77(1):103–106

    Article  Google Scholar 

  • Lee JH, Lee SY (2002) Selection of stable mutants from cultured rice anthers treated with ethyl methane sulfonic acid. Plant Cell Tissue Organ Cult 71(2):165–171

    Article  CAS  Google Scholar 

  • Leyser O (1997) Auxins: lessons from a mutant weed. Physiol Plant 100:407–414

    Article  CAS  Google Scholar 

  • Li HZ, Zhou WJ, Zhang ZJ, Gu HH, Takeuchi Y, Yoneyama K (2005) Effect of gamma radiation on development, yield and quality of microtubers in vitro in Solanum tuberosum L. Biol Plant 49(4):625–628

    Article  CAS  Google Scholar 

  • Love S, Baker T, Thompson‐Johns A, Werner B (1996) Induced mutations for reduced tuber glycoalkaloid content in potatoes. Plant Breed 115(2):119–122

    Article  CAS  Google Scholar 

  • Lundqvist U (1992) Mutation research in barley. Sveriges Lantbruksuniv, Uppsala

    Google Scholar 

  • MacLeod MR (1994) Analysis of an allelic series of mutants at the r locus of pea. PhD Thesis, University of East Anglia, Norwich

    Google Scholar 

  • Magori S, Tanaka A, Kawaguchi M (2010) Physically induced mutation: ion beam mutagenesis. In: Meksem K, Kahl G (eds) The handbook of plant mutation. Wiley-Blackwell-VCH. ISBN: 978-3-527-32604-4

    Google Scholar 

  • Mahandjiev A, Kosturkova G, Mihov M (2001) Enrichment of Pisum sativum gene resources through combined use of physical and chemical mutagens. Israel J Plant Sci 49(4):279–284

    Google Scholar 

  • Maherchandani N (1975) Effects of gamma radiation on the dormant seed of Avena fatu L. Radiat Bot 15(4):439–443

    Article  Google Scholar 

  • Maluszynski M (1990) Induced mutations—an integrating tool in genetics and plant breeding. In: Gene manipulation in plant improvement II. Springer, pp 127–162

    Google Scholar 

  • Maluszynski KN, Zanten LV, Ahlowalia BS (2000) Officially released mutant varieties, The FAO/IAEA Database. Mutat Breed Rev 12:1–12

    Google Scholar 

  • Mba C (2013) Induced Mutations Unleash the Potentials of Plant Genetic Resources for Food and Agriculture. Agronomy 3(1):200–231. doi:10.3390/agronomy3010200

    Article  Google Scholar 

  • Mba C, Shu Q (2012) Gamma irradiation. In: Shu Q, Forster BP, Nakagawa H (eds) Plant mutation breeding and biotechnology. CABI, Oxfordshire, pp 91–98

    Chapter  Google Scholar 

  • Mba C, Afza R, Jain SM, et al. (2007) Induced Mutations for Enhancing Salinity Tolerance in Rice. In: Jenks MA, Hasegawa PM, Jain SM (eds) Advances in molecular breeding towards drought and salt tolerant crops. Springer, Berlin, pp 413–454

    Google Scholar 

  • Mba C, Afza R, Bado S, Jain SM (2010) Induced mutagenesis in plants using physical and chemical agents. In: Davey MR, Anthony P (eds) Plant cell culture: essential methods. Wiley, New York. ISBN 978-0-470-68648-5

    Google Scholar 

  • Mba C, Afza R, Shu Q, Shu Q, Forster B, Nakagawa H (2012a) Mutagenic radiations: X-rays, ionizing particles and ultraviolet. In: Shu Q, Forster BP, Nakagawa H (eds) Plant mutation breeding and biotechnology. CABI, Oxfordshire, pp 83–90

    Chapter  Google Scholar 

  • Mba C, Guimaraes EP, Ghosh K (2012b) Re-orienting crop improvement for the changing climatic conditions of the 21st century. Agric Food Secur 1:7

    Article  Google Scholar 

  • Medrano H, Millo EP, Guerri J (1986) Ethyl-methane-sulfonate effects on anther cultures of nicotiana-tabacum. Euphytica 35(1):161–168

    Article  CAS  Google Scholar 

  • Mei M, Deng H, Lu Y, Zhuang C, Liu Z, Qiu Q, Qiu Y, Yang T (1994) Mutagenic effects of heavy ion radiation in plants. Adv Space Res 14(10):363–372

    Article  PubMed  CAS  Google Scholar 

  • Mei M, Qiu Y, Sun Y, Huang R, Yao J, Zhang Q, Hong M, Ye J (1998) Morphological and molecular changes of maize plants after seeds been flown on recoverablf satellite. Adv Space Res 22(12):1691–1697

