Skip to main content

Plant Breeding Strategies for Abiotic Stress Tolerance in Cereals

  • Chapter
  • First Online:
Omics Approach to Manage Abiotic Stress in Cereals

Abstract

By the year 2050, the global human population is predicted to increase by 2.5 billion reaching 9.6 billion people. To feed the world’s 9.6 billion people, the Food and Agriculture Organization estimates that global food production must increase by 70%. Moreover, the productivity of major food crops is affected by environment induced abiotic stressors that further expand the food demand-supply gap. Among the food crops cereals are most important in ensuring food security, yet they are also the most vulnerable to abiotic stresses. Due to various abiotic stressors, cereal productivity is decreasing; thus, mitigating these yield losses is critical for all nations to satisfy rising food demands. Besides abiotic stressors, ongoing climate change are also posing severe obstacles to obtaining the  required agricultural production levels to meet the expanding food demands. Among the abiotic stresses drought, temperature and soil salinity are the most severe, resulting in massive crop yield losses. Therefore, tolerance to abiotic stresses has typically been a long-term goal for plant breeders. In this chapter, the consequences of abiotic stresses, mechanism of abiotic stress tolerance and the role of various breeding strategies in developing abiotic stress-tolerant cultivars have been discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acquaah G (2007) Principles of plant genetics and breeding. Blackwell, Oxford

    Google Scholar 

  • Ahloowalia BS, Maluszynski M, Nichterlein K (2003) Global impact of mutation-derived varieties. Euphytica 135:187–204

    Article  Google Scholar 

  • Akbar M, Yabuno T (1977) Breeding saline-resistant varieties of rice. IV. Inheritance of delayed type panicle sterility induced by salinity. Jap J Breed 27:237–240

    Article  Google Scholar 

  • Amin R, Laskar RA, Khursheed S, Raina A, Khan S (2016) Genetic sensitivity towards MMS mutagenesis assessed through in vitro growth and cytological test in Nigella sativa L. Life Sci Int Res J 3:2347–8691

    Google Scholar 

  • Amin R, Wani MR, Raina A, Khursheed S, Khan S (2019) Induced morphological and chromosomal diversity in the mutagenized population of black cumin (Nigella sativa L.) using single and combination treatments of gamma rays and ethyl methane sulfonate. Jordan J Biol Sci 12(1):23–33

    CAS  Google Scholar 

  • Ansari SB, Raina A, Amin R, Jahan R, Malik S, Khan S (2021) Mutation breeding for quality improvement: a case study for oilseed crops. In: Bhat TA (ed) Mutagenesis, cytotoxicity and crop improvement: revolutionizing food science. Cambridge Scholars, Newcastle upon Tyne, pp 171–221

    Google Scholar 

  • Atkinson NJ, Urwin PE (2012) The interaction of plant biotic and abiotic stresses: from genes to the field. J Exp Bot 63:3523–3543

    Article  CAS  PubMed  Google Scholar 

  • Baek KH, Skinner DZ (2012) Production of reactive oxygen species by freezing stress and the protective roles of antioxidant enzymes in plants. J Agric Chem Environ 1:34–40

    Google Scholar 

  • Baloch AW, Soomro AM, Javed MA, Ahmed M, Bughio HR, Bughio MS, Mastoi NN (2002) Optimum plant density for high yield in rice (Oryza sativa L.). Asian J Plant Sci 2:273–276

    Article  Google Scholar 

  • Basu S, Roychoudhury A (2021) Transcript profiling of stress-responsive genes and metabolic changes during salinity in indica and japonica rice exhibit distinct varietal difference. Physiol Plant 173(4):1434–1447. https://doi.org/10.1111/ppl.13440

    Article  CAS  PubMed  Google Scholar 

  • Beck EH, Heim R, Hansen J (2004) Plant resistance to cold stress: mechanisms and environmental signals triggering frost hardening and dehardening. J Biosci 29:449–459

    Article  PubMed  Google Scholar 

  • Butruille DV, Guries RP, Osborn TC (1999) Linkage analysis of molecular markers and quantitative trait loci in populations of inbred backcross lines of Brassica napus L. Genetics 153:949–964

