Skip to main content

History of Plant Mutation Breeding and Global Impact of Mutant Varieties

  • Chapter
  • First Online:
Mutation Breeding for Sustainable Food Production and Climate Resilience

Abstract

Hugo de Vries coined the term ‘Mutation’ in his classical hypothesis known as ‘Mutationtheorie’. Immediately after the discovery of mutagenic effects of X-rays on Drosophila by Muller and barley, maize by Stadler, about nine decades ago extensive experiments on induced mutations were initiated. In the three decades that followed the pioneering work of Muller and Stadler to understand the nature of mutations, induction techniques and their role in evolution, genetics and plant breeding, a great deal of work on basic aspects of induced mutation technique in understanding the mechanism of gene mutations, mode of action of physical and chemical mutagens was done world over. Several countries took up the task of crop improvement through the use of mutation technique in their classical breeding programmes as well as through molecular approaches. During 1950–1960, several countries took up the task of crop improvement through mutation breeding approaches, particularly after the establishment of the International Atomic Energy Agency (IAEA) which started coordinated programmes on the use of mutation breeding technique in a large number of crops in several countries of the world. Over 3500 mutant varieties belonging to >240 plant species including cereals, pulses, oilseeds, vegetables, fruits, fibres and ornamentals that have been developed and released by 2022 are evidence of the successful use of mutation technique in plant breeding. A wide range of characters including yield, flowering and maturity duration, plant architecture, quality and tolerance to biotic and abiotic stresses have been improved in the mutant varieties developed so far. As per the IAEA records, majority of these mutant varieties were developed and released as direct mutants, the rest were released through cross-breeding with mutants. Most of the mutant varieties have been developed using physical mutagens, with gamma rays alone accounting for the development of majority of the mutant varieties. Since induced mutagenesis is gaining importance in plant molecular biology as a tool to identify and isolate genes and to study their structure and function, interest in mutation techniques and mutation breeding has increased recently in several area of biological research. These studies have an enormous potential for future crop improvement programmes. To redesign our crops by placing important traits on genetic maps and to equip them with the genes and attributes that could meet the huge food production challenges, there is an urgent need to use a combination of molecular and induced mutation techniques. Large-scale use of mutation breeding methods have made a significant contribution to the national economies of several countries.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abe T et al (2007) Plant breeding using the ion beam irradiation in RIKEN. In: Cyclotrons and their applications, pp 222–224

    Google Scholar 

  • Abe T et al (2012) Ion beam mutagenesis. In: Shu QY et al (eds) Plant mutation breeding and biotechnology. CABI, Wallingford, UK, pp 99–106

    Chapter  Google Scholar 

  • Abe T et al (2015) Ion beam breeding and gene discovery for function analyses using mutants. Nucl Phys News 25:30–34

    Article  Google Scholar 

  • Abe T et al (2021) Ion beam mutagenesis – an innovative and effective method for plant breeding and gene discovery. In: Sivasankar S et al (eds) Mutation breeding, genetic diversity and crop adaptation to climate change. CABI, Wallingford, UK, pp 411–424

    Chapter  Google Scholar 

  • Ahloowalia B et al (2004) Global impact of mutation derived varieties. Euphytica 135(2):187–204

    Article  Google Scholar 

  • Altenberg E (1934) The artificial production of mutations by ultraviolet light. Am Naturalist 68:491–507

    Article  Google Scholar 

  • Amano E (1997) Mutation breeding in Japan and contribution to the region. In: Strategy paper on application of mutation techniques for crop improvement in East Asia and Pacific Region. IAEA, Vienna

    Google Scholar 

  • Ankineedu G, Sharma KD, Kulkarni LG (1968) Effect of fast neutrons and gamma-rays on castor. Indian J Genet 28:31–39

    Google Scholar 

  • Auerbach C (1941) The effect of sex on the spontaneous mutations rate in Drosophila melanogaster. J Genet 11:255–265

