Skip to main content

Environment, Health and Safety Issues in Nanotechnology

  • Chapter
Springer Handbook of Nanotechnology

Part of the book series: Springer Handbooks ((SHB))

Abstract

With the rapid development of nanotechnology and its application, lots of nanomaterials or nanorelated products are now used in society. Nanotechnology offers substantial economic and societal benefits, but its impacts on environment, health, and safety (EHS) issues are not clearly understood or defined. Interactions between nanomaterials (sourced from nanotechnology development) and the human body and even with the ecological system have attracted much concern. In this chapter, the impacts of the development of nanotechnology on EHS issues has been surveyed focusing on present knowledge of the most important nanomaterials, dominant physicochemical characteristics which contribute to relevant toxicities, and state-of-the-art techniques and established biomarkers within this research field. This information may not be enough to fill the knowledge gap concerning the impacts of nanotechnology on EHS, but should help scientists and authorities to realize the risks involved and to take steps for sustainable development in the foreseeable future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. M.H. Hassan: Nanotechnology. Small things and big changes in the developing world, Science 309, 65–66 (2005)

    Google Scholar 

  2. K. Donaldson, V. Stone, C.L. Tran, W. Kreyling, P.J. Borm: Nanotoxicology, Occup. Environ. Med. 61, 727–728 (2004)

    Google Scholar 

  3. G. Oberdörster, E. Oberdörster, J. Oberdörster: Nanotoxicology: An emerging discipline evolving from studies of ultrafine particles, Environ. Health Perspect. 113, 823–839 (2005)

    MATH  Google Scholar 

  4. G. Oberdörster: Safety assessment for nanotechnology and nanomedicine: Concepts of nanotoxicology, J. Intern. Med. 267, 89–105 (2010)

    Google Scholar 

  5. National Research Council: Health and safety aspects of engineered nanomaterials committee to develop a research strategy for environmental. In: A Research Strategy for Environmental, Health, and Safety Aspects of Engineered Nanomaterials, ed. by the Committee to Develop a Research Strategy for Environmental, Health, and Safety Aspects of Engineered Nanomaterials, chaired by J.M. Samet (National Academies, Washington DC 2012)

    Google Scholar 

  6. C.O. Hendren, X. Mesnard, J. Droge, M.R. Wiesner: Estimating production data for five engineered nanomaterials as a basis for exposure assessment, Environ. Sci. Technol. 45, 2562–2569 (2011)

    Google Scholar 

  7. K. Schmid, M. Riediker: Use of nanoparticles in Swiss industry: A targeted survey, Environ. Sci. Technol. 42, 2253–2260 (2008)

    Google Scholar 

  8. F. Piccinno, F. Gottschalk, S. Seeger, B. Nowack: Industrial production quantities and uses of ten engineered nanomaterials in Europe and the world, J. Nanopart. Res. 14, 1–11 (2012)

    Google Scholar 

  9. N. Li, S. Georas, N. Alexis, P. Fritz, T. Xia, M.A. Williams, E. Horner, A. Nel: A work group report on ultrafine particles (American Academy of Allergy, Asthma & Immunology): Why ambient ultrafine and engineered nanoparticles should receive special attention for possible adverse health outcomes in human subjects, J. Allergy Clin. Immunol. 138, 386–396 (2016)

    Google Scholar 

  10. R. Chen, C. Chen: Scenarios in the workplace and risk assessment of carbon nanomaterials. In: Biomedical Applications and Toxicology of Carbon Nanomaterials, ed. by C. Chen, H. Wang (Wiley, Weinheim 2016)

    Google Scholar 

  11. F. Gottschalk, C. Lassen, J. Kjoelholt, F. Christensen, B. Nowack: Modeling flows and concentrations of nine engineered nanomaterials in the Danish environment, Int. J. Env. Res. Public Health 12, 5581–5602 (2015)

    Google Scholar 

  12. T.Y. Sun, F. Gottschalk, K. Hungerbühler, B. Nowack: Comprehensive probabilistic modelling of environmental emissions of engineered nanomaterials, Environ. Pollut. 185, 69–76 (2014)

    Google Scholar 

  13. Y.S. Tian, F. Gottschalk, K. Hungerbühler, B. Nowack: Comprehensive probabilistic modelling of environmental emissions of engineered nanomaterials, Environ. Pollut. 185, 69–76 (2014)

    Google Scholar 

  14. T.Y. Sun, N.A. Bornhoft, K. Hungerbühler, B. Nowack: Dynamic probabilistic modeling of environmental emissions of engineered nanomaterials, Environ. Sci. Technol. 50, 4701–4711 (2016)