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carpenter J (2010) Peer-reviewed surveys indicate positive impact of commercialized GM crops. Nat Biotechnol 28:319–321

    Article  CAS  PubMed  Google Scholar 

  • Cassells AC, Doyel BM (2003) Genetic engineering and mutation breeding for tolerance to abiotic and biotic stresses: science, technology and safety. Bulg J Plant Physiol 2003:52–82

    Google Scholar 

  • Cooper M, Fukai S, Wade LJ (1999) How can breeding contribute to more productive and sustainable rainfed lowland rice systems? Field Crop Res 64:199–209

    Article  Google Scholar 

  • Das P, Mishra M, Lakra N, Singla-Pareek SL, Pareek A (2014) Mutation breeding: a powerful approach for obtaining abiotic stress tolerant crops and upgrading food security for human nutrition. In: Tomlekova N, Kozgar MI, Wani MR (eds) Mutagenesis: exploring novel genes and pathways. Wageningen Academic Publishers, Wageningen, pp 17–35

    Google Scholar 

  • Dudley JW (1993) Molecular markers in plant improvement: manipulation of genes affecting quantitative traits. Crop Sci 33:660–668

    Article  CAS  Google Scholar 

  • Emamverdian A, Ding Y, Mokhberdoran F, Xie Y (2015) Heavy metal stress and some mechanisms of plant defense response. Sci World J 2015:75612

    Article  Google Scholar 

  • Epstein E (1977) Genetic potentials for solving problems of soil mineral stress: adaptation of crops to salinity. In: Wright MJ (ed) Plant adaptation to mineral stress in problem soils. Cornell University Agricultural Experiment Station, Ithaca, NY, pp 73–123

    Google Scholar 

  • Epstein E (1983) Crops tolerant to salinity and other mineral stresses. In: Nugent J, O'Connor M (eds) Better crops for food, Ciba foundation symposium. Pitman, London, pp 61–82

    Google Scholar 

  • Epstein E, Norlyn JD, Rush DW, Kingsbury R, Kelley DB, Wrana AF (1980) Saline culture of crops: a genetic approach. Science 210:399–404

    Article  CAS  PubMed  Google Scholar 

  • Foroughbakhch Pournavab R, Bacópulos Mejía E, Benavides Mendoza A, Salas Cruz LR, Ngangyo Heya M (2019) Ultraviolet radiation effect on seed germination and seedling growth of common species from northeastern Mexico. Agronomy 9:269

    Article  CAS  Google Scholar 

  • Giordano M, Petropoulos S, Rouphael Y (2021) Response and defence mechanisms of vegetable crops against drought. Heat Salinity Stress Agric 11:463

    CAS  Google Scholar 

  • Gong Y, Hao Y, Li J, Li H, Shen Z, Wang W, Wang S (2019) The effects of rainfall runoff pollutants on plant physiology in a bioretention system based on pilot experiments. Sustainability 11:6402

    Article  CAS  Google Scholar 

  • Goyal S, Wani MR, Laskar RA, Raina A, Khan S (2019a) Assessment on cytotoxic and mutagenic potency of gamma rays and EMS in Vigna mungo L Hepper. Biotecnol Vegetal 19:193–204

    Google Scholar 

  • Goyal S, Wani MR, Laskar RA, Raina A, Amin R, Khan S (2019b) Induction of morphological mutations and mutant phenotyping in black gram (Vigna mungo (L.) Hepper) using gamma rays and EMS. Vegetos 32(4):464–472

    Article  Google Scholar 

  • Goyal S, Wani MR, Laskar RA, Raina A, Khan S (2020a) Mutagenic effectiveness and efficiency of individual and combination treatments of gamma rays and ethylmethanesulfonate in black gram (Vigna mungo (L.) Hepper). Adv Zool Bot 8(3):163–168

    Article  CAS  Google Scholar 

  • Goyal S, Wani MR, Laskar RA, Raina A, Khan S (2020b) Performance evaluation of induced mutant lines of black gram (Vigna mungo (L.) Hepper). Acta Fytotechn Zootechn 23(2):70–77

