Skip to main content

Increasing Rice Grain Yield Under Biotic Stresses: Mutagenesis, Transgenics and Genomics Approaches

  • Chapter
  • First Online:
Rice Research for Quality Improvement: Genomics and Genetic Engineering

Abstract

Rice (Oryza sativa L.) is the most important source of staple food to a major portion of human population. The production of rice is reduced by several kinds of biotic stresses. The main biotic stresses that severely hamper the rice production include viruses, bacteria fungi, nematodes and insects. Different conventional and modern biotechnological approaches have been implemented to combat the devastating effect of different biotic stresses on the rice production. Conventional approaches such as hybridisation have led to the development of stress-tolerant varieties. The modern biotechnological approaches such as genomics and transgenics have led to the identification of genes that confer tolerance to stresses followed by its insertion into the rice plants with the aim of decreasing the yield loss incurred by the different stresses. Mutagenesis, genomics and transgenic approaches have been very effective in developing varieties with improved tolerance to various stress factors. Here we review the creation of rice varieties with improved yield under different biotic stress, using mutagenesis, transgenics and genomics approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aetsveit K, Kawai T, Sigurbjornson B, Scarascia-Mugnozza GT, Gottschalk W (1997) Plant traits to be improved by mutation breeding. In: Manual on mutation breeding, 2nd edn. IAEA, Vienna, p 219

    Google Scholar 

  • Agrios GN (2005) Plant pathology, 5th edn. Elsevier/Academic, Amsterdam, pp 838–841

    Google Scholar 

  • Ahloowalia BS, Maluszynski M, Nichterlein K (2004) Global impact of mutation-derived varieties. Euphytica 135:187–204

    Google Scholar 

  • Alcantara EP, Aguda RM, Curtiss A, Dean DH, Cohen MB (2004) Bacillus thuringiensis ∂-endotoxin binding to brush border membrane vesicles of rice stem borers. Arch Insect Biochem 55:169–177

    CAS  Google Scholar 

  • Alfonso-Rubi J, Ortego F, Castanera P, Carbonero P, Diaz I (2003) Transgenic expression of trypsin inhibitor CMe from barley in indica and japonica rice, confers resistance to the rice weevil Sitophilus oryzae. Transgenic Res 12:23–31

    CAS  PubMed  Google Scholar 

  • Amin R, Laskar RA, Khursheed S, Raina A, Khan S (2016) Genetic sensitivity towards mms mutagenesis assessed through in vitro growth and cytological test in Nigella Sativa L. Life Sci Intl Res J 3:2347–8691

    Google Scholar 

  • Amin R, Wani MR, Raina A, Khursheed S, Khan S (2019) Induced morphological and chromosomal diversity in the mutagenized population of black cumin (Nigella sativa L.) using single and combination treatments of gamma rays and ethyl methane sulfonate. Jordan J Biol Sci 12(1):23–33

    CAS  Google Scholar 

  • Ansari MUR, Shaheen T, Bukhari S, Husnain T (2015) Genetic improvement of rice for biotic and abiotic stress tolerance. Turk J Bot 39(6):911–919

    CAS  Google Scholar 

  • Antony G, Zhou J, Huang S, Li T, Liu B, White F et al (2010) Rice xa13 recessive resistance to bacterial blight is defeated by induction of the disease susceptibility gene Os-11N3. Plant Cell 22:3864–3876. https://doi.org/10.1105/tpc.110.078964

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Azlan S, Alias I, Saad A, Habibuddin H (2004) Performance of potential mutant lines of MR 180. In: Sivaprasagam et al (eds) Modern rice farming, Proceedings of international rice conference Serdang. MARDI, Malaysia, pp 293–296

    Google Scholar 

  • Azzam O, Chancellor TCB (2002) The biology, epidemiology and management of rice tungro disease in Asia. Plant Dis 86:88–100

    CAS  PubMed  Google Scholar 

  • Banerjee SN (1971) Symposium on rice insects. Trop Agric Res Ser 5:83–90

    Google Scholar 

  • Bashir K, Husnain T, Fatima T, Latif Z, Riaz N, Riazuddin S (2005) Novel indica basmati line (B-370) expressing two unrelated genes of Bacillus thuringiensis is highly resistant to two lepidopteran insects in the field. Crop Prot 24:870–879

    CAS  Google Scholar 

  • Bentur JS (2006) Host plant resistance to insects as a core of rice IPM. In: Science, technology and trade for peace and prosperity (IRRI, ICAR). Macmillan, pp 419–435

    Google Scholar 

  • Bharathi Y, Vijayakuma S, China PI, Dasavantha RV, Venkateswara RK (2008) Transgenic rice expressing Allium sativum leaf agglutinin (ASAL) exhibits high-level resistance against major sap-sucking pests. BMC Plant Biol 8:102

    Google Scholar 

  • Bharathi Y, Vijaya Kumar S, Pasalu IC, Balachandran SM, Reddy VD, Rao KV (2011) Pyramided rice lines harbouring Allium sativum (asal) and Galanthus nivalis (gna) lectin genes impart enhanced resistance against major sap-sucking pests. J Biotechnol 152(3):63–71

    CAS  PubMed  Google Scholar 

  • Bhattacharya J, Mukherjee R, Banga A, Dandapat A, Mandal CC, Hossain MA (2006) A transgenic approach for developing insect resistant rice plant types. In: Science, technology and trade for peace and prosperity (IRRI, ICAR). Macmillan, pp 245–264

    Google Scholar 

  • Blanvillain-Baufum S, Reschke M, Sol M, Auguy F, Doucoure H, Szurek B et al (2017) Targeted promoter editing for rice resistance to Xanthomonas oryzae pv. oryzae reveals differential activities for SWEET14-inducing TAL effectors. Plant Biotechnol J 15:306–317. https://doi.org/10.1111/pbi.12613

    Article  CAS  Google Scholar 

  • Breitler JC, Vassal JN, Catala MDM, Meynard D, Marfa V, Mele E, Royer M, Murillo I, Segundo SB, Guiderdoni E et al (2004) Bt rice harbouring cry genes controlled by a constitutive or wound-inducible promoter, protection and transgene expression under Mediterranean field conditions. Plant Biotechnol J 2:417–430

