Skip to main content

Misconceptions in Nanotoxicity Measurements: Exploring Facts to Strengthen Eco-Safe Environmental Remediation

  • Chapter
  • First Online:
Advanced Functional Nanoparticles "Boon or Bane" for Environment Remediation Applications

Abstract

Nanotechnology has quickly increased its employment in various fields, be it sensors, paints, cosmetics, food packaging, drug delivery, or wastewater treatment. The nanotechlogical advances are due to its nanosize and surface area properties, but at the same time, another problem named “nanotoxicity” comes into the discussions. Properties that prove to help treat certain diseases may possess toxicity simultaneously. Although some nanomaterials are toxic, some misunderstandings are related to toxicity in general. These misconceptions mainly arise due to a lack of accurate data about the toxicities. This chapter deals with the properties of nanomaterials that make them toxic and how these properties can be altered to produce a less negative impact. Also, the commonly used nanomaterials and their myths have been discussed. Some nanoparticles may prove toxic due to their synthesis techniques; hence, green synthesis can be used as an alternative method. Also, the toxic NPs should be disposed of carefully using various methods, as explained. The future of nanotoxicity involves the better learning of nano-bio interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Adelere IA, Lateef A (2016) A novel approach to the green synthesis of metallic nanoparticles: the use of agro-wastes, enzymes, and pigments. Nanotechnol Rev 5(6):567–587

    Article  CAS  Google Scholar 

  • Ahmed S, Saifullah, Ahmad M, Swami BL, Ikram S (2016) Green synthesis of silver nanoparticles using Azadirachta indica aqueous leaf extract. J Radiat Res Appl 9(1):1–7

    Google Scholar 

  • Aldrich S (2015) Gold nanoparticles: properties and applications. Sigma-Aldrich, St. Louis

    Google Scholar 

  • Alkilany AM, Murphy CJ (2010) Toxicity and cellular uptake of gold nanoparticles: what we have learned so far? J Nanopart Res 12(7):2313–2333

    Article  CAS  Google Scholar 

  • Allegri M, Perivoliotis DK, Bianchi MG, Chiu M, Pagliaro A, Koklioti MA, Charitidis CA (2016) Toxicity determinants of multiwalled carbon nanotubes: the relationship between functionalization and agglomeration. Toxicol Rep 3:230–243

    Article  CAS  Google Scholar 

  • Amiri M, Salavati-Niasari M, Akbari A (2019) Magnetic nanocarriers: evolution of spinel ferrites for medical applications. Adv Colloid Interf Sci 265:29–44

    Article  CAS  Google Scholar 

  • Armstead AL, Li B (2016) Nanotoxicity: emerging concerns regarding nanomaterial safety and occupational hard metal (WC-Co) nanoparticle exposure. Int J Nanomedicine 11:6421

    Article  CAS  Google Scholar 

  • Azadi S, Karimi-Jashni A, Javadpour S (2017) Photocatalytic treatment of landfill leachate using W-doped TiO 2 nanoparticles. Int J Environ Eng 143(9):04017049

    Google Scholar 

  • Bahadar H, Maqbool F, Niaz K, Abdollahi M (2016) Toxicity of nanoparticles and an overview of current experimental models. Iran Biomed J 20(1):1

    Google Scholar 

  • Bai Q, Li L, Liu S, Xiao S, Guo Y (2018) Drug design progress of in silico, in vitro and in vivo researches. In-vitro In-vivo In-silico J 1(1):16

    Google Scholar 

  • Baranowska-Wójcik E, Szwajgier D, Oleszczuk P, Winiarska-Mieczan A (2020) Effects of titanium dioxide nanoparticles exposure on human health – a review. Biol Trace Elem Res 193(1):118–129

    Article  Google Scholar 

  • Bose P (2020) Nanotechnology in washable and reusable face masks, AzoNano. Available online via: https://www.azonano.com/article.aspx?ArticleID=5529. Accessed 28 Nov 2020

  • Boudhan R, Joubert A, Gueraoui K, Durécu S, Venditti D, Tran DT, Le Coq L (2018) Pulse-jet bag filter performances for treatment of submicronic and nanosized particles from waste incineration. Waste Biomass Valorization 9(5):731–737

    Article  CAS  Google Scholar 

  • Briceno S, Sanchez Y, Braemer-Escamilla W, Silva P, Rodriguez JP, Ramos MA, Plaza E (2013) Comparative study of preparation methods of ferrites nanoparticles cofe2o4. Acta Microsc 22(1):62–68