    Article  Google Scholar 

  • Goyal S, Wani MR, Raina A, Laskar RA, Khan S (2021) Phenotypic diversity in mutagenized population of urdbean (Vigna mungo (L.) Hepper). Heliyon 7(5):e06356

    Article  PubMed  PubMed Central  Google Scholar 

  • Halford NG, Curtis TY, Chen Z, Huang J (2014) Effects of abiotic stress and crop management on cereal grain composition: implications for food quality and safety. J Exp Bot 66:1145–1156

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hassan N, Laskar RA, Raina A, Khan S (2018) Maleic hydrazide induced variability in fenugreek (Trigonella foenum-graecum L.) cultivars CO1 and Rmt-1. Res Rev J Bot Sci 7(1):19–28

    Google Scholar 

  • Hayashi Y, Takehisa H, Kazama Y, Ichida H, Ryuto H, Fukunishi N, Abe T (2007) Effects of ion beam irradiation on mutation induction in rice. In: Proceedings of cyclotrons and their applications, Eighteenth International Conference, pp 237–239

    Google Scholar 

  • Hittalmani S, Shahidhar HE, Bagali PG, Huang N, Sidhu JS, Singh VP, Khush GS (2002) Molecular mapping of quantitative trait loci for plant growth, yield and yield related traits across diverse locations in a doubled haploid rice population. Euphytica 125:207–214

    Article  CAS  Google Scholar 

  • Hugo de Vries (1901) Die mutation theorie. Viet and Co., Leipzig. 1 Von, 1-648

    Google Scholar 

  • Jacobsen T, Adams RM (1958) Salt and silt in ancient Mesopotamian agriculture. Science 128:1251–1258

    Article  CAS  PubMed  Google Scholar 

  • James C (2011) Executive summary of global status of commercialized biotech/GM crops. ISAAA briefs no. 34. ISAAA, Ithaca, NY

    Google Scholar 

  • Jewell MC, Campbell BC, Godwin ID (2010) Transgenic plant for abiotic stress resistance. In: Kole C, Michler CH, Abbott AG, Hall TC (eds) Transgenic crop plants. Springer Verlag, Heidelberg, pp 67–132

    Chapter  Google Scholar 

  • Kai H, Iba K (2014) Temperature stress in plants. In: eLS. Wiley, Chichester

    Google Scholar 

  • Kathage J, Qaim M (2012) Economic impacts and impact dynamics of Bt (bacillus thuringiensis) cotton in India. Proc Natl Acad Sci U S A 109:11652–11656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kharkwal MC, Shu QY (2009) The role of induced mutations in world food security. In: Shu QY (ed) Induced plant mutations in the genomics era. Food and Agriculture Organization of the United Nations, Rome, pp 33–38

    Google Scholar 

  • Khursheed S, Raina A, Khan S (2016) Improvement of yield and mineral content in two cultivars of Vicia faba L. through physical and chemical mutagenesis and their character association analysis. Arch Curr Res Int 4(1):1–7

    Article  Google Scholar 

  • Khursheed S, Raina A, Amin R, Wani MR, Khan S (2018a) Quantitative analysis of genetic parameters in the mutagenized population of faba bean (Vicia faba L.). Res Crops 19(2):276–284

    Article  Google Scholar 

  • Khursheed S, Raina A, Laskar RA, Khan S (2018b) Effect of gamma radiation and EMS on mutation rate: their effectiveness and efficiency in faba bean (Vicia faba L.). Caryologia 71(4):397–404

    Article  Google Scholar 

  • Khursheed S, Raina A, Khan S (2018c) Physiological response of two cultivars of faba bean using physical and chemical mutagenesis. Int J Adv Res Sci Eng 7(4):897–905

    Google Scholar 

  • Khursheed S, Raina A, Parveen K, Khan S (2019) Induced phenotypic diversity in the mutagenized populations of faba bean using physical and chemical mutagenesis. J Saudi Soc Agric Sci 18(2):113–119. https://doi.org/10.1016/j.jssas.2017.03.001