    CAS  PubMed  Google Scholar 

  • Bridge J, Plowright RA, Peng D (2005) Nematode parasites of rice. In: Luc M, Sikora RA, Bridge J (eds) Plant–parasitic nematodes in subtropical and tropical agriculture. CAB International, Wallingford, pp 87–130

    Google Scholar 

  • Brooks G, Barfoot P (2013) Key environmental impacts of global genetically modified (GM) crop use 1996–2011. GM Crops Food 4:109–119

    Google Scholar 

  • Bu Q-Y, Wu L, Yang S-H, Wan J-M (2006) Cloning of a potato proteinase inhibitor gene PINII-2xfrom diploid potato (Solanum phurejia L.) and transgenic investigation of its potential to confer insect resistance in rice. J Integr Plant Biol 48(6):732–739

    CAS  Google Scholar 

  • Buddenhagen IW (1983) Breeding strategies for stress and disease resistance in developing countries. Annu Rev Phytopathol 21(1):385–410

    Google Scholar 

  • Cai L, Cao Y, Xu Z, Ma W, Zakria M, Zou L et al (2017) A transcription activator-like effector Tal7 of Xanthomonas oryzae pv. oryzicola activates rice gene Os09g29100 to suppress rice immunity. Sci Rep 7:5089. https://doi.org/10.1038/s41598-017-04800-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cao Y, Duan L, Li H, Sun X, Zhao Y, Xu C, Li X, Wang S (2007) Functional analysis of Xa3/Xa26 family members in rice resistance to Xanthomonas oryzae pv. oryzae. Theor Appl Genet 115(7):887–895

    PubMed  Google Scholar 

  • Catling HD, Islam Z, Patrasudhi R (1987) Assessing yield losses in deepwater rice due to yellow stem borer Scirpophaga incertulas (Walker) in Bangladesh and Thailand. Crop Prot 6:20–27

    Google Scholar 

  • Chattopadhyay A, Nagaich D, Lima JM, Verma A, Tiwari KK (2017) Molecular aspects of bacterial blight resistance in rice: recent advancement. In: Biotic stress management in rice. Apple Academic, pp 17–45

    Google Scholar 

  • Chelliah A, Benthur JS, Prakasa RPS (1989) Approaches to rice management achievements and opportunities. Oryza 26:12–26

    Google Scholar 

  • Chen H, Tang W, Xu C, Li X, Lin Y, Zhang Q (2005) Transgenic indica rice plants harboring a synthetic cry2A gene of Bacillus thuringiensis exhibit enhanced resistance against lepidopteran rice pests. Theor Appl Genet 111:1330–1337

    CAS  PubMed  Google Scholar 

  • Chen M, Shelton A, Ye GY (2011) Insect-resistant genetically modified rice in China: from research to commercialization. Annu Rev Entomol 56:81–101

    CAS  PubMed  Google Scholar 

  • Coca M, Bortolotti C, Rufat M, Penas G, Eritja R, Tharreau D, del Pozo AM, Messeguer J, San Segundo B (2004) Transgenic rice plants expressing the antifungal AFP protein from Aspergillus giganteus show enhanced resistance to the rice blast fungus Magnaporthe grisea. Plant Mol Biol 54:245–259

    CAS  PubMed  Google Scholar 

  • Cohen SP, Leach JE (2019) Abiotic and biotic stresses induce a core transcriptome response in rice. Sci Rep 9(1):1–11

    Google Scholar 

  • Cohen MB, Chen M, Bentur JS, Heong KL, Ye G (2008) Bt rice in Asia: potential benefits, impact, and sustainability. In: Integration of insect-resistant genetically modified crops within IPM programs. Springer, Dordrecht, pp 223–248

    Google Scholar 

  • Cohn M, Bart RS, Shybut M, Dahlbeck D, Gomez M, Morbitzer R et al (2014) Xanthomonas axonopodis virulence is promoted by a transcription activator-like effector-mediated induction of a SWEET sugar transporter in cassava. Mol Plant Microbe Interact 27:1186–1198. https://doi.org/10.1094/MPMI-06-14-0161-R

    Article  CAS  PubMed  Google Scholar 

  • Collard BC, Mackill DJ (2008) Marker-assisted selection: an approach for precision plant breeding in the twenty-first century. Philos Trans Res Soc B 363:557–572

    CAS  Google Scholar 

  • Coolhaas C (1952) Large-scale use of F1 hybrids in “Vorstenlanden” tobacco. Euphytica 1:3–9

    Google Scholar 

  • Cotsaftis O, Sallaud C, Breitler JC, Meynard D, Greco R, Pereira A, Guiderdoni E (2002) Transposon-mediated generation of tDNA-free and marker-free rice plants expressing a Bt endotoxin gene. Mol Breed 10:165–180

    CAS  Google Scholar 

  • Cramer HH (1967) Plant protection and world crop production, vol 24. Bayer, Leverkusen

    Google Scholar 

  • Dai Y, Jia Y, Correll J, Wang X, Wang Y (2010) Diversification and evolution of the avirulence gene AVR-pita 1 in field isolates of Magnaporthe oryzae. Fungal Genet Biol 47:974–980

    Google Scholar 

  • Datta K, Velazhahan R, Oliva N, Ona I, Mew T, Khush GS, Muthukrishnan S, Datta SK (1999) Over-expression of the cloned rice thaumatin-like protein (PR-5) gene in transgenic rice plants enhances environmental friendly resistance to Rhizoctonia solani causing sheath blight disease. Theor Appl Genet 98:1138–1145

    CAS  Google Scholar 

  • Datta K, Koukolıkova-Nicola Z, Baisakh N, Oliva N, Datta SK (2000) Agrobacterium mediated engineering for sheath blight resistance of indica rice cultivars from different ecosystems. Theor Appl Genet 100:832–839

    CAS  Google Scholar 

  • Datta K, Tu J, Oliva N, Ona I, Velazhahana R, Mew TW, Muthukrishnan S, Datta SK (2001) Enhanced resistance to sheath blight by constitutive expression of infection related rice chitinase in transgenic elite indica rice cultivars. Plant Sci 160:405–414