    Article  Google Scholar 

  • Auerbach C (1949) Chemical induction of mutations. In: Bonnier G, Larsson R (eds) Proc. Eighth Intl. Cong. Genetics. Berlingska Boktryckeriet, Lund, Sweden, pp 128–147

    Google Scholar 

  • Auerbach C, Robson JM (1946) Chemical production of mutations. Nature 157:302

    Article  CAS  PubMed  Google Scholar 

  • Bateson W (1894) Materials for the study of variation, treated with especial regard to discontinuity in the origin of species. Macmillan, London

    Book  Google Scholar 

  • Baur E (1924) Untersuchungen uber das Wesen, die Entstehung und die Vererbung von Rassenunterschieden bei Anthirrinum majus. Bibl Genet 4:1–170

    Google Scholar 

  • Beachell HM (1957) The use of X-ray and thermal neutrons in producing mutations in rice. Int Rice Comm Newsl 6(1):18–22

    Google Scholar 

  • Bridges CB (1916) Nondisjunction as a proof of chromosome theory of heredity. Genetics 1:107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brock RD (1965) Induced mutations affecting quantitative characters. In: The use of induced mutations in plant breeding (Rep. FAO/IAEA Tech. Meeting Rome, 1964). Pergamon Press, Oxford, pp 443–450

    Google Scholar 

  • Colbert T et al (2001) High-throughput screening for induced point mutations. Plant Physiol 126(2):480–484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Correns C (1900) G. Mendel’s Regal uber das Verhalten der Nach-kommenschaft der Rassenbasterde. Ber Deutsch Bot Ges 18:158–168

    Article  Google Scholar 

  • Cross MJ, Waters DL, Lee LS et al (2008) Endonucleolytic mutation analysis by internal labeling (EMAIL). Electrophoresis 29(6):1291–1301

    Article  CAS  PubMed  Google Scholar 

  • Darwin C (1859) On the origin of species by means of natural selection, or the preservation of favoured races in the struggle for life. John Murrey, London

    Book  Google Scholar 

  • Das G et al (2017) Corrigendum: Insight into MAS: a molecular tool for development of stress resistant and quality of rice through gene stacking. Front Plant Sci 8:1321

    Article  PubMed  PubMed Central  Google Scholar 

  • De Vries H (1889) Intracellulare pangenesis. Gustav Fischer Jena. (English translation, 1910. The Open Court, Chicago)

    Google Scholar 

  • De Vries H (1901) Die Mutationstheorie. I. Veit & Co., Leipzig, Germany. (English translation, 1910. The Open Court, Chicago)

    Google Scholar 

  • De Vries H (1903) Die Mutationstheorie. II. Veit & Co., Leipzig, Germany. (English translation, 1910. The Open Court, Chicago)

    Google Scholar 

  • Delaunay LN (1931) Resultate eines dreijahrigen Rontgen Versuch mit Weitzen. Der Zuchter 3:129–137

    Google Scholar 

  • Do K et al (2009) Socio-economic impacts of mutant rice varieties in Southern Vietnam. Induced plant mutations in the genomics era. FAO, Rome, pp 65–68

    Google Scholar 

  • Dribnenki JCP et al (1996) LinolaTM 989 low linolenic flax. Can J Plant Sci 76:329–331

    Article  Google Scholar 

  • FAO/IAEA Mutant Variety Database (2022). http://mvd.iaea.org. Accessed Mar 2022

  • Feng HY et al (2009) Mutagenic mechanisms of ion implantation in plants. In: Shu QY (ed) Induced plant mutations in the genomics era. Food and Agriculture Organization of the United Nations, Rome, pp 220–222

    Google Scholar 

  • Freese E (1959) On the molecular explanation of spontaneous and induced mutations. Brookhaven Symp Biol 12:63–73

    Google Scholar 

  • Freisleben R, Lein A (1942) Uber die Auffindung einer mehltauresistenten mutante nach Roentgenbestrahlung anfaelligen reinen Linnie von Sommergerste. Naturwissenschafen 30:608