    Article  Google Scholar 

  • Kumari VV, Roy A, Vijayan R, Banerjee P, Verma VC, Nalia A, Pramanik M, Mukherjee B, Ghosh A, Reja H et al (2021) Drought and heat stress in cool-season food legumes in sub-tropical regions: consequences, adaptation, and mitigation strategies. Plan Theory 10:1038

    CAS  Google Scholar 

  • Lande R, Thompson R (1990) Efficiency of marker-assisted selection in the improvement of quantitative traits. Genetics 124:743–756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Laskar RA, Khan S, Khursheed S, Raina A, Amin R (2015) Quantitative analysis of induced phenotypic diversity in chickpea using physical and chemical mutagenesis. J Agron 14:3–102

    Article  CAS  Google Scholar 

  • Laskar RA, Laskar AA, Raina A, Amin R (2018a) Induced mutation analysis with biochemical and molecular characterization of high yielding lentil mutant lines. Int J Biol Macromol 109:167–179

    Article  CAS  PubMed  Google Scholar 

  • Laskar RA, Wani MR, Raina A, Amin R, Khan S (2018b) Morphological characterization of gamma rays induced multipodding mutant (mp) in lentil cultivar pant L 406. Int J Radiat Biol 94(11):1049–1053

    Article  CAS  Google Scholar 

  • Laskar RA, Khan S, Deb CR, Tomlekova N, Wani MR, Raina A, Amin R (2019) Lentil (Lens culinaris Medik.) diversity, cytogenetics and breeding. In: Al-Khayri JM et al (eds) Advances in plant breeding: legumes. Springer, Cham. https://doi.org/10.1007/978-3-030-23400-3_9

    Chapter  Google Scholar 

  • Liliane TN, Charles MS (2020) Factors affecting yield of crops. In: Agronomy-climate change & food security. London, IntechOpen, p 9

    Google Scholar 

  • Lobell DB, Field CB (2007) Global scale climate-crop yield relationships and the impacts of recent warming. Environ Res Lett 2:14002–14008

    Article  Google Scholar 

  • Maiti R, Satya P (2014) Research advances in major cereal crops for adaptation to abiotic stresses. GM Crop Food 5:259–279

    Article  CAS  Google Scholar 

  • Martinez-Beltran J, Manzur CL (2005) Overview of salinity problems in the world and FAO strategies to address the problem. In: Proceedings of International Salinity Forum, Riverside, CA, USA, pp 311–313

    Google Scholar 

  • Metwally SA, Shoaib RM, Hashish KI, El-Tayeb TA (2019) In vitro ultraviolet radiation effects on growth, chemical constituents and molecular aspects of Spathiphyllum plant. Bull Natl Res Cent 43:94

    Article  Google Scholar 

  • Mohan V, Tresina P, Daffodil E (2016) Antinutritional factors in legume seeds: characteristics and determination. In: Encyclopedia of food and health, pp 211–220

    Chapter  Google Scholar 

  • Muller HJ (1927) Artificial transmutation of the gene. Science 66:84–87

    Article  CAS  PubMed  Google Scholar 

  • Munns R (2002) Comparative physiology of salt and water stress. Plant Cell Environ 25:239–250

    Article  CAS  PubMed  Google Scholar 

  • Newton AC, Johnson SN, Gregory PJ (2011) Implications of climate change for diseases, crop yields and food security. Euphytica 179:3–18

    Article  Google Scholar 

  • Oerke ECC, Weber A, Dehne WH, Schonbeck F (1999) Crop production and crop protection. Elsevier Science, Amsterdam

    Google Scholar 

  • Oladosu Y, Rafii MY, Samuel C, Fatai A, Magaji U, Kareem I, Kamarudin ZS, Muhammad II, Kolapo K (2019) Drought resistance in rice from conventional to molecular breeding: a review. Int J Mol Sci 20:3519

    Article  CAS  PubMed Central  Google Scholar 

  • Olugbire OO, Olorunfemi S, Oke DO (2021) Global utilization of cereals: sustainability and environmental issues. AgroScience 20:9–14