    CAS  PubMed  Google Scholar 

  • Datta K, Baisakh N, Maung TK, Tu J, Datta SK (2002) Pyramiding transgenes for multiple resistance in rice against bacterial blight, yellow stem borer and sheath blight. Theor Appl Genet 106:1–8

    CAS  PubMed  Google Scholar 

  • Datta K, Baisakh N, Oliva N, Torrizo L, Abrigo E, Tan J, Rai M, Rehana S, Al-Babili S, Beyer P et al (2003) Bioengineered ‘golden’ indica rice cultivars with betacarotene metabolism in the endosperm with hygromycin and mannose selection systems. Plant Biotechnol J 1:81–90

    CAS  PubMed  Google Scholar 

  • De Vries H (1901) Die mutation theorie. Viet and Co, Leipzig

    Google Scholar 

  • De Waele D, Elsen A (2007) Challenges in tropical plant nematology. Annu Rev Phytopathol 45:457–485

    PubMed  Google Scholar 

  • Deka S, Barthakur S (2010) Overview on current status of biotechnological interventions on yellow stem borer Scirpophaga incertulas (Lepidoptera: Crambidae) resistance in rice. Biotechnol Adv 28:70–81

    CAS  PubMed  Google Scholar 

  • Deng GS (1989) Present status of research on false smut in China. Plant Prot 15:39–40

    Google Scholar 

  • Ding Y (1957) The origin and evolution of Chinese cultivated rice. J Agric For 8(3):243–260

    Google Scholar 

  • Fu G, Feng B, Zhang C, Yang Y, Yang X, Chen T et al (2016) Heat stress is more damaging to superior spikelets than inferiors of rice (Oryza sativa L.) due to their different organ temperatures. Front Plant Sci 7:1637. https://doi.org/10.3389/fpls.2016.01637

    Article  PubMed  PubMed Central  Google Scholar 

  • Fu C, Wu T, Liu W, Wang F, Li J, Zhu X, Huang H, Liu ZR, Liao Y, Zhu M (2012) Genetic improvement of resistance to blast and bacterial blight of the elite maintainer line rongfeng b in hybrid rice (Oryza sativa L.) by using marker-assisted selection. Afr J Biotechnol 11:13104–13114

    CAS  Google Scholar 

  • Fujimoto H, Itoh K, Yamamoto M, Kyozuka J, Shimamoto K (1993) Insect resistant rice generated by introduction of a modified δ-endotoxin gene of Bacillus thuringiensis. Biotechnology 11:1151–1155

    CAS  PubMed  Google Scholar 

  • Gandikota M, de Kochko A, Chen L, Ithal N, Fauquet C, Reddy AR (2001) Development of transgenic rice plants expressing maize anthocyanin genes and increased blast resistance. Mol Breed 7:73–83

    CAS  Google Scholar 

  • Ganesan U, Suri SS, Rajasubramaniam S, Rajam MV, Dasgupta I (2009) Transgenic expression of coat protein gene of rice tungro bacilliform virus in rice reduces the accumulation of viral DNA in inoculated plants. Virus Genes 39(1):113–119

    CAS  PubMed  Google Scholar 

  • Gangadharan C, Mathur SC (1976) Di-ethyl sulphate induced blast resistant mutants in rice variety Mtu. Sci Cult 42(4):226–228

    Google Scholar 

  • Ganger CS, Blakeslee AE (1927) Chromosome and gene mutations in Datura following exposure to radium rays. Proc Natl Acad Sci 10:75–70

    Google Scholar 

  • Goyal S, Wani MR, Laskar RA, Raina A, Khan S, (2019a) Assessment on cytotoxic and mutagenic potency of gamma rays and EMS in Vigna mungo L. Hepper Biotecnología Vegetal 19(3):193–204

    Google Scholar 

  • Goyal S, Wani MR, Laskar RA, Raina A, Amin R, Khan S (2019b) Induction of morphological mutations and mutant phenotyping in black gram [Vigna mungo (L.) Hepper] using gamma rays and EMS. Vegetos 32(4):464–472

    Google Scholar 

  • Goyal S, Wani MR, Laskar RA, Raina A, Khan S (2020) Mutagenic effectiveness and efficiency of individual and combination treatments of gamma rays and ethyl methanesulfonate in black gram [Vigna mungo (L.) hepper]. Advances Zool Bot 8(3):163–168

    Google Scholar 

  • Han L, Wu K, Peng Y, Wang F, Guo Y (2006) Evaluation of transgenic rice expressing Cry1Ac and CpTI against Chilo suppressalis and intrapopulation variation in susceptibility to Cry1Ac. Environ Entomol 35:1453–1459

    Google Scholar 

  • Hasan M, Rafi MY, Ismail MR, Mahmood M, Rahim HA, Alam M (2015) Marker assisted backcrossing: a useful method for rice improvement. Biotechnol Biotechnol Equip 29:237–254

    PubMed  PubMed Central  Google Scholar 

  • Hasan N, Laskar RA, Raina A, Khan S (2018) Maleic hydrazide induced variability in fenugreek (Trigonella foenum-graecum L.) cultivars CO1 and Rmt-1. Res Rev: J Botanical Sci 7(1):19–28

    Google Scholar 

  • Hasegawa M, Mitsuhara I, Seo S, Imai T, Koga J, Okada K, Yamane H, Ohashi Y (2010) Phytoalexin accumulation in the interaction between rice and the blast fungus. Mol Plant-Microbe Interact 23(8):1000–1011

    CAS  PubMed  Google Scholar 

  • Heinrichs EA (ed) (1994) Biology and management of rice insects. Wiley Eastern, New Delhi

    Google Scholar 

  • Heinrichs EA, Muniappan R (2017) IPM for tropical crops: rice. CAB Rev 12:030. https://doi.org/10.1079/PAVSNNR201712030