    Article  Google Scholar 

  • Frey KJ (1955) Agronomic mutations in oats induced by X Ray treatment. Agron J 47:207–210

    Article  Google Scholar 

  • Gaul H (1961) Use of induced mutations in seed-propagated species. In: Mutation and plant breeding. National Acadedmy of Science, National Research Council, USA, pp 206–252

    Google Scholar 

  • Gaul H (1965) The concept of macro- and micro-mutations and results on induced micro-mutations in barley. In: The use of induced mutations in plant breeding (Rep. FAO/IAEA Tech. Meeting Rome, 1964). Pergamon Press, Oxford, pp 408–426

    Google Scholar 

  • Gaul H, Aastveit K (1966) Induced variability of culm length in different genotypes of hexaploid wheat, following X-irradiation and EMS-Treatment. Savremena Poljopr 14:253–276

    Google Scholar 

  • Gaul H et al (1969) Micromutations influencing yield in barley-studies over nine-generations. In: Induced mutations in plants. Proc. Symp. Pullman. IAEA, Vienna, pp 375–398

    Google Scholar 

  • Gómez-Pando L, Eguiluz A et al (2009) Barley (Hordeun vulgare) and kiwicha (Amaranthus caudatus) improvement by mutation induction in Peru. In: Induced plant mutations in the genomics era. Food and Agriculture Organization of the United Nations, Rome, pp 371–374

    Google Scholar 

  • Gottashalk W, Wolff G (1983) Induced mutations in plant breeding, Monograph on theoretical and applied genetics. Springer, Berlin, pp 323–327

    Book  Google Scholar 

  • Gregory WC (1955) X-ray breeding of peanuts (Arachis hypogaea). Agron J 47:396–399

    Article  CAS  Google Scholar 

  • Gregory WC (1965) Mutation frequency, magnitude of change and the probability of improvement in adaptation. In: The use of induced mutations in plant breeding. Pergamon Press, Oxford, pp 429–441

    Google Scholar 

  • Gregory W et al (1960) The peanut NC 4x, a milestone in crop breeding. Crops Soils 12(8):12–13

    Google Scholar 

  • Gu and Shen (1989) Effects of space flight on the growth and some cytological characteristics of wheat seedlings. Acta Photophysiol Sin 15(4):403–407

    Google Scholar 

  • Gustafsson A (1938) Studies on the genetic basis of chlorophyll formation and the mechanism of induced mutating. Hereditas 24:33–93

    Google Scholar 

  • Gustafsson A (1940) The mutation system of the chlorophyll apparatus. Acta Universitatis Lundensis 36:1–40

    Google Scholar 

  • Gustafsson A (1947) Mutations in agricultural plants. Hereditas 33:1–100

    Article  Google Scholar 

  • Gustafsson A (1963) Productive mutations induced in barley by ionizing radiations and chemical mutagens. Hereditas 50:211–263

    Article  CAS  Google Scholar 

  • Gustafsson A, Mackey J (1948) The genetic effects of mustard gas substances and neutrons. Hereditas 34:371–386

    Article  CAS  Google Scholar 

  • Gustafsson A et al (1967) Yield reactions and rates of origin of Chromosome mutations in barley. Hereditas 56:200–206

    Article  Google Scholar 

  • Hanson FR, Heys F (1929) An analysis of the effects of the different types of radium in Drosophila. Am Nat 63:201–213

    Article  CAS  Google Scholar 

  • Haq MA (2009) Development of mutant varieties of crop plants at NIAB and the impact on the agricultural production in Pakistan. In: Shu QY (ed) Induced mutations in the genomic era. Food and Agriculture Organization of the United Nations, Rome, Italy, pp 61–64