    Google Scholar 

  15. M. Miseljic, S.I. Olsen: Life-cycle assessment of engineered nanomaterials: A literature review of assessment status, J. Nanopart. Res. 16, 33 (2014)

    Google Scholar 

  16. H. Sengul, T.L. Theis, S. Ghosh: Toward sustainable nanoproducts: An overview of nanomanufacturing methods, J. Ind. Ecol. 12, 329–359 (2008)

    Google Scholar 

  17. R. Dhingra, S. Naidu, G. Upreti, R. Sawhney: Sustainable nanotechnology: Through green methods and life-cycle thinking, Sustainability 2, 3323–3338 (2010)

    Google Scholar 

  18. Y. Ding, T.A. Kuhlbusch, M. Van Tongeren, A.S. Jimenez, I. Tuinman, R. Chen, I.L. Alvarez, U. Mikolajczyk, C. Nickel, J. Meyer, H. Kaminski, W. Wohlleben, B. Stahlmecke, S. Clavaguera, M. Riediker: Airborne engineered nanomaterials in the workplace – A review of release and worker exposure during nanomaterial production and handling processes, J. Hazard. Mater. 322, 17–28 (2017)

    Google Scholar 

  19. Y. Zhao, G. Xing, Z. Chai: Nanotoxicology: Are carbon nanotubes safe?, Nat. Nanotechnol. 3, 191–192 (2008)

    Google Scholar 

  20. J.C. Bonner: Carbon nanotubes as delivery systems for respiratory disease: Do the dangers outweigh the potential benefits?, Expert. Rev. Respir. Med. 5, 779–787 (2011)

    Google Scholar 

  21. C.A. Poland, R. Duffin, I. Kinloch, A. Maynard, W.A. Wallace, A. Seaton, V. Stone, S. Brown, W. Macnee, K. Donaldson: Carbon nanotubes introduced into the abdominal cavity of mice show asbestos-like pathogenicity in a pilot study, Nat. Nanotechnol. 3, 423–428 (2008)

    Google Scholar 

  22. P. Wang, X. Nie, Y. Wang, Y. Li, C. Ge, L. Zhang, L. Wang, R. Bai, Z. Chen, Y. Zhao, C. Chen: Multiwall carbon nanotubes mediate macrophage activation and promote pulmonary fibrosis through TGF-beta/Smad signaling pathway, Small 9, 3799–3811 (2013)

    Google Scholar 

  23. Y. Liu, Y. Zhao, B. Sun, C. Chen: Understanding the toxicity of carbon nanotubes, Acc. Chem. Res. 46, 702–713 (2013)

    Google Scholar 

  24. F. Zhao, Y. Zhao, Y. Liu, X. Chang, C. Chen, Y. Zhao: Cellular uptake, intracellular trafficking and cytotoxicity of nanomaterials, Small 7, 1322–1337 (2011)

    Google Scholar 

  25. P. Moller, D.V. Christophersen, D.M. Jensen, A. Kermanizadeh, M. Roursgaard, N.R. Jacobsen, J.G. Hemmingsen, P.H. Danielsen, Y. Cao, K. Jantzen, H. Klingberg, L.G. Hersoug, S. Loft: Role of oxidative stress in carbon nanotube-generated health effects, Arch. Toxicol. 88, 1939–1964 (2014)

    Google Scholar 

  26. R. Alshehri, A.M. Ilyas, A. Hasan, A. Arnaout, F. Ahmed, A. Memic: Carbon nanotubes in biomedical applications: Factors, mechanisms and remedies of toxicity, J. Med. Chem. 59, 8149–8167 (2016)

    Google Scholar 

  27. Y.Y. Guo, J. Zhang, Y.F. Zheng, J. Yang, X.Q. Zhu: Cytotoxic and genotoxic effects of multi-wall carbon nanotubes on human umbilical vein endothelial cells in vitro, Mutat. Res. 721, 184–191 (2011)

    Google Scholar 

  28. P. Wang, Y. Wang, X. Nie, C. Braini, R. Bai, C. Chen: Multiwall carbon nanotubes directly promote fibroblast-myofibroblast and epithelial-mesenchymal transitions through the activation of the TGF-beta/Smad signaling pathway, Small 11, 446–455 (2015)

    Google Scholar 

  29. R.R. Mercer, J.F. Scabilloni, A.F. Hubbs, L. Wang, L.A. Battelli, W. McKinney, V. Castranova, D.W. Porter: Extrapulmonary transport of MWCNT following inhalation exposure, Part. Fibre. Toxicol. 10, 38 (2013)