    Article  Google Scholar 

  • Helliwell EE, Wang Q, Yang Y (2013) Transgenic rice with inducible ethylene production exhibits broad-spectrum disease resistance to the fungal pathogens Magnaporthe oryzae and Rhizoctonia solani. Plant Biotechnol J 11(1):33–42

    CAS  PubMed  Google Scholar 

  • Herdt RW (1991) Research priorities for rice biotechnology. In: Khush GS, Toenissen GH (eds) Rice biotechnology, biotechnology in agriculture. International Rice Research Institute, CAB International, Wallingford, pp 19–54

    Google Scholar 

  • High SM, Cohen MB, Shu QY, Altosaar I (2004) Achieving successful deployment of Bt rice. Trends Plant Sci 9:286–292

    CAS  PubMed  Google Scholar 

  • Huet H, Mahendra S, Wang J, Sivamani E, Ong CA, Chen L, de Kochko A, Beachy RN, Fauquet C (1999) Near immunity to rice tungro spherical virus achieved in rice by a replicase mediated resistance strategy. Phytopathology 89:1022–1027

    CAS  PubMed  Google Scholar 

  • IRRI, Africa Rice and CIAT (2010) Global Rice Science Partnership (GRiSP). CGIAR ThematicArea 3: sustainable crop productivity increase for global food security. A CGIAR research program on rice-based production systems. November 2010. IRRI, Philippines, Africa Rice, Benin and CIAT, Colombia

    Google Scholar 

  • Ishiyama S (1922) Studies of bacterial leaf blight of rice. Rep Agric Exp Stat 45:233–261

    Google Scholar 

  • Itoh Y, Takahashi K, Takizawa H, Nikaidou N, Tanaka H, Nishihashi H, Watanabe T, Nishizawa Y (2003) Family 19 chitinase of Streptomyces griseus HUT6037 increases plant resistance to the fungal disease. Biosci Biotechnol Biochem 67(4):847–855

    CAS  PubMed  Google Scholar 

  • Jiang W, Zhou H, Bi H, Fromm M, Yang B, Weeks DP (2013) Demonstration of CRISPR/Cas9/sgRNA-mediated targeted gene modification in Arabidopsis, tobacco, sorghum and rice. Nucleic Acids Res 41:e188. https://doi.org/10.1093/nar/gkt780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kalapchieva S, Tomlekova NB (2016) Sensitivity of two garden pea genotypes to physical and chemical mutagens. J Biosci Biotech 5:167–171

    Google Scholar 

  • Kanzaki H, Nirasawa S, Saitoh H, Ito M, Nishihara M, Terauchi R, Nakamura I (2002) Overexpression of the wasabi defensin gene confers enhanced resistance to blast fungus (Magnaporthe grisea) in transgenic rice. Theor Appl Genet 105:809–814

    CAS  PubMed  Google Scholar 

  • Karmakar S, Molla KA, Chanda PK, Sarkar SN, Datta SK, Datta K (2016) Green tissue-specific co-expression of chitinase and oxalate oxidase 4 genes in rice for enhanced resistance against sheath blight. Planta 243:115–130

    CAS  PubMed  Google Scholar 

  • Kaur S, Padmanabhan SY, Rao M (1971) Induction of resistance to blast disease (Pyricularia oryzae) in the high yielding variety, Ratna (IRE 9 TKM 6). In: Proceedings of the IAEA research coordination Geoling, Ames, IA, pp 141–145

    Google Scholar 

  • Kepler RM, Sung GH, Harada Y, Tanaka K, Tanaka E, Hosoya T, Bischoff JF, Spatafora JW (2012) Host jumping onto close relatives and across kingdoms by Tyrannicordyceps (Clavicipitaceae) gen. nov. and Ustilaginoidea (Clavicipitaceae). Am J Bot 99:552–561

    CAS  PubMed  Google Scholar 

  • Khambanonda PM (1978) Breeding in rice for high yield and better blast resistance. Thai Agric Sci 11(4):263–271

    Google Scholar 

  • Khan RA, Junaid AK, Jamil FF, Hamed M (2005) Resistance of different basmati rice varieties to stem borers under different control tactics of IPM and evaluation of yield. Pak J Bot 37:319–324

    Google Scholar 

  • Khursheed S, Laskar RA, Raina A et al (2015) Comparative analysis of cytological abnormalities induced in Vicia faba L. genotypes using physical and chemical mutagenesis. Chromosome Sci 18(3–4):47–51

    CAS  Google Scholar 

  • Khursheed S, Raina A, Khan S (2016) Improvement of yield and mineral content in two cultivars of Vicia faba L. through physical and chemical mutagenesis and their character association analysis. Arch Curr Res Int 4(1):1–7

    Google Scholar 

  • Khursheed S, Raina A, Amin R, Wani MR, Khan S (2018a) Quantitative analysis of genetic parameters in the mutagenized population of faba bean (Vicia faba L.). Res Crop 19(2):276–284

    Google Scholar 

  • Khursheed S, Raina A, Laskar RA, Khan S (2018b) Effect of gamma radiation and EMS on mutation rate: their effectiveness and efficiency in faba bean (Vicia faba L.). Caryologia 71(4):397–404

    Google Scholar 

  • Khursheed S, Raina A, Khan S (2018c) Physiological response of two cultivars of faba bean using physical and chemical mutagenesis. Int J Adv Res Sci Eng Technol 7(4):897–905

    Google Scholar 

  • Khursheed S, Raina A, Parveen K, Khan S (2019) Induced phenotypic diversity in the mutagenized populations of faba bean using physical and chemical mutagenesis. J Saudi Soc Agric Sci 18(2):113–119. https://doi.org/10.1016/j.jssas.2017.03.001

    Article  Google Scholar 

  • Kihoro J, Bosco NJ, Murage H, Ateka E, Makihara D (2013) Investigating the impact of rice blast disease on the livelihood of the local farmers in greater Mwea region of Kenya. Springerplus 2:308. https://doi.org/10.1186/2193-1801-2-308

    Article  PubMed  PubMed Central  Google Scholar 

  • Krishnamurthy K, Balconi C, Sherwood JE, Giroux MJ (2001) Wheat puroindolines enhance fungal disease resistance in transgenic rice. Mol Plant-Microbe Interact 14:1255–1260