    Google Scholar 

  • Haq MA et al (1988) Improvement of chickpea through induced mutations. In: Proc. FAO/IAEA workshop on improvement of grain legume production using induced mutations, 1–5 July, 1986, Pullman, Washington (USA). IAEA, Vienna, pp 75–88

    Google Scholar 

  • Hassan S et al (2001) Gamma ray induced high yielding Kabuli type chickpea mutant variety “Hassan-2K”. Pak J Bot 33:703–707

    Google Scholar 

  • Hodgens C et al (2020) Mutagenomics: a rapid high-throughput method to identify causative mutations from a genetic screen. Plant Physiol 184(4):1658–1673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ishii A, Sato T, Wachi M et al (2004) Effects of high hydrostatic pressure on bacterial cytoskeleton FtsZ polymers in vivo and in vitro. Microbiology 150:1965–1972

    Article  CAS  PubMed  Google Scholar 

  • Johannsen W (1909) Elemente der Exakten Erhlichkeitenlehre. Gustav Fischer, Jena, p 516

    Google Scholar 

  • Johannsen W (1913) Elements der exakten Erblichkeitslehre. Gustav Fischer, Jena, p 723

    Google Scholar 

  • Khan MH, Tyagi SD (2013) A review on induced mutagenesis in soybean. J Cereals Oilseeds 4(2):19–25

    Article  CAS  Google Scholar 

  • Kharkwal MC (1996) Accomplishments of mutation breeding in crop improvement in India. In: Sachdev MS et al (eds) Isotopes & radiations in agriculture and environment research. Indian Society for Nuclear Techniques in Agriculture and Biology, New Delhi, pp 196–218

    Google Scholar 

  • Kharkwal MC (1998a) Induced mutations for improvement of protein in chickpea (Cicer arietinum L.). Indian J Genet 58(1):61–68

    CAS  Google Scholar 

  • Kharkwal MC (1998b) Induced mutations in chickpea (Cicer arietinum L.). I. Comparative mutagenic effectiveness and efficiency of physical and chemical mutagens. Indian J Genet Plant Breed 58(2):159–167

    CAS  Google Scholar 

  • Kharkwal MC (1998c) Induced mutations in chickpea (Cicer arietinum L.). II. Frequency and spectrum of chlorophyll mutations. Indian J Genet Plant Breed 58(4):465–474

    Google Scholar 

  • Kharkwal MC (1999) Induced mutations in chickpea (Cicer arietinum L.). III. Frequency and spectrum of viable mutations. Indian J Genet Plant Breed 59(4):451–464

    Google Scholar 

  • Kharkwal MC (2000) Induced mutations in chickpea (Cicer arietinum L.) IV. Types of macro-mutations induced. Indian J Genet 60:305–320

    Google Scholar 

  • Kharkwal MC (2001) Induced mutations in chickpea (Cicer arietinum L.). V. Evaluation of micromutations. Indian J Genet Plant Breed 61(2):115–124

    Google Scholar 

  • Kharkwal MC (2003) Induced mutations in chickpea (Cicer arietinum L.). VI. Significance of induced altered correlations. Indian J Genet Plant Breed 63(3):219–224

    Google Scholar 

  • Kharkwal M (2012) A brief history of plant mutagenesis. Plant mutation breeding and biotechnology. CABI, Wallingford, pp 21–30

    Book  Google Scholar 

  • Kharkwal MC (2017) Mutation breeding for crop improvement. Geography You 17(102):26–32

    Google Scholar 

  • Kharkwal MC, Shu QY (2009) Role of induced mutations in world food security. In: Induced plant mutations in the genomics era. FAO, Rome, pp 33–38

    Google Scholar 

  • Kharkwal MC et al (1988) Induced mutations for improvement of chickpea, lentil, pea and cowpea. In: Improvement of grain legume production using induced mutations, Proc. FAO/IAEA Workshop, 1–5 July 1986, Pullman, Washington, USA. IAEA, Vienna, pp 89–109