    Google Scholar 

  • O'Neil CE, Nicklas TA, Zanovec M, Cho S (2010) Whole-grain consumption is associated with diet quality and nutrient intake in adults: the National Health and nutrition examination survey, 1999–2004. J Am Diet Assoc 110:1461–1468

    Article  PubMed  Google Scholar 

  • Papanikolaou Y, Fulgoni VL (2017) Certain grain foods can be meaningful contributors to nutrient density in the diets of US children and adolescents: data from the National Health and nutrition examination survey, 2009–2012. Nutrients 9:160

    Article  PubMed Central  Google Scholar 

  • Parry MAJ, Madgwick PJ, Bayon C, Tearall K, Lopez AH, Baudo M, Rakszegi M, Hamada W, Al-Yassin A, Ouabbou H, Labhilili M, Phillips AL (2009) Mutation discovery for crop improvement. J Exp Bot 60:2817–2825

    Article  CAS  PubMed  Google Scholar 

  • Paul S, Roychoudhury A (2019) Comparative analysis of the expression of candidate genes governing salt tolerance and yield attributes in two contrasting Rice genotypes, encountering salt stress during grain development. J Plant Growth Regul 38:539–556

    Article  CAS  Google Scholar 

  • Piltz JW, Rodham CA, Wilkins JF, Hackney BF (2021) A comparison of cereal and cereal/vetch crops for fodder conservation. Agriculture 11:459

    Article  CAS  Google Scholar 

  • Rabara R, Msanne J, Basu S, Ferrer M, Roychoudhury A (2021) Coping with inclement weather conditions due to high temperature and water deficit in rice: an insight from genetic and biochemical perspectives. Physiol Plant 172(2):487–504

    Article  CAS  PubMed  Google Scholar 

  • Raina A, Danish M (2018) Mutagenesis in plant breeding for disease and pathogen resistance. Agric Res Technol 13(1):1–2

    Google Scholar 

  • Raina A, Khan S (2020) Increasing rice grain yield under biotic stresses: mutagenesis, transgenics and genomics approaches. In: Aryadeep C (ed) Rice research for quality improvement: genomics and genetic engineering. Springer, Berlin, pp 149–178. https://doi.org/10.1007/978-981-15-5337-0_8

    Chapter  Google Scholar 

  • Raina A, Laskar RA, Khursheed S, Amin R, Parveen K, Khan S (2016) Role of mutation breeding in crop improvement-past, present and future. Asian Res J Agr 2:1–13

    Google Scholar 

  • Raina A, Laskar RA, Khursheed S, Khan S, Parveen K, Amin R (2017) Induced physical and chemical mutagenesis for improvement of yield attributing traits and their correlation analysis in chickpea. Int Lett Nat Sci 61:14–22

    Google Scholar 

  • Raina A, Laskar RA, Jahan R, Khursheed S, Amin R, Wani MR, Nisa TN, Khan S (2018a) Mutation breeding for crop improvement. In: Ansari MW, Kumar S, Babeeta CK, Wattal RK (eds) Introduction to challenges and strategies to improve crop productivity in changing environment. Enriched Public Pvt Ltd, New Delhi, pp 303–317

    Google Scholar 

  • Raina A, Khursheed S, Khan S (2018b) Optimisation of mutagen doses for gamma rays and sodium azide in cowpea genotypes. Trends Biosci 11(13):2386–2389

    Google Scholar 

  • Raina A, Khan S, Laskar RA, Wani MR, Mushtaq W (2019) Chickpea (Cicer arietinum L.) cytogenetics, genetic diversity and breeding. In: Al-Khayri JM et al (eds) Advances in plant breeding: legumes. Springer, Cham. https://doi.org/10.1007/978-3-030-23400-3_3

    Chapter  Google Scholar 

  • Raina A, Khan S, Sahu P, Roa R (2020a) Increasing rice grain yield under abiotic stresses: mutagenesis, transgenics and genomics approaches. In: Aryadeep C (ed) Rice research for quality improvement: genomics and genetic engineering. Springer, Berlin, pp 753–777. https://doi.org/10.1007/978-981-15-4120-9_31