    CAS  PubMed  Google Scholar 

  • Kumar S, Chandra A, Pandey KC (2008) Bacillus thuringiensis (Bt) transgenic crop: an environment friendly insect-pest management strategy. J Environ Biol 29(5):641–653

    CAS  PubMed  Google Scholar 

  • Kumar M, Brar A, Yadav M, Chawade A, Vivekanand V, Pareek N (2018) Chitinases—potential candidates for enhanced plant resistance towards fungal pathogens. Agriculture 8(7):88

    Google Scholar 

  • Laskar RA, Khan S, Khursheed S, Raina A, Amin R (2015) Quantitative analysis of induced phenotypic diversity in chickpea using physical and chemical mutagenesis. J Agron 14:3–102

    Google Scholar 

  • Laskar RA, Laskar AA, Raina A, Amin R (2018a) Induced mutation analysis with biochemical and molecular characterization of high yielding lentil mutant lines. Int J Biol Macromol 109:167–179

    CAS  PubMed  Google Scholar 

  • Laskar RA, Wani MR, Raina A, Amin R, Khan S (2018b) Morphological characterization of gamma rays induced multipodding mutant (mp) in lentil cultivar Pant L 406. Int J Radiat Biol 94(11):1049–1053

    Google Scholar 

  • Laskar RA, Khan S, Deb CR, Tomlekova N, Wani MR, Raina A, Amin R (2019) Lentil (Lens culinaris Medik.) diversity, cytogenetics and breeding. In: Al-Khayri JM et al (eds) Advances in plant breeding: legumes. Springer, Cham. https://doi.org/10.1007/978-3-030-23400-3_9

    Chapter  Google Scholar 

  • Li H, Zhou SY, Zhao WS, Su SC, Peng YL (2009) A novel wall associated receptor-like kinase gene, OsWAK1, plays important roles in rice blast disease resistance. Plant Mol Biol 69:337–346

    CAS  PubMed  Google Scholar 

  • Li T, Liu B, Spalding MH, Weeks DP, Yang B (2012) High-efficiency TALEN-based gene editing produces disease-resistant rice. Nat Biotechnol 30:390–392. https://doi.org/10.1038/nbt.2199

    Article  CAS  PubMed  Google Scholar 

  • Lin W, Anuratha CS, Datta K, Potrykus I, Muthukrishnan S, Datta SK (1995) Geneticengineering of rice for resistance to sheath blight. Biotechnology 13:686–691

    CAS  Google Scholar 

  • Ling KC (1980) Studies on rice diseases. In: Rice improvement in China and other Asian countries. International Rice Research Institute and Chinese Academy of Agricultural Science, pp 135–148

    Google Scholar 

  • Liu G, Jia Y, Correa-Victoria F, Prado GA, Yeater KM, McClung A, Correll JC (2009) Mapping quantitative trait loci responsible for resistance to sheath blight in rice. Phytopathology 99:1078–1084

    CAS  PubMed  Google Scholar 

  • Liu M, Sun ZX, Zhu J, Xu T, Harman GE, Lorito M (2004) Enhancing rice resistance to fungal pathogens by transformation with cell wall degrading enzyme genes from Trichoderma atroviride. J Zhejiang Univ Sci 5:133–136

    CAS  PubMed  Google Scholar 

  • Lou YG, Zhang GR, Zhang WQ, Hu Y, Zhang J (2013) Biological control of rice insect pests in China. Biol Control 67(1):8–20

    Google Scholar 

  • Macovei A, Sevilla NR, Cantos C, Jonson GB, Slamet-Loedin I, Cermak T et al (2018) Novel alleles of rice eIF4G generated by CRISPR/Cas9-targeted mutagenesis confer resistance to Rice tungro spherical virus. Plant Biotechnol J. https://doi.org/10.1111/pbi.12927. [Epub ahead of print]

  • Mahmood-ur-Rahman RH, Shahid AA, Bashir K, Husnain T, Riazuddin S (2007) Insect resistance and risk assessment studies of advanced generations of basmati rice expressing two genes of Bacillus thuringiensis. Electron J Biotechnol 10:241–251

    Google Scholar 

  • Mauch F, Reimmann C, Freydl E, Schaffrath U, Dudler R (1998) Characterization of the rice pathogen-related protein Rir1a and regulation of the corresponding gene. Plant Mol Biol 38:577–586

    CAS  PubMed  Google Scholar 

  • Mishra R, Joshi RK, Zhao K (2018) Genome editing in rice: recent advances, challenges, and future implications. Front Plant Sci 9:1361

    PubMed  PubMed Central  Google Scholar 

  • Moens M, Perry RN, Starr JL (2009) Meloidogyne species—a diverse group of novel and important plant parasites. In: Nematodes R-k, Perry RN, Moens M, Starr JL (eds) Root-knot nematodes. CABI International, Cambridge, MA, pp 1–17

    Google Scholar 

  • Mohamad O, Nazir BM, Alias I, Azlan S, Abdul RH, Abdullah MZ, Othman O, Hadzim K, Saad A, Habibuddin H, Golam F (2006) Development of improved rice varieties through the use of induced mutations in Malaysia. Plant Mut Rep 1(1):27–33

    Google Scholar 

  • Muller HJ (1927) Artificial transmutation of the gene. Science 66(1699):84–87

    CAS  PubMed  Google Scholar 

  • Muralidharan K, Krishnaveni D, Rajarajeshwari NVL, Prasad ASR (2003) Tungro epidemic and yield losses in paddy fields in India. Curr Sci 85:1143–1147

    Google Scholar 

  • Nagadhara D, Ramesh S, Pasalu IC, Rao YK, Krishnaiah NV, Sarma NP, Bown DP, Gatehouse JA, Reddy VD, Rao KV (2003) Transgenic indica rice resistant to sap-sucking insects. Plant Biotechnol J 1:231–240

    CAS  PubMed  Google Scholar 

  • Nishizawa Y, Saruta M, Nakazono K, Nishio Z, Soma M, Yoshida T, Nakajima E, Hibi T (2003) Characterization of transgenic rice plants over-expressing the stress-inducible beta-glucanase gene Gns1. Plant Mol Biol 51:143–152