    Google Scholar 

  • Kharkwal MC et al (2001) Seventy five years of research on induced mutations with special reference to crop improvement in India. In: Ramamurty N et al (eds) Proceedings of NAARRI international conference on applications of radioisotopes and radiation technology in the 21st century, Mumbai, pp 230–235

    Google Scholar 

  • Kharkwal MC et al (2004) Mutation breeding in crop improvement. In: Jain HK, Kharkwal MC (eds) Plant breeding – Mendelian to molecular approaches. Narosa Publishing House, New Delhi, India, pp 601–645

    Google Scholar 

  • Kharkwal MC et al (2005) Pusa-547, a high yielding chickpea (Cicer arietinum L.) mutant variety for late sown conditions of North Western Plains Zone of India. Indian J Genet 65:229–230

    Google Scholar 

  • Kleinhofs A et al (1978) Induction and selection of specific gene mutations in Hordeum and Pisum. Mutat Res 51:29–35

    Article  CAS  Google Scholar 

  • Knapp E (1950) Grundfragen der experimentallen mutations anslosung und bedautung fur die praktische pflanzenzuchtung. Vortrag auf der Pflazen Zuchtertagung Einbeck:1–20

    Google Scholar 

  • Konzak CF (1954) Stem rust resistance in oats induced by nuclear radiation. Agron J 46:538–540

    Article  Google Scholar 

  • Konzak CF et al (1984) Induced mutations in seed propagated crops. In: Janick J (ed) Plant breeding reviews, vol 2. AVI Publishing Company, Westport, CT, pp 13–72

    Google Scholar 

  • Larter EN et al (1965) Redwood 65, an improved flax variety. Can J Plant Sci 45(5):515–516. https://doi.org/10.4141/cjps65-100

    Article  Google Scholar 

  • Le TD et al (2021) Soybean breeding through induced mutation in Vietnam. In: Sivasankar S et al (eds) Mutation breeding, genetic diversity and crop adaptation to climate change. CABI, Wallingford, UK, pp 40–46

    Chapter  Google Scholar 

  • Lee LS et al (2009) EMAIL – a highly sensitive tool for specific mutation detection in plant improvement programmes. In: Shu QY (ed) Induced plant mutations in the genomics era. Food and Agriculture Organization of the United Nations, Rome, Italy, pp 243–244

    Google Scholar 

  • Letsari P. et al (2016) Genetic Diversity of Japonica Rice (Oryza sativa L.) based on Markers corresponding to Starch Synthesizing Genes. Makara Journal of Science: 20:2, 49-54. DOI: 10.7454mss.v20i2.5947

    Google Scholar 

  • Li S (2013) Space breeding seeds to bring benefits to TCM. http://news.xinhuanet.com/english/china/2013-07/04/c_132512624.htm. Accessed 5 July 2013

  • Liu L (2021) New breakthroughs in plant mutation breeding prominent among top ten scientific research advances in China in 2019. FAO/IAEA Plant Breed Genet Newsl 46:20–22

    Google Scholar 

  • Liu F, Cao M et al (2005) Screening a RAPD marker related to the maize male sterility gene obtained by space flight. J Sichuan Agric Univ 23(1):19–23

    CAS  Google Scholar 

  • Liu L et al (2021) New mutation techniques for crop improvement in China. In: Sivasankar S et al (eds) Mutation breeding, Genetic Diversity and Crop Adaptation to Climate Change. CABI, Wallingford, UK, pp 47–52

    Chapter  Google Scholar 

  • Lundqvist U (2009) Eighty years of Scandinavian barley mutation genetics and breeding. In: Shu QY (ed) Induced mutations in the genomic era. Food and Agriculture Organization of the United Nations, Rome, Italy, pp 39–43

    Google Scholar 

  • Lundqvist U (2014) Scandinavian mutation research in barley – a historical review. Hereditas 151(6):123–131