    Article  PubMed  CAS  Google Scholar 

  • Meinke DW (1992) A homoeotic mutant of Arabidopsis thaliana with leafy cotyledons. Science 258(5088):1647–1650

    Article  PubMed  CAS  Google Scholar 

  • Mendel G (1865) Versuche über Pflanzen-hybriden. Verhandlungen des Naturforsehenden Vereins in Brünn 4:3–47

    Google Scholar 

  • Mensah J, Akomeah P, Ekpekurede E (2005) Gamma irradiation induced variation of yield parameters in Cowpea (Vigna unguiculata (L.) Walp. Global J Pure Appl Sci 11(3)

    Google Scholar 

  • Merlot S, Giraudat J (1997) Genetic analysis of abscisic acid signal transduction. Plant Physiol 114(3):751–757

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Mostafa GG (2011) Effect of sodium azide on the growth and variability induction in Helianthus annuus L. Int J Plant Breed Genet 5:76–85

    Article  Google Scholar 

  • Mukhopadhyay A, Arumugam N, Sodhi YS, Gupta V, Pradhan AK, Pental D (2007) High frequency production of microspore derived doubled haploid (DH) and its application for developing low glucosinolate lines in Indian Brassica juncea. In: Proceedings of the 12th international rapeseed congress, Wuhan, pp 333–335

    Google Scholar 

  • Muller HJ (1927) Artificial transmutation of the gene. Science 66:84–87

    Article  PubMed  CAS  Google Scholar 

  • Nelson O, Pan D (1995) Starch synthesis in maize endosperms. Annu Rev Plant Biol 46(1):475–496

    Article  CAS  Google Scholar 

  • Nelson GC, Rosegrant MW, Koo J, Robertson R, Sulser T, Zhu T, Ringler C, Msangi S, Palazzo A, Batka M (2009) Climate change: impact on agriculture and costs of adaptation, vol 21. The International Food Policy Research Institute

    Google Scholar 

  • Nilan R, Pearson O (1975) Lack of chromosome breakage by azide in embryonic shoots and microspores of barley. Barley Genet Newsl 5:33–34

    Google Scholar 

  • Nishimura R, Hayashi M, Wu G-J, Kouchi H, Imaizumi-Anraku H, Murakami Y, Kawasaki S, Akao S, Ohmori M, Nagasawa M (2002) HAR1 mediates systemic regulation of symbiotic organ development. Nature 420(6914):426–429

    Article  PubMed  CAS  Google Scholar 

  • Oka‐Kira E, Tateno K, Ki M, Haga T, Hayashi M, Harada K, Sato S, Tabata S, Shikazono N, Tanaka A (2005) klavier (klv), a novel hypernodulation mutant of Lotus japonicus affected in vascular tissue organization and floral induction. Plant J 44(3):505–515

    Article  PubMed  CAS  Google Scholar 

  • Owais W, Kleinhofs A (1988) Metabolic activation of the mutagen azide in biological systems. Mutat Res 197(2):313–323

    Article  PubMed  CAS  Google Scholar 

  • PICMA (Pharmacia Institute of China Medicine Academy) (1995) Modernization research of Chinese herbal medicine. The Press of Beijing Medicine University, Beijing, pp 156–187

    Google Scholar 

  • Predieri S, Zimmerman RH (2001) Pear mutagenesis: in vitro treatment with gamma-rays and field selection for productivity and fruit traits. Euphytica 117(3):217–227

    Article  Google Scholar 

  • Rahman A, Nakasone A, Chhun T, Ooura C, Biswas KK, Uchimiya H, Tsurumi S, Baskin TI, Tanaka A, Oono Y (2006) A small acidic protein 1 (SMAP1) mediates responses of the Arabidopsis root to the synthetic auxin 2, 4‐dichlorophenoxyacetic acid. Plant J 47(5):788–801

    Article  PubMed  CAS  Google Scholar 

  • Raicu P, Mixich F (1992) Cytogenetic effects of sodium azide encapsulated in liposomes on heteroploid cell cultures. Mutat Res Lett 283(3):215–219

    Article  CAS  Google Scholar 

  • Rajasekaran K, Grula JW, Anderson DM (1996) Selection and characterization of mutant cotton (Gossypium hirsutum L.) cell lines resistant to sulfonylurea and imidazolinone herbicides. Plant Sci 119(1):115–124

    Article  CAS  Google Scholar 

  • Rao DRM (1977) Relative effectiveness and efficiency of single and combination trataments using gamma-rays and sodiun azide ininducing chlrophyll mutations in rice. Cytologia 42:443–450

    Article  Google Scholar 

  • Rao MG, Rao VM (1983) Mutagenic efficiency, effectiveness and factor of effectiveness of physical and chemical mutagens in rice. Cytologia 48:427–436