    CAS  PubMed  Google Scholar 

  • Onaga G, Wydra K (2016) Advances in plant tolerance to biotic stresses. Plant Genomics, pp 229–272

    Google Scholar 

  • Ou SH (1985) Rice diseases, 2nd edn. Commonwealth Mycological Institute, Kew, p 370

    Google Scholar 

  • Pathak MD, Dyck VA (1973) Developing an integrated method of rice insect pest control. PANS 12:534–544

    Google Scholar 

  • Pathak MD, Khan ZR (1994) Insect-pests of Rice. International Rice Research Institute, Manila, p 89

    Google Scholar 

  • Patnaik, NC (1969 August) Pathogenicity of meloidogyne graminicola (Golden and Birchfield, 1965) in rice. All India nematology symposium, pp. 12. New Delhi (Abstr.)

    Google Scholar 

  • Prasad JS, Varaprasad KS (2001) Ufra nematode, Ditylenchus angustus is seed borne. Crop Prot 21(1):75–76

    Google Scholar 

  • Prot JC, Matias D (1995) Effects of water regime on the distribution of Meloidogyne graminicola and other root-parasitic nematodes in a rice field toposequence and pathogenicity of M. graminicola on rice cultivar UPL R15. Nematologica 41:219–228

    Google Scholar 

  • Qin X, Liu JH, Zhao WS, Chen XJ, Guo ZJ, Peng YL (2013) Gibberellin 20-oxidase gene OsGA20ox3 regulates plant stature and disease development in rice. Mol Plant Microbe Interact 26(2):227–239

    CAS  PubMed  Google Scholar 

  • Quilis J, Penas G, Messeguer J, Brugidou C, San Segundo B (2008) The arabidopsis AtNPR1 inversely modulates defense responses against fungal, bacterial, or viral pathogens while conferring hypersensitivity to abiotic stresses in transgenic rice. Mol Plant-Microbe Interact 21:1215–1231

    CAS  PubMed  Google Scholar 

  • Raina A, Danish M (2018) Mutagenesis in plant breeding for disease and pathogen resistance. Agric Res Technol 13(1):1–2

    Google Scholar 

  • Raina A, Laskar RA, Khursheed S, Amin R, Parveen K, Khan S (2016) Role of mutation breeding in crop improvement-past, present and future. Asian Res J Agr 2:1–13

    Google Scholar 

  • Raina A, Laskar RA, Khursheed S, Khan S, Parveen K, Amin R (2017) Induce physical and chemical mutagenesis for improvement of yield attributing traits and their correlation analysis in chickpea. Int Let Nat Sci 61:14–22

    Google Scholar 

  • Raina A, Khursheed S, Khan S (2018a) Optimisation of mutagen doses for gamma rays and sodium azide in cowpea genotypes. Trends Biosci 11(13):2386–2389

    Google Scholar 

  • Raina A, Laskar RA, Jahan R, Khursheed S, Amin R, Wani MR, Nisa TN, Khan S (2018b) Mutation breeding for crop improvement. In: Ansari MW, Kumar S, Babeeta CK, Wattal RK (eds) Introduction to challenges and strategies to improve crop productivity in changing environment. Enriched Publications, New Delhi, pp 303–317

    Google Scholar 

  • Raina A, Danish M, Khan S, Sheikh H (2019a) Role of biological agents for the management of plant parasitic nematodes. In: Kumar P, Tiwari AK, Kamle M, Abbas Z, Singh P (eds) Plant pathogens: detection and management for sustainable agriculture. CRC

    Google Scholar 

  • Raina A, Khan S, Laskar RA, Wani MR, Mushtaq W (2019b) Chickpea (Cicer arietinum L.) cytogenetics, genetic diversity and breeding. In: Al-Khayri JM et al (eds) Advances in plant breeding: legumes. Springer, Cham. https://doi.org/10.1007/978-3-030-23400-3_3

    Chapter  Google Scholar 

  • Raina A, Laskar RA, Tantray YR, Khursheed S, Wani MR, Khan S (2020) Characterization of induced high yielding cowpea mutant lines using physiological, biochemical and molecular markers. Sci Rep 10(1):1–22

    Google Scholar 

  • Ramesh S, Nagadhara D, Reddy VD, Rao KV (2004) Production of transgenic indica rice resistant to yellow stem borer and sapsucking insects, using super-binary vectors of Agrobacterium tumefaciens. Plant Sci 166:1077–1085

    CAS  Google Scholar 

  • Raychaudhury SP, Mishra MD, Ghosh A (1967a) Preliminary note on transmission of virus, a disease resembling tungro of rice in India and other virus-like symptoms. Plant Dis Rep 51:300–301

    Google Scholar 

  • Raychaudhury SP, Mishra MD, Ghosh A (1967b) Virus disease that resembled tungro. Indian Farm 173:29–33

    Google Scholar 

  • Richa K, Tiwari IM, Devanna B, Botella JR, Sharma V, Sharma TR (2017) Novel chitinase gene LOC_Os11g47510 from Indica Rice Tetep provides enhanced resistance against sheath blight pathogen rhizoctonia solani in rice. Front Plant Sci 8:596

    PubMed  PubMed Central  Google Scholar 

  • Rivera CT, Ou SH (1965) Leafhopper transmission of tungro disease of rice. Plant Dis Rep 49:127–131

    Google Scholar 

  • Rong J, Lu BR, Song Z, Su J, Snow AA, Zhang X, Sun S, Chen R, Wang F (2007) Dramatic reduction of crop-to-crop gene flow within a short distance from transgenic rice fields. New Phytol 173:346–353

    PubMed  Google Scholar 

  • Saha S, Garg R, Biswas A, Rai AB (2015) Bacterial diseases of rice: an overview. J Pure Appl Microbiol 9(1):725–736

    Google Scholar 

  • Sasaya T (2015) Detection methods for rice viruses by a reverse-transcription loop-mediated isothermal amplification (RT-LAMP). Methods Mol Biol 1236:49–59