    Google Scholar 

  • Budama-Kilinc Y, Cakir-Koc R, Zorlu T, Ozdemir B, Karavelioglu Z, Egil AC, Kecel-Gunduz S (2018) Assessment of nano-toxicity and safety profiles of silver nanoparticles. In: Khan M (ed) Silver nanoparticles-fabrication, characterization and applications. Intech, p 185

    Google Scholar 

  • Buzea C, Pacheco II, Robbie K (2007) Nanomaterials and nanoparticles: sources and toxicity. Biointerphases 2(4):MR17–MR71

    Article  Google Scholar 

  • Chen F, Gerion D (2004) Fluorescent CdSe/ZnS nanocrystal− peptide conjugates for long-term, nontoxic imaging and nuclear targeting in living cells. Nano Lett 4(10):1827–1832

    Article  CAS  Google Scholar 

  • Chithrani BD, Ghazani AA, Chan WC (2006) Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano Lett 6(4):662–668

    Article  CAS  Google Scholar 

  • De Jong WH, De Rijk E, Bonetto A, Wohlleben W, Stone V, Brunelli A, Cassee FR (2019) Toxicity of copper oxide and basic copper carbonate nanoparticles after short-term oral exposure in rats. Nanotoxicology 13(1):50–72

    Article  Google Scholar 

  • Deng X, Jia G, Wang H, Sun H, Wang X, Yang S, Liu Y (2007) Translocation and fate of multiwalled carbon nanotubes in vivo. Carbon 45(7):1419–1424

    Article  CAS  Google Scholar 

  • Devatha CP, Thalla AK (2018) Green synthesis of nanomaterials. In: Synthesis of inorganic nanomaterials. Woodhead Publishing, pp 169–184

    Google Scholar 

  • Divya K, Kurian LC, Vijayan S, Manakulam Shaikmoideen J (2016) Green synthesis of silver nanoparticles by Escherichia coli: analysis of antibacterial activity. J Water Environ Nanotechnol 1(1):63–74

    Google Scholar 

  • Dobrucka R (2017) Synthesis of titanium dioxide nanoparticles using Echinacea purpurea herba. IJPR 16(2):756

    Google Scholar 

  • Donaldson K, Schinwald A, Murphy F, Cho WS, Duffin R, Tran L, Poland C (2013) The biologically effective dose in inhalation nanotoxicology. Acc Chem Res 46(3):723–732

    Article  CAS  Google Scholar 

  • Eby DM, Schaeublin NM, Farrington KE, Hussain SM, Johnson GR (2009) Lysozyme catalyzes the formation of antimicrobial silver nanoparticles. ACS Nano 3(4):984–994

    Article  CAS  Google Scholar 

  • Fadeel B (2019) The right stuff: on the future of nanotoxicology. Front Toxicol 1:1

    Article  Google Scholar 

  • Famá L, Rojo PG, Bernal C, Goyanes S (2012) Biodegradable starch based nanocomposites with low water vapor permeability and high storage modulus. Carbohydr Polym 87(3):1989–1993

    Article  Google Scholar 

  • Fard JK, Jafari S, Eghbal MA (2015) A review of molecular mechanisms involved in toxicity of nanoparticles. Adv Pharm Bull 5(4):447

    Article  CAS  Google Scholar 

  • Fernandez-Fernandez A, Manchanda R, McGoron AJ (2011) Theranostic applications of nanomaterials in cancer: drug delivery, image-guided therapy, and multifunctional platforms. Biotechnol Appl Biochem 165(7-8):1628–1651

    Article  CAS  Google Scholar 

  • Fischer HC, Chan WC (2007) Nanotoxicity: the growing need for in vivo study. Curr Opin Biotechnol 18(6):565–571

    Article  CAS  Google Scholar 

  • Foroozandeh P, Aziz AA, Mahmoudi M (2019) Effect of cell age on uptake and toxicity of nanoparticles: the overlooked factor at the nanobio interface. ACS Appl Mater Interfaces 11(43):39672–39687

    Article  CAS  Google Scholar 

  • Francis AP, Devasena T (2018) Toxicity of carbon nanotubes: a review. Toxicol Ind Health 34(3):200–210

    Article  CAS  Google Scholar 

  • Fröhlich E, Salar-Behzadi S (2014) Toxicological assessment of inhaled nanoparticles: role of in vivo, ex vivo, in vitro, and in silico studies. Int J Mol Sci 15(3):4795–4822

    Article  Google Scholar 

  • Gaiser BK, Fernandes TF, Jepson M, Lead JR, Tyler CR, Stone V (2009) Assessing exposure, uptake and toxicity of silver and cerium dioxide nanoparticles from contaminated environments. Environ Health 8(1):S2