    Article  Google Scholar 

  • Reddi TS, Rao DRM (1988) Relative effectiveness and efficiency of single and combination treatments using gamma rays and sodium azide in inducing chlorophyll mutations in rice. Cytologia 53:419

    Article  Google Scholar 

  • Rines H (1985) Sodium azide mutagenesis in diploid and hexaploid oats and comparison with ethyl methanesulfonate treatments. Environ Exp Bot 25(1):7–16

    Article  CAS  Google Scholar 

  • Ringler C, Rosegrant MW, Paisner MS (2000) Irrigation and water resources in Latin America and the Caribbean: Challenges and strategies. International Food Policy Research Institute (IFPRI)

    Google Scholar 

  • Ross JJ, Murfet IC, Reid JB (1997) Gibberellin mutants. Physiol Plant 100(3):550–560

    Article  CAS  Google Scholar 

  • Roychowdhury R, Tah J (2011a) Chemical mutagenic action on seed germination and related agro-metrical traits in M1 Dianthus generation. Curr Botany 2(8):19–23

    CAS  Google Scholar 

  • Roychowdhury R, Tah J (2011b) Mutation breeding in Dianthus caryophyllus for economic traits. Electron J Plant Breed 2(2):282–286

    Google Scholar 

  • Rutger JN (1992) Impact of mutation breeding in rice. A review. Mutat Breed Rev 8:1–24

    Google Scholar 

  • Schauser L, Handberg K, Sandal N, Stiller J, Thykjaer T, Pajuelo E, Nielsen A, Stougaard J (1998) Symbiotic mutants deficient in nodule establishment identified after T-DNA transformation of Lotus japonicus. Mol Gen Genet MGG 259(4):414–423

    Article  PubMed  CAS  Google Scholar 

  • Schmülling T, Schäfer S, Romanov G (1997) Cytokinins as regulators of gene expression. Physiol Plant 100(3):505–519

    Article  Google Scholar 

  • Searle IR, Men AE, Laniya TS, Buzas DM, Iturbe-Ormaetxe I, Carroll BJ, Gresshoff PM (2003) Long-distance signaling in nodulation directed by a CLAVATA1-like receptor kinase. Science 299(5603):109–112

    Article  PubMed  CAS  Google Scholar 

  • Sharma JR, Lal RK, Misra HO, Gupta MM, Ram RS (1989) Potential of gemma-radiation enhancing the biosynthesis of tropane alkaloids in black henbane (Hyoscyamus-niger L.). Euphytica 40(3):253–258

    CAS  Google Scholar 

  • Shi SW, Wu JS, Liu HL (1995) In vitro selection of long-pod and dwarf mutants in Brassica napus L. Acta Agric Nucl Sin 9(4):252–253

    Google Scholar 

  • Shikazono N, Yokota Y, Kitamura S, Suzuki C, Watanabe H, Tano S, Tanaka A (2003) Mutation rate and novel tt mutants of Arabidopsis thaliana induced by carbon ions. Genetics 163(4):1449–1455

    PubMed Central  PubMed  CAS  Google Scholar 

  • Shikazono N, Suzuki C, Kitamura S, Watanabe H, Tano S, Tanaka A (2005) Analysis of mutations induced by carbon ions in Arabidopsis thaliana. J Exp Bot 56(412):587–596

    Article  PubMed  CAS  Google Scholar 

  • Shimazu T, Kurata K (1999) Relationship between production of carrot somatic embryos and dissolved oxygen concentration in liquid culture. Plant Cell Tissue Organ Cult 57(1):29–38

    Article  Google Scholar 

  • Siddiqui S, Meghvansi M, Hasan Z (2007) Cytogenetic changes induced by sodium azide (NaN3) on Trigonella foenum-graecum L. seeds. S Afr J Bot 73(4):632–635

    Article  CAS  Google Scholar 

  • Sikora P, Chawade A, Larsson M, Olsson J, Olsson O (2011) Mutagenesis as a tool in plant genetics, functional genomics, and breeding. Int J Plant Genomics 2011:314829. doi:10.1155/2011/314829

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Smith S (2008) Intellectual property protection for plant varieties in the 21st century. Crop Sci 48:1277–1290

    Article  Google Scholar 

  • Stadler L (1928) Mutations in barley induced by x-rays and radium. Science 68(1756):186

    Article  PubMed  CAS  Google Scholar 

  • Stadler LJ (1930) Some genitic effects of x-rays in plants. J Hered 21(1):3–20

    Google Scholar 

  • Stadler LJ (1931) The experimental modification of heredity in crop plants: induced chromosomal irregularities. I. Sci Agric 11(557–572):645–661

    Google Scholar 

  • Stadler L (1932) On the genetic nature of induced mutations in plants, reprinted from the Proceedings of the sixth international congress of genetics, vol 1, p 274