    CAS  PubMed  Google Scholar 

  • Sasaya T, Aoki H, Omura T, Yatou O, Saito K (2013) Development of virus-resistant transgenic forage rice cultivars. Front Microbiol 4:409

    Google Scholar 

  • Satpathi CR, Chakraborty K, Shikari D, Acharjee P (2012) Consequences of feeding by yellow stem borer (Scirpophaga incertulas Walk.) on rice cultivar Swarna Mashuri (MTU 7029). World Appl Sci J 17:532–539

    Google Scholar 

  • Shah JM, Raghupathy V, Veluthambi K (2009) Enhanced sheath blight resistance in transgenic rice expressing an endochitinase gene from Trichoderma virens. Biotechnol Lett 31:239. https://doi.org/10.1007/s10529-008-9856-5

    CAS  PubMed  Google Scholar 

  • Shamim M, Singh KN (eds) (2017) Biotic stress management in rice: molecular approaches. CRC

    Google Scholar 

  • Shen X, Yuan B, Liu H, Li X, Xu C, Wang S (2010) Opposite functions of a rice mitogen-activated protein kinase during the process of resistance against Xanthomonas oryzae. Plant J 64:86–99

    CAS  PubMed  Google Scholar 

  • Shu QY (2009) Induced plant mutations in the genomics era. Food and Agriculture Organization of the United Nations, Rome, pp 425–427

    Google Scholar 

  • Shu Q, Wu D, Xia Y (1997) The most widely cultivated rice variety ‘Zhefu 802’ in China and its genealogy, no 43, pp 3–5

    Google Scholar 

  • Shu QU, Ye GY, Cui HR, Cheng XY, Xiang YB, Wu DX, Gao MW, Xia YW, Hu C, Sardana R et al (2000) Transgenic rice plants with a synthetic cry1Ab gene from Bacillus thuringiensis were highly resistant to eight lepidopteran rice pest species. Mol Breed 6:433–439

    CAS  Google Scholar 

  • Singh RA, Dubey KS (1984) Sclerotial germination and ascospore formation of Claviceps oryzae-sativae in India. Ind Phytopathol 37:168–170

    Google Scholar 

  • Singh GP, Srivastava MK, Singh RV, Singh RM (1977) Variation in quantitative and qualitative losses caused by bacterial blight in different rice varieties. Ind Phytopath 30:180–185

    Google Scholar 

  • Singh S, Sidhu JS, Huang N, Vikal Y, Li Z, Brar DS, Dhaliwal HS, Khush GS (2001) Pyramiding three bacterial blight resistance genes (xa5, xa13 and Xa21) using marker-assisted selection into indica rice cultivar PR106. Theor Appl Genet 102(6–7):1011–1015

    CAS  Google Scholar 

  • Song WY, Wang GL, Chen LL, Kim HS, Pi LY, Holsten T, Gardner J, Wang B, Zhai WX, Zhu LH et al (1995) A receptor kinaselike protein encoded by the rice disease resistance gene, Xa21. Science 270:1804–1806

    CAS  Google Scholar 

  • Soriano IR, Schmidt V, Brar D, Prot JC, Reversat G (1999) Resistance to rice rootknot nematode Meloidogyne graminicola identified in Oryza longistaminata and O. glaberrima. Nematology 1(4):395–398

    Google Scholar 

  • Soriano IR, Riley IT, Potter MJ, Bowers WS (2004) Phytoecdysteroids: a novel defense against plant parasitic nematodes. J Chem Ecol 30:1885–1889

    CAS  PubMed  Google Scholar 

  • Sripriya R, Parameswari C, Veluthambi K (2017) Enhancement of sheath blight tolerance in transgenic rice by combined expression of tobacco osmotin (ap24) and rice chitinase (chi11) genes. In Vitro Cell Dev Biol Plant 53:12–21

    CAS  Google Scholar 

  • Srivastava D, Pandey P, Khan NA, Singh KN (2017) Molecular approaches for controlling blast disease in rice. In: Biotic stress management in rice. Apple Academic, pp 47–107

    Google Scholar 

  • Stadler LJ (1928) Mutations in barley induced by x-rays and radium. Science 68:186–187

    CAS  PubMed  Google Scholar 

  • Sun XL, Cao YL, Yang ZF, Xu CG, Li XH, Wang SP, Zhang QF (2004) Xa26, a gene conferring resistance to Xanthomonas oryzae pv. oryzae in rice, encodes an LRR receptor kinase-like protein. Plant J 37:517–527

    CAS  PubMed  Google Scholar 

  • Sundaram RM, Chatterjee S, Oliva R, Laha GS, Cruz LJE, Sonti RV (2014) Update on bacterial blight of rice: fourth international conference on bacterial blight. Rice 7:12

    PubMed  PubMed Central  Google Scholar 

  • Tanaka T, Ashizawa T, Sonoda R, Tanaka C (2008) Villosiclava virens gen. nov., com. nov., teleomorph of Ustilaginoidea virens, the causal agent of rice false smut. Mycotaxon 106:491–501

    Google Scholar 

  • Tandingan I, Prot JC, Davide R (1996) Influence of water management on tolerance of rice cultivars for Meloidogyne graminicola. Fundam Appl Nematol 19:189–192

    Google Scholar 

  • Tang KX, Sun XF, Hu QN, Wu AZ, Lin CH, Lin HJ, Twyman RM, Christou P, Feng TY (2001) Transgenic rice plants expressing the ferredoxin-like protein (API) from sweet pepper show enhanced resistance to Xanthomonas oryzae pv. Oryzae. Plant Sci 160:1035–1042

    CAS  PubMed  Google Scholar 

  • Tantray AY, Raina A, Khursheed S, Amin R, Khan S (2017) Chemical mutagen affects pollination and locule formation in capsules of black cumin (Nigella sativa L.). Intl J Agric Sci 8(1):108–117

    Google Scholar 

  • Tong X, Qi J, Zhu X, Mao B, Zeng L, Wang B, Li Q, Zhou G, Xu X, Lou Y, He Z (2012) The rice hydroperoxidelyase OsHPL3functions in defense responses by modulating the oxylipin pathway. Plant J 71(5):763–775