    Chapter  Google Scholar 

  • Raina A, Laskar RA, Tantray YR, Khursheed S, Wani MR, Khan S (2020b) Characterization of induced high yielding cowpea mutant lines using physiological, biochemical and molecular markers. Sci Rep 10(1):1–22

    Article  CAS  Google Scholar 

  • Raina A, Sahu D, Parmeshwar K, Laskar RA, Rajora N, Soa R, Khan S, Ganai RA (2021a) Mechanisms of genome maintenance in plants: playing it safe with breaks and bumps. Front Genet 12:675686. https://doi.org/10.3389/fgene.2021.675686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raina A, Ansari SB, Khursheed S, Wani MR, Khan S, Bhat TA (2021b) Mutagens their types and mechanism of action with an emphasis on sodium azide and gamma radiations. In: Bhat TA (ed) Mutagenesis, cytotoxicity and crop improvement: revolutionizing food science. Cambridge scholars, Newcastle upon Tyne, pp 1–37

    Google Scholar 

  • Raina A, Laskar RA, Malik S, Wani MR, Khan S, Bhat TA (2021c) Plant mutagenesis: principle and application in crop improvement. In: Bhat TA (ed) Mutagenesis, cytotoxicity and crop improvement: revolutionizing food science. Cambridge Scholars, Newcastle upon Tyne, pp 38–65

    Google Scholar 

  • Rajendran K, Tester M, Roy SJ (2009) Quantifying the three main components of salinity tolerance in cereals. Plant Cell Environ 32:237–249

    Article  CAS  PubMed  Google Scholar 

  • Rao MPN, Dong ZY, Xiao M, Li WJ (2019) Effect of salt stress on plants and role of microbes in promoting plant growth under salt stress. In: Microorganisms in saline environments: strategies and functions. Springer, Cham, pp 423–435

    Google Scholar 

  • Reddy INBL, Kim BK, Yoon IS, Kim KH, Kwon TR (2017) Salt tolerance in rice: focus on mechanisms and approaches. Ric Sci 24:123–144

    Article  Google Scholar 

  • Richards RA (1996) Defining selection criteria to improve yield under drought. Plant Growth Regul 20:57–166

    Article  Google Scholar 

  • Rosero A, Berdugo-Cely JA, Šamajová O, Šamaj J, Cerkal R (2020) A dual strategy of breeding for drought tolerance and introducing drought-tolerant, underutilized crops into production systems to enhance their resilience to water deficiency. Plan Theory 9:1263

    CAS  Google Scholar 

  • Roy SJ, Negrão S, Tester M (2014) Salt resistant crop plants. Curr Opin Biotechnol 26:115–124

    Article  CAS  PubMed  Google Scholar 

  • Roychoudhury A, Basu S, Sarkar SN, Sengupta DN (2008) Comparative physiological and molecular responses of a common aromatic indica rice cultivar to high salinity with non-aromatic indica rice cultivars. Plant Cell Rep 27(8):1395–1410

    Article  CAS  PubMed  Google Scholar 

  • Roychoudhury A, Basu S, Sengupta DN (2012) Antioxidants and stress-related metabolites in the seedlings of two indica rice varieties exposed to cadmium chloride toxicity. Acta Physiol Plant 34(3):835–847

    Article  CAS  Google Scholar 

  • Sahu M, Dehury B, Modi MK, Barooah M (2014) Functional genomics and bioinformatics approach to understand regulation of abiotic stress in cereal crops. In: Crop improvement in the era of climate change. IK. International Publishing House Pvt Ltd, New Delhi, p 205

    Google Scholar 

  • Saleem MY, Mukhtar Z, Cheema AA, Atta BM (2005) Induced mutation and in vitro techniques as a method to induce salt tolerance in basmati rice (Oryza sativa L.). Int J Environ Sci Technol 2:141–145