    Article  PubMed  Google Scholar 

  • Lundqvist U (2021) Scandinavian mutation research during the past 90 years – a historical review. In: Sivasankar S et al (eds) Mutation breeding, genetic diversity and crop adaptation to climate change. CABI, Wallingford, UK, pp 10–23

    Chapter  Google Scholar 

  • Luria SE, Delbruck M (1943) Mutation of bacteria from virus sensitivity to virus resistance. Genetics 28:491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mabbett T (1992) Herbicide tolerant crops – ICI seeds leads the way. Int Pest Control 34(2):49–50

    Google Scholar 

  • MacKey J (1954) Neutron and X-ray experiments in wheat and a revision of the speltoid problem. Hereditas 40:65–180

    Google Scholar 

  • Mak C et al (1996) Novaria – a new banana mutant induced by gamma irradiation. InfoMusa 5(1):35–36

    Google Scholar 

  • Maluszynski M et al (1995) Mutation techniques in plant breeding. In: Proc. IAEA/FAO Symp., on induced mutations and molecular techniques for crop improvement, Vienna, June 19–23, 1995, pp 489–504

    Google Scholar 

  • Maluszynski M et al (2000) Officially released mutant varieties – the FAO/IAEA database. Mutat Breed Rev 12:1–84

    Google Scholar 

  • Matsumoto K, Yamaguchi H (1991) Induction and selection of aluminium tolerance in banana. In: Proc FAO/IAEA Symp on plant mutation breeding for crop improvement, Vienna, 1990, vol 2. IAEA, Vienna, pp 249–256

    Google Scholar 

  • Mei M, Qin Y, Sun Y (1998) Morphological and molecular changes of maize plants after seeds been flown on recoverable satellite. Adv Space Res 22:1691–1697

    Article  CAS  PubMed  Google Scholar 

  • Morgan TH (1910) Sex limited inheritance in Drosophila. Science 32:120–122

    Article  CAS  PubMed  Google Scholar 

  • Morgan TH (1912) Further experiments with mutations in eye-colour of Drosophila: the loss of the orange factor. J Acad Nat Sci Phila 5:321–346

    Google Scholar 

  • Muller HJ (1927) Artificial transmutation of gene. Science 66:84–87

    Article  CAS  PubMed  Google Scholar 

  • Muller HJ (1930) Types of visible variations induced by X-rays in Drosophila. J Genet 22:299–333

    Article  Google Scholar 

  • Muller HJ (1954) The nature of genetic effects produced by radiation. In: Holleander A (ed) Radiation biology, vol 1. McGraw Hill, New York, pp 351–473

    Google Scholar 

  • Nakagawa H (2021) History of mutation breeding and molecular research using induced mutations in Japan. In: Sivasankar S et al (eds) Mutation breeding, genetic diversity and crop adaptation to climate change. CABI, Wallingford, UK, pp 24–39

    Chapter  Google Scholar 

  • Nichterlein K (1999) The role of induced mutations in the improvement of common beans (Phaseolus vulgaris L.). Mutat Breed Newsl 44:6–9

    Google Scholar 

  • Nichterlein K et al (2000) Achievements and trends of using induced mutations in crop improvement. In: Proc., DAE-BRNS Symp., Dec. 6–8, 2000, Mumbai, India, pp 27–35

    Google Scholar 

  • Oehlker F (1943) Chromosome mutation in meiosis by chemicals. In: Auerbach C (ed) Mutation research – problems, results and prospects. Chapman and Hall, UK

    Google Scholar 

  • Oliver CP (1930) The effect of varying the duration of X-ray treatment upon the frequency of mutation. Science 71:44

    Article  CAS  PubMed  Google Scholar 

  • Patil SH et al (1995) Semi-dwarf early maturing and high yielding new groundnut variety, TAG-24. J Oilseed Res 12:254–257

    Google Scholar 

  • Poli Y (2013) Characterization of a Nagina-22 rice mutant for heat tolerance and mapping of yield traits. Rice 6(1):36