    Article  Google Scholar 

  • González-Durruthy M, Giri AK, Moreira I, Concu R, Melo A, Ruso JM, Cordeiro MND (2020) Computational modeling on mitochondrial channel nanotoxicity. Nano Today 34:100913

    Article  Google Scholar 

  • Grande F, Tucci P (2016) Titanium dioxide nanoparticles: a risk for human health? Mini-Rev Med Chem 16(9):762–769

    Article  CAS  Google Scholar 

  • Grigore ME, Biscu ER, Holban AM, Gestal MC, Grumezescu AM (2016) Methods of synthesis, properties and biomedical applications of CuO nanoparticles. Pharmaceuticals 9(4):75

    Article  Google Scholar 

  • Guillot M (2006) Magnetic properties of Ferrites. Mater Sci Technol

    Google Scholar 

  • Gupta NK, Ghaffari Y, Kim S, Bae J, Kim KS, Saifuddin M (2020) Photocatalytic degradation of organic pollutants over MFe2O4 (M= Co, Ni, Cu, Zn) nanoparticles at neutral pH. Sci Rep 10(1):1–11

    Google Scholar 

  • Hardman R (2006) A toxicologic review of quantum dots: toxicity depends on physicochemical and environmental factors. Environ Health Perspect 114(2):165–172

    Article  Google Scholar 

  • Holder AL, Vejerano EP, Zhou X, Marr LC (2013) Nanomaterial disposal by incineration. Environ Sci Process Impacts 15(9):1652–1664

    Article  CAS  Google Scholar 

  • Hu X, Li D, Gao Y, Mu L, Zhou Q (2016) Knowledge gaps between nanotoxicological research and nanomaterial safety. Environ Int 94:8–23

    Article  CAS  Google Scholar 

  • Jia YP, Ma BY, Wei XW, Qian ZY (2017) The in vitro and in vivo toxicity of gold nanoparticles. Chin Chem Lett 28(4):691–702

    Article  CAS  Google Scholar 

  • Julien CM, Mauger A, Zaghib K (2011) Surface effects on electrochemical properties of nano-sized LiFePO4. J Mater Chem 21(27):9955–9968

    Article  CAS  Google Scholar 

  • Kayat J, Gajbhiye V, Tekade RK, Jain NK (2011) Pulmonary toxicity of carbon nanotubes: a systematic report. Nanomedicine 7(1):40–49

    Article  CAS  Google Scholar 

  • Kim Y (2014) Nanowastes treatment in environmental media. Environ Health Toxicol 29

    Google Scholar 

  • Korani M, Ghazizadeh E, Korani S, Hami Z, Mohammadi-Bardbori A (2015) Effects of silver nanoparticles on human health. Eur J Nanomed 7(1):51–62

    Article  CAS  Google Scholar 

  • Kumar P, Mahajan P, Kaur R, Gautam S (2020) Nanotechnology and its challenges in the food sector: a review. Mater Today Chem 17:100332

    Article  CAS  Google Scholar 

  • Lateef A, Adelere IA, Gueguim-Kana EB, Asafa TB, Beukes LS (2015) Green synthesis of silver nanoparticles using keratinase obtained from a strain of Bacillus safensis LAU 13. Int Nano Lett 5(1):29–35

    Article  CAS  Google Scholar 

  • Liu Z, Ramakrishna S, Liu X (2020) Electrospinning and emerging healthcare and medicine possibilities. APL Bioeng 4(3):030901

    Article  CAS  Google Scholar 

  • Lujan H, Sayes CM (2017) Cytotoxicological pathways induced after nanoparticle exposure: studies of oxidative stress at the ‘nano–bio’ interface. Toxicol Res 6(5):580–594

    Article  CAS  Google Scholar 

  • Maynard AD, Aitken RJ, Butz T, Colvin V, Donaldson K, Oberdörster G et al (2006) Safe handling of nanotechnology. Nature 444(7117):267–269

    Article  CAS  Google Scholar 

  • Merget R, Bauer T, Küpper H, Philippou S, Bauer H, Breitstadt R, Bruening T (2002) Health hazards due to the inhalation of amorphous silica. Arch Toxicol 75(11-12):625–634

    Article  CAS  Google Scholar 

  • Minelli C, Lowe SB, Stevens MM (2010) Engineering nanocomposite materials for cancer therapy. Small 6(21):2336–2357

    Article  CAS  Google Scholar 

  • Mishra PK, Mishra H, Ekielski A, Talegaonkar S, Vaidya B (2017) Zinc oxide nanoparticles: a promising nanomaterial for biomedical applications. Drug Discov Today 22(12):1825–1834