    Article  CAS  Google Scholar 

  • Seralini GE, Clair E, Mesnage R, Gress S, Defarge N, Malatesta M, Hennequin D, Spiroux de Vendomois J (2012) Long term toxicity of roundup herbicide and a roundup-tolerant genetically modified maize. Food Chem Toxicol 50:4221–4231

    Article  CAS  PubMed  Google Scholar 

  • Shah F, Wu W (2019) Soil and crop management strategies to ensure higher crop productivity within sustainable environments. Sustainability 11:1485

    Article  Google Scholar 

  • Shevtsov VM, Serkin NV, Chanda D, Chumak VM (2003) Mutations and barley breeding for thermoperiod reaction and cold tolerance. Barley Genet Newsl 33

    Google Scholar 

  • Stadler LJ (1928) Mutation in barley induced by X-rays and radium. Science 69:186–187

    Article  Google Scholar 

  • Takeda S, Matsuoka M (2008) Genetic approaches to crop improvement: responding to environmental and population changes. Nat Rev Genet 9:444–457

    Article  CAS  PubMed  Google Scholar 

  • Tantray AY, Raina A, Khursheed S, Amin R, Khan S (2017) Chemical mutagen affects pollination and locule formation in capsules of black cumin (Nigella sativa L.). Int J Agric Sci 8(1):108–117

    Google Scholar 

  • Tomás D, Rodrigues JC, Viegas W, Silva M (2020) Assessment of high temperature effects on grain yield and composition in bread wheat commercial varieties. Agronomy 10:499

    Article  Google Scholar 

  • Wade LJ, McLaren CG, Quintana L, Harnpichitvitaya D, Rajatasereekul S, Sarawgi AK, Kumar A, Ahmed HU, Sarwoto, Singh AK, Rodriguez R, Siopongco J, Sarkarung S (1999) Genotype by environment interactions across diverse rainfed lowland rice environment. Field Crop Res 64:35–50

    Article  Google Scholar 

  • Wang JP, Raman H, Zhou MX, Ryan PR, Delhaize E, Hebb DM, Coombes N, Mendham N (2007) High-resolution mapping of the alp locus and identification of a candidate gene HvMATE controlling aluminium tolerance in barley (Hordeum vulgare L.). Theor Appl Genet 115:265–276

    Article  CAS  PubMed  Google Scholar 

  • Wani MR, Dar AR, Tak A, Amin I, Shah NH, Rehman R, Baba MY, Raina A, Laskar R, Kozgar MI, Khan S (2017) Chemo-induced pod and seed mutants in mungbean (Vigna radiata L. Wilczek). SAARC J Agric For 15(2):57–67

    Article  Google Scholar 

  • Wani MR, Laskar RA, Raina A, Khan S, Khan TU (2021a) Application of chemical mutagenesis for improvement of productivity traits in lentil (Lens culinaris Medik). Ann Biol 37(1):69–75

    Google Scholar 

  • Wani MR, Tomlekova N, Raina A, Laskar RA, Khursheed S, Khan S, Tak MA, Bhat TA (2021b) Mutation breeding technique for the improvement of pulse crops with special reference to faba bean (Vicia faba L.). In: Bhat TA (ed) Mutagenesis, cytotoxicity and crop improvement: revolutionizing food science. Cambridge Scholars, Newcastle upon Tyne, pp 222–243

    Google Scholar 

  • Yildiz M, Poyraz I, Çavdar A, Özgen Y, Beyaz R (2020) Plant responses to salt stress. In: Plant breeding-current and future views. IntechOpen, London

    Google Scholar 

  • Yunus M, Paroda RS (1982) Impact of biparental mating on correlation coefficients in bread wheat. Theor Appl Genet 62:337–343

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Raina, A., Laskar, R.A., Wani, M.R., Khan, S. (2022). Plant Breeding Strategies for Abiotic Stress Tolerance in Cereals. In: Roychoudhury, A., Aftab, T., Acharya, K. (eds) Omics Approach to Manage Abiotic Stress in Cereals. Springer, Singapore. https://doi.org/10.1007/978-981-19-0140-9_8

Download citation

Publish with us

Policies and ethics