    Article  PubMed  PubMed Central  Google Scholar 

  • Rapoport IA (1946) Carbonyl compounds and the chemical mechanism of mutation. C R Doklady Acad Sci USSR 54:65

    CAS  Google Scholar 

  • Rapoport IA (1948) Alkylation of gene molecule. C R Doklady Acad Sci USSR 59:1183–1186

    CAS  Google Scholar 

  • Roentgen W (1895) Uber eine neue Art von Strahlen. Vorlaufige Mitteilung. In: Aus denSitzungsberichten der Würzburger Physik-Medic. Gesellschaft Wurzburg, pp 137–147

    Google Scholar 

  • Rutger JN (1992) Impact of mutation breeding in rice. A review. Mutation breeding review, vol 8. IAEA, Vienna

    Google Scholar 

  • Rutger JN, Peterson ML, Hu C (1977) Registration of Calrose 76 Rice1 (Reg. No. 45). Crop Sci 17(6):978–978

    Article  Google Scholar 

  • Sadiq MS et al (2008) A high yielding and disease resistant mutant of lentil developed through seed irradiation of an exotic germplasm. Can J Pure Appl Sci 2:411

    Google Scholar 

  • Saito T (2016) Advances in Japanese pear breeding in Japan. Breed Sci 66(1):46–59

    Article  PubMed  PubMed Central  Google Scholar 

  • Sapehin AA (1930) Rontgen-mutationen beim Weizen (Triticum vulgare). Der Zuchter 2:257–259

    Google Scholar 

  • Sapehin AA (1936) X-ray mutants in soft wheat. Bull Appl Bot Genet Plant Breed Ser II 9:3–37

    Google Scholar 

  • Sato Y, Shirasawa K, Takahashi Y et al (2006) Mutant selection from progeny of gamma-ray irradiated rice by DNA Heteroduplex Cleavage using Brassica petiole extract. Breed Sci 56:179–183

    Article  CAS  Google Scholar 

  • Sauls JW (1999) Texas citrus - root stock and scion varieties. http://aggie-horticulture.tamu.edu/citrus/12304.htm. pp 1–7

  • Scarascia-Mugnozza GT, D’Mato F et al (1991) Mutation breeding programme for durum Wheat (Triticum turgidum ssp. durum Desf.) improvement in Italy. In: Proc. FAO/IAEA Symp. on plant mutation breeding for crop improvement, June 18–22, 1991

    Google Scholar 

  • Scossiroli RE et al (1966) Studies on the induction of new genetic variability for quantitative traits by seed irradiation and its use for wheat improvement. In: Mutations in plant breeding (Proc. Panel Vienna, 1966). IAEA, Vienna, pp 197–229

    Google Scholar 

  • Sheikh MAQ et al (1982) A high-yielding and high-protein mutant of chickpea (Cicer arietinum L.) derived through mutation breeding. Environ Exp Bot 22:483–389

    Article  Google Scholar 

  • Shu QY (2009) Turning plant mutation breeding into a new era: molecular mutation breeding. In: Shu QY (ed) Induced plant mutations in the genomics era. Food and Agriculture Organization of the United Nations, Rome

    Google Scholar 

  • Shu QY, Forster BP, Nakagawa H (2012) Plant mutation breeding and biotechnology. CABI FAO, Oxfordshire, UK, pp 1–608

    Book  Google Scholar 

  • Siddique SM et al (1999) Development of mungbean variety ‘NIAB Mung-98’ involving induced mutants through conventional breeding. Mutat Breed Newsl 44:11–13

    Google Scholar 

  • Sigurbjörnsson B (1975) Methods of mutation induction, including efficiency, and utilization of induced genetic variability. Barley Genet III:84–95

    Google Scholar 

  • Sigurbjornsson B, Micke A (1974) Philosophy and accomplishments of mutation breeding. In: Polyploidy & induced mutations in plant breeding proceedings