    Article  CAS  Google Scholar 

  • Mohanta D, Patnaik S, Sood S, Das N (2019) Carbon nanotubes: Evaluation of toxicity at biointerfaces. J Pharm Anal 9(5):293–300

    Article  Google Scholar 

  • Murugadoss S, Lison D, Godderis L, Van Den Brule S, Mast J, Brassinne F et al (2017) Toxicology of silica nanoparticles: an update. Arch Toxicol 91(9):2967–3010

    Article  CAS  Google Scholar 

  • Myakonkaya O, Guibert C, Eastoe J, Grillo I (2010) Recovery of nanoparticles made easy. Langmuir 26(6):3794–3797

    Article  CAS  Google Scholar 

  • Naseer B, Srivastava G, Qadri OS, Faridi SA, Islam RU, Younis K (2018) Importance and health hazards of nanoparticles used in the food industry. Nanotechnol Rev 7(6):623–641

    Article  CAS  Google Scholar 

  • Naskar S, Kuotsu K, Sharma S (2019) Chitosan-based nanoparticles as drug delivery systems: a review on two decades of research. J Drug Target 27(4):379–393

    Article  CAS  Google Scholar 

  • Nyamukamba P, Okoh O, Mungondori H, Taziwa R, Zinya S (2018) Synthetic methods for titanium dioxide nanoparticles: a review. In: Yang D (ed) Titanium dioxide – material for a sustainable environment, pp 151–175

    Google Scholar 

  • Oliveira RL, Kiyohara PK, Rossi LM (2010) High performance magnetic separation of gold nanoparticles for catalytic oxidation of alcohols. Green Chem 12(1):144–149

    Article  CAS  Google Scholar 

  • Part F, Zaba C, Bixner O, Zafiu C, Lenz S, Martetschläger L et al (2020) Mobility and fate of ligand stabilized semiconductor nanoparticles in landfill leachates. J Hazard Mater:122477

    Google Scholar 

  • Rao GVS, Tinkle S, Weissman D, Antonini J, Kashon M, Salmen R et al (2003) Efficacy of a technique for exposing the mouse lung to particles aspirated from the pharynx. J Toxicol Environ Health Part A 66(15–16):1441–1452

    Article  CAS  Google Scholar 

  • Rao KS, El-Hami K, Kodaki T, Matsushige K, Makino K (2005) A novel method for synthesis of silica nanoparticles. J Colloid Interface Sci 289(1):125–131

    Article  CAS  Google Scholar 

  • Ren G, Hu D, Cheng EW, Vargas-Reus MA, Reip P, Allaker RP (2009) Characterization of copper oxide nanoparticles for antimicrobial applications. Int J Antimicrob Agents 33(6):587–590

    Article  CAS  Google Scholar 

  • Sahu D, Kannan GM, Vijayaraghavan R, Anand T, Khanum F (2013) Nanosized zinc oxide induces toxicity in human lung cells. Int Sch Res Notices 2013

    Google Scholar 

  • Saini B, Srivastava S (2018) Nanotoxicity prediction using computational modelling-review and future directions. IOP Conf Ser Mater Sci Eng 348:012005

    Article  Google Scholar 

  • Shakeel M, Jabeen F, Shabbir S, Asghar MS, Khan MS, Chaudhry AS (2016) Toxicity of nano-titanium dioxide (TiO 2-NP) through various routes of exposure: a review. Biol Trace Elem Res 172(1):1–36

    Article  CAS  Google Scholar 

  • Shityakov S, Roewer N, Broscheit JA, Förster C (2017) In silico models for nanotoxicity evaluation and prediction at the blood-brain barrier level: a mini-review. Comput Toxicol 2:20–27

    Article  Google Scholar 

  • Simate GS, Iyuke SE, Ndlovu S, Heydenrych M, Walubita LF (2012) Human health effects of residual carbon nanotubes and traditional water treatment chemicals in drinking water. Environ Int 39(1):38–49

    Article  CAS  Google Scholar 

  • Singh J, Dutta T, Kim KH, Rawat M, Samddar P, Kumar P (2018) ‘Green’ synthesis of metals and their oxide nanoparticles: applications for environmental remediation. J Nanobiotechnol 16(1):84

    Article  CAS  Google Scholar 

  • Singh AV, Laux P, Luch A, Sudrik C, Wiehr S, Wild AM et al (2019) Review of emerging concepts in nanotoxicology: opportunities and challenges for safer nanomaterial design. Toxicol Mech Methods 29(5):378–387

    Article  CAS  Google Scholar 

  • Sruthi S, Ashtami J, Mohanan PV (2018) Biomedical application and hidden toxicity of Zinc oxide nanoparticles. Mater Today Chem 10:175–186