    Google Scholar 

  • Szczyglowski K, Shaw RS, Wopereis J, Copeland S, Hamburger D, Kasiborski B, Dazzo FB, de Bruijn FJ (1998) Nodule organogenesis and symbiotic mutants of the model legume Lotus japonicus. Mol Plant-Microbe Interact 11(7):684–697

    Article  CAS  Google Scholar 

  • Tah PR (2006) Induced macromutation in mungbean [Vigna radiata (L.) Wilczek]. Int J Bot 2(3):219–228

    Article  CAS  Google Scholar 

  • Tanaka A, Shikazono N, Yokota Y, Watanabe H, Tano S (1997) Effects of heavy ions on the germination and survival of Arabidopsis thaliana. Int J Radiat Biol 72(1):121–127

    Article  PubMed  CAS  Google Scholar 

  • Tester M, Langridge P (2010) Breeding technologies to increase crop production in a changing world. Science 327:818–822

    Article  PubMed  CAS  Google Scholar 

  • Till BJ, Reynolds SH, Weil C, Springer N, Burtner C, Young K, Bowers E, Codomo CA, Enns LC, Odden AR (2004) Discovery of induced point mutations in maize genes by TILLING. BMC Plant Biol 4(1):12

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Till BJ, Cooper J, Tai TH, Colowit P, Greene EA, Henikoff S, Comai L (2007) Discovery of chemically induced mutations in rice by TILLING. BMC Plant Biol 7(1):19

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • United Nations Organization (1982) United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR). 1982 Report to the General Assembly

    Google Scholar 

  • Vasline A, Vennila S, Ganesan J (2005) Mutation – an alternate source of variability. UGC national seminar on present scenario in plant science research. Department of Botany, Annamalai University, Annamalainagar, p 42

    Google Scholar 

  • Wang T, Uauy C, Till B, Liu CM (2010) TILLING and associated technologies. J Integr Plant Biol 52(11):1027–1030

    Article  PubMed  Google Scholar 

  • Wilkinson JQ, Lanahan MB, Clark DG, Bleecker AB, Chang C, Meyerowitz EM, Klee HJ (1997) A dominant mutant receptor from Arabidopsis confers ethylene insensitivity in heterologous plants. Nat Biotechnol 15(5):444–447

    Article  PubMed  CAS  Google Scholar 

  • Wu J-L, Wu C, Lei C, Baraoidan M, Bordeos A, Madamba M, Suzette R, Ramos-Pamplona M, Mauleon R, Portugal A (2005) Chemical-and irradiation-induced mutants of indica rice IR64 for forward and reverse genetics. Plant Mol Biol 59(1):85–97

    Article  PubMed  CAS  Google Scholar 

  • Xu L, Najeeb U, Naeem MS, Wan GL, Jin ZL, Khan F, Zhou WJ (2012) In vitro mutagenesis and genetic improvement. Technol Innov Major World Oil Crops 2:151–173. doi:10.1007/978-1-4614-0827-7_6

    Article  Google Scholar 

  • Yabuta T, Sumiki Y (1938) On the crystal of gibberellin, a substance to promote plant growth. J Agric Chem Soc Jpn 14:1526

    Google Scholar 

  • Yokota Y, Yamada S, Hase Y, Shikazono N, Narumi I, Tanaka A, Inoue M (2007) Initial yields of DNA double-strand breaks and DNA Fragmentation patterns depend on linear energy transfer in tobacco BY-2 protoplasts irradiated with helium, carbon and neon ions. Radiat Res 167(1):94–101

    Article  PubMed  CAS  Google Scholar 

  • Zaki M, Dickinson H (1991) Microspore-derived embryos in Brassica: the signifi cance of division symmetry in pollen mitosis I to embryogenic development. Sex Plant Reprod 4:48–55

    Article  Google Scholar 

  • Zhang F, Aoki S, Takahata Y (2003) RAPD markers linked to microspore embryogenic ability in Brassica crops. Euphytica 131:207–213

    Article  CAS  Google Scholar 

  • Zhou WJ, Hagberg P, Tang GX (2002a) Increasing embryogenesis and doubling efficiency by immediate colchicine treatment of isolated microspores in spring Brassica napus. Euphytica 128:27–34

    Article  CAS  Google Scholar 

  • Zhou WJ, Tang GX, Hagberg P (2002b) Efficient production of doubled haploid plants by immediate colchicine treatment of isolated microspores in winter Brassica napus. Plant Growth Regul 37:185–192

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alvina Gul .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Riaz, A., Gul, A. (2015). Plant Mutagenesis and Crop Improvement. In: Hakeem, K. (eds) Crop Production and Global Environmental Issues. Springer, Cham. https://doi.org/10.1007/978-3-319-23162-4_8

Download citation

Publish with us

Policies and ethics