    CAS  PubMed  Google Scholar 

  • Tu J, Datta K, Khush GS, Zhang Q, Datta SK (2000a) Field performance of Xa21 transgenic indica rice (Oryza sativa L.), IR72. Theor Appl Genet 101:15–20

    CAS  Google Scholar 

  • Tu JM, Zhang GA, Datta K, Xu CG, He YQ, Zhang QF, Khush GS, Datta SK (2000b) Field performance of transgenic elite commercial hybrid rice expressing Bacillus thuringiensis δ-endotoxin. Nat Biotechnol 18:1101–1104

    CAS  PubMed  Google Scholar 

  • Uchimiya H, Iwata M, Nojiri C, Samarajeewa PK, Takamatsu S, Ooba S, Anzai H, Christensen AH, Quail PH, Toki S (1993) Bialaphos treatment of transgenic rice plants expressing a bar gene prevents infection by the sheath blight pathogen (Rhizoctonia solani). Bio Technol 11(7):835–836

    CAS  Google Scholar 

  • Vavilov NI (1926) Studies on the origin of cultivated plants. Bull Appl Biol 16:139–248

    Google Scholar 

  • Verma V, Sharma S, Devi SV, Rajasubramaniam S, Dasgupta I (2012) Delay in virus accumulation and low virus transmission from transgenic rice plants expressing Rice tungro spherical virus RNA. Virus Genes 45(2):350–359

    CAS  PubMed  Google Scholar 

  • Wang J, Tian D, Gu K, Yang X, Wang L, Zeng X, Yin Z (2017) Induction of Xa10-like genes in rice cultivar Nipponbare confers disease resistance to rice bacterial blight. Mol Plant-Microbe Interact 30(6):466–477

    CAS  PubMed  Google Scholar 

  • Wang Y, Li Y, Romeis J, Chen X, Zhang J, Chen H, Peng Y (2012) Consumption of Bt rice pollen expressing Cry2Aa does not cause adverse effects on adult Chrysoperla sinica Tjeder (Neuroptera: Chrysopidae). Biol Control 61:246–251

    CAS  Google Scholar 

  • Wang Y, Zhang L, Li H, Han L, Liu Y, Zhu Z, Wang F, Peng Y (2014) Expression of Cry1Ab protein in a marker-free transgenic Bt rice line and its efficacy in controlling a target pest Chilo suppressalis (Lepidoptera: Crambidae). Environ Entomol 43:528–536

    CAS  PubMed  Google Scholar 

  • Wang F, Wang C, Liu P, Lei P, Hao W, Gao Y et al (2016) Enhanced rice blast resistance by CRISPR/Cas9-targeted mutagenesis of the ERF transcription factor gene OsERF922. PLoS One 11:e0154027. https://doi.org/10.1371/journal.pone.0154027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wani MR, Dar AR, Tak A, Amin I, Shah NH, Rehman R, Baba MY, Raina A, Laskar R, Kozgar MI, Khan S (2017) Chemo-induced pod and seed mutants in mungbean (Vigna radiata L. Wilczek). SAARC J Agric 15(2):57–67

    Google Scholar 

  • Williamson VM, Gleason CA (2003) Plant–nematode interactions. Curr Opin Pl Biol 6(4):327–333

    CAS  Google Scholar 

  • Willocquet L, Elazegui FA, Castilla N, Fernandez L, Fischer KS, Peng S, Teng PS, Srivastava RK, Singh HM, Zhu D, Savary S (2004) Research priorities for rice disease and pest management in tropical Asia: a simulation analysis of yield losses and management efficiencies. Phytopathology 94:672–682

    PubMed  Google Scholar 

  • Yadav SK, Srivastava D (2017) Biotic stress management in rice through RNA interference. In: Biotic stress management in rice. Apple Academic, pp 363–394

    Google Scholar 

  • Yoshimura S, Komatsu M, Kaku K, Hori M, Ogawa T, Muramoto K, Kazama T, Yukihiro I, Toriyama K (2012) Production of transgenic rice plants expressing Dioscorea batatas tuber lectin 1 to confer resistance against brown planthopper. Plant Biotechnol 29(5):501–504

    CAS  Google Scholar 

  • Yuan H, Ming X, Wang L, Hu P, An C, Chen Z (2002) Expression of a gene encoding trichosanthin in transgenic rice plants enhances resistance to fungus blast disease. Plant Cell Rep 20:992–998

    CAS  Google Scholar 

  • Yuan Y, Zhong S, Li Q, Zhu Z, Lou Y, Wang L, Wang J et al (2007) Functional analysis of rice NPR1-like genes reveals that OsNPR1/NH1 is the rice orthologue conferring disease resistance with enhanced herbivore susceptibility. Plant Biotechnol J 5(2):313–324

    CAS  PubMed  Google Scholar 

  • Zhang Q (2007) Strategies for developing green super rice. Proc Natl Acad Sci 104(42):16402–16409

    Google Scholar 

  • Zhang MX, Xu JL, Luo RT, Shi D, Li ZK (2003) Genetic analysis and breeding use of blast resistance in a japonica rice mutant R917. Euphytica 130:71–76

    CAS  Google Scholar 

  • Zhang H, Wu Z, Wang C, Li Y, Xu JR (2014) Germination and infectivity of micro conidia in the rice blast fungus Magnaporthe oryzae. Nat Commun 5:4518. https://doi.org/10.1038/ncomms5518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou J, Peng Z, Long J, Sosso D, Liu B, Eom JS et al (2015) Gene targeting by the TAL effector PthXo2 reveals cryptic resistance gene for bacterial blight of rice. Plant J 82:632–643. https://doi.org/10.1111/tpj.12838

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Raina, A., Khan, S. (2020). Increasing Rice Grain Yield Under Biotic Stresses: Mutagenesis, Transgenics and Genomics Approaches. In: Roychoudhury, A. (eds) Rice Research for Quality Improvement: Genomics and Genetic Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-15-5337-0_8

Download citation

Publish with us

Policies and ethics