    Article  CAS  Google Scholar 

  • Sukhanova A, Bozrova S, Sokolov P, Berestovoy M, Karaulov A, Nabiev I (2018) Dependence of nanoparticle toxicity on their physical and chemical properties. Nanoscale Res Lett 13(1):44

    Article  Google Scholar 

  • Szakal C, Roberts SM, Westerhoff P, Bartholomaeus A, Buck N, Illuminato I, Rogers M (2014) Measurement of nanomaterials in foods: integrative consideration of challenges and future prospects. ACS Nano 8(4):3128–3135

    Article  CAS  Google Scholar 

  • Takei K, Fang H, Kumar SB, Kapadia R, Gao Q, Madsen M et al (2011) Quantum confinement effects in nanoscale-thickness InAs membranes. Nano Lett 11(11):5008–5012

    Article  CAS  Google Scholar 

  • Talebian S, Wallace GG, Schroeder A, Stellacci F, Conde J (2020) Nanotechnology-based disinfectants and sensors for SARS-CoV2. Nat Nanotechnol 15(8):618–621

    Article  CAS  Google Scholar 

  • Talens-Perales D, Marín-Navarro J, Polaina J (2016) Enzymes: functions and characteristics

    Google Scholar 

  • Tejral G, Panyala NR, Havel J (2009) Carbon nanotubes: toxicological impact on human health and environment. J Appl Biomed (De Gruyter Open) 7(1)

    Google Scholar 

  • Tian X, Chong Y, Ge C (2020) Understanding the nano–bio interactions and the corresponding biological responses. Front Chem 8:446

    Article  CAS  Google Scholar 

  • Vandebriel RJ, De Jong WH (2012) A review of mammalian toxicity of ZnO nanoparticles. Nanotechnol Sci Appl 5:61

    Article  CAS  Google Scholar 

  • Vazquez-Muñoz R, Borrego B, Juárez-Moreno K, García-García M, Morales JDM, Bogdanchikova N, Huerta-Saquero A (2017) Toxicity of silver nanoparticles in biological systems: does the complexity of biological systems matter? Toxicol Lett 276:11–20

    Article  Google Scholar 

  • Vejerano EP, Leon EC, Holder AL, Marr LC (2014) Characterization of particle emissions and fate of nanomaterials during incineration. Environ Sci Nano 1(2):133–143

    Article  CAS  Google Scholar 

  • Verma A, Mehata MS (2016) Controllable synthesis of silver nanoparticles using Neem leaves and their antimicrobial activity. J Radiat Res Appl 9(1):109–115

    CAS  Google Scholar 

  • Walser T, Limbach LK, Brogioli R, Erismann E, Flamigni L, Hattendorf B, Rossier M (2012) Persistence of engineered nanoparticles in a municipal solid-waste incineration plant. Nat Nanotechnol 7(8):520–524

    Article  CAS  Google Scholar 

  • Wan J, Cai W, Feng J, Meng X, Liu E (2007) In situ decoration of carbon nanotubes with nearly monodisperse magnetite nanoparticles in liquid polyols. J Mater Chem 17(12):1188–1192

    Article  CAS  Google Scholar 

  • Wilson M, Kannangara K, Smith G, Simmons M, Raguse B (2002) Nanotechnology: basic science and emerging technologies. CRC Press

    Book  Google Scholar 

  • Wu T, Tang M (2014) Toxicity of quantum dots on respiratory system. Inhal Toxicol 26(2):128–139

    Article  CAS  Google Scholar 

  • Xue F, Liang J, Han H (2011) Synthesis and spectroscopic characterization of water-soluble Mn-doped ZnOxS1− x quantum dots. Spectrochim Acta A 83(1):348–352

    Article  CAS  Google Scholar 

  • Yarjanli Z, Ghaedi K, Esmaeili A, Rahgozar S, Zarrabi A (2017) Iron oxide nanoparticles may damage to the neural tissue through iron accumulation, oxidative stress, and protein aggregation. BMC Neurosci 18(1):51

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanjeev Gautam .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sharma, C., Bansal, D., Gautam, S. (2023). Misconceptions in Nanotoxicity Measurements: Exploring Facts to Strengthen Eco-Safe Environmental Remediation. In: Kumar, R., Kumar, R., Chaudhary, S. (eds) Advanced Functional Nanoparticles "Boon or Bane" for Environment Remediation Applications. Environmental Contamination Remediation and Management. Springer, Cham. https://doi.org/10.1007/978-3-031-24416-2_12

Download citation

Publish with us

Policies and ethics