    Google Scholar 

  • Stadler LJ (1928) Genetic effect of X-rays in maize. Proc Natl Acad Sci U S A 14:69–75

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stadler LJ (1930) Some genetic effects of X-rays in plants. J Hered 21:3–19

    Article  Google Scholar 

  • Stadler LJ (1941) Genetic studies with ultraviolet radiation. In: Punnet RC (ed) Proc. Seventh Intl. Congress of Genetics. Cambridge University Press, Cambridge, pp 269–276

    Google Scholar 

  • Stubbe H (1934) Einige Kleinmutationen von Anthirrinum majus’ L. Zuechter 6:299–303

    Article  Google Scholar 

  • Suprasanna P, Nakagawa H (2012) Mutation breeding of vegetatively propagated crops. Plant mutation breeding and biotechnology. Food and Agriculture Organization of the United Nations, Rome, pp 347–358

    Google Scholar 

  • Swaminathan MS (1963) Evaluation of the use of induced micro- and macro-mutations in the breeding of polyploid crop plants. In: Symp application of nuclear energy in agriculture, Rome, 1961, pp 241–277

    Google Scholar 

  • Swaminathan MS (1965) A comparison of mutation induction in diploids and polyploids. In: The use of induced mutations in plant breeding (Rep. FAO/IAEA Tech. Meeting, Rome, 1964). Pergamon Press, Oxford, pp 619–641

    Google Scholar 

  • Swaminathan MS et al (1968) Mutations in plant breeding II. IAEA, Vienna, p 233

    Google Scholar 

  • Till BJ, Afza R, Bado S et al (2009) Global TILLING Projects. In: Shu QY (ed) Induced plant mutations in the genomics era. Food and Agriculture Organization of the United Nations, Rome, pp 237–239

    Google Scholar 

  • Timofeeff-Ressovsky NW (1941) Mechanismus der punktmutation. In: Punnet RC (ed) Proc. Seventh Intl. Cong. Cambridge University Press, Cambridge, pp 281–294

    Google Scholar 

  • Timofeeff-Ressovsky NW, Zimmer KG (1947) Das Treffer prinzip in der Biologie. S. Hirzel, Leipzig, Germany

    Google Scholar 

  • Todd W, Green R, Horner C (1977) Registration of Murray Mitcham Peppermint1 (Reg. No. 2). Crop Sci 17(1):188–188

    Article  Google Scholar 

  • Tollenaar D (1934) Untersuchungen uber Mutation bei Tabak: I. Entstechungsweise und Wesen Kntslich erzeugter Gene-Mutanten. Genetica 16:111–152

    Article  Google Scholar 

  • Van Harten AM (1998) Mutation breeding: theory and practical applications. Cambridge University Press, Cambridge

    Google Scholar 

  • Von Tshermak E (1900) Uber Kunstliche Kreuzung bei Pisum sativum. Ber der Bot Ges 18:232–239

    Google Scholar 

  • Wang LQ (1991) Induced mutation for crop improvement in China. In: Proc. IAEA Symp. on plant mutation breeding for crop improvement, June 18–22, 1990. IAEA, Vienna, pp 9–32

    Google Scholar 

  • Watson JD, Crick FHC (1953) A structure for deoxyribose nucleic acid. Nature 171:964

    Article  CAS  PubMed  Google Scholar 

  • Zhang W, Liu X, Zheng F et al (2013) Induction of rice mutations by high hydrostatic pressure. Plant Physiol Biochem 70:182–187

    Article  CAS  PubMed  Google Scholar 

  • Zimmer KG (1961) Studies on quantitative radiation biology. Oliver and Boyd, London

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kharkwal, M.C. (2023). History of Plant Mutation Breeding and Global Impact of Mutant Varieties. In: Penna, S., Jain, S.M. (eds) Mutation Breeding for Sustainable Food Production and Climate Resilience. Springer, Singapore. https://doi.org/10.1007/978-981-16-9720-3_2

Download citation

Publish with us

Policies and ethics