    Google Scholar 

  30. K. Donaldson, C.A. Poland, F.A. Murphy, M. MacFarlane, T. Chernova, A. Schinwald: Pulmonary toxicity of carbon nanotubes and asbestos-similarities and differences, Adv. Drug Deliv. Rev. 65, 2078–2086 (2013)

    Google Scholar 

  31. M. Sharma, J. Nikota, S. Halappanavar, V. Castranova, B. Rothen-Rutishauser, A.J. Clippinger: Predicting pulmonary fibrosis in humans after exposure to multi-walled carbon nanotubes (MWCNTs), Arch. Toxicol. 90, 1605–1622 (2016)

    Google Scholar 

  32. C. Ge, L. Meng, L. Xu, R. Bai, J. Du, L. Zhang, Y. Li, Y. Chang, Y. Zhao, C. Chen: Acute pulmonary and moderate cardiovascular responses of spontaneously hypertensive rats after exposure to single-wall carbon nanotubes, Nanotoxicology 6, 526–542 (2012)

    Google Scholar 

  33. I. Huizar, A. Malur, Y.A. Midgette, C. Kukoly, P. Chen, P.C. Ke, R. Podila, A.M. Rao, C.J. Wingard, L. Dobbs, B.P. Barna, M.S. Kavuru, M.J. Thomassen: Novel murine model of chronic granulomatous lung inflammation elicited by carbon nanotubes, Am. J. Respir. Cell Mol. Biol. 45, 858–866 (2011)

    Google Scholar 

  34. C.C. Chou, H.Y. Hsiao, Q.S. Hong, C.H. Chen, Y.W. Peng, H.W. Chen, P.C. Yang: Single-walled carbon nanotubes can induce pulmonary injury in mouse model, Nano Lett. 8, 437–445 (2008)

    Google Scholar 

  35. R. Chen, L. Zhang, C. Ge, M.T. Tseng, R. Bai, Y. Qu, C. Beer, H. Autrup, C. Chen: Subchronic toxicity and cardiovascular responses in spontaneously hypertensive rats after exposure to multiwalled carbon nanotubes by intratracheal instillation, Chem. Res. Toxicol. 28, 440–450 (2015)

    Google Scholar 

  36. T. Ingle, E. Dervishi, A.R. Biris, T. Mustafa, R.A. Buchanan, A.S. Biris: Raman spectroscopy analysis and mapping the biodistribution of inhaled carbon nanotubes in the lungs and blood of mice, J. Appl. Toxicol. 33, 1044–1052 (2013)

    Google Scholar 

  37. A.R. Reddy, D.R. Krishna, Y.N. Reddy, V. Himabindu: Translocation and extra pulmonary toxicities of multi wall carbon nanotubes in rats, Toxicol. Mech. Methods 20, 267–272 (2010)

    Google Scholar 

  38. C. Ge, J. Du, L. Zhao, L. Wang, Y. Liu, D. Li, Y. Yang, R. Zhou, Y. Zhao, Z. Chai, C. Chen: Binding of blood proteins to carbon nanotubes reduces cytotoxicity, Proc. Natl. Acad. Sci. USA 108, 16968–16973 (2011)

    Google Scholar 

  39. X. Jiang, R. Foldbjerg, T. Miclaus, L. Wang, R. Singh, Y. Hayashi, D. Sutherland, C. Chen, H. Autrup, C. Beer: Multi-platform genotoxicity analysis of silver nanoparticles in the model cell line CHO-K1, Toxicol. Lett. 222, 55–63 (2013)

    Google Scholar 

  40. C. Chen, H. Wang: Biomedical Applications and Toxicology of Carbon Nanomaterials (Wiley, Weinheim 2016)

    Google Scholar 

  41. S. Chernousova, M. Epple: Silver as antibacterial agent: Ion, nanoparticle and metal, Angew. Chem. Int. Ed. Engl. 52, 1636–1653 (2013)

    Google Scholar 

  42. K. Chaloupka, Y. Malam, A.M. Seifalian: Nanosilver as a new generation of nanoproduct in biomedical applications, Trends Biotechnol 28, 580–588 (2010)

    Google Scholar 

  43. C. Lorenz, L. Windler, N. von Goetz, R.P. Lehmann, M. Schuppler, K. Hungerbuhler, M. Heuberger, B. Nowack: Characterization of silver release from commercially available functional (nano) textiles, Chemosphere 89, 817–824 (2012)

    Google Scholar 

  44. L. Geranio, M. Heuberger, B. Nowack: The behavior of silver nanotextiles during washing, Environ. Sci. Technol. 43, 8113–8118 (2009)

    Google Scholar 

  45. T.M. Benn, P. Westerhoff: Nanoparticle silver released into water from commercially available sock fabrics, Environ. Sci. Technol. 42, 4133–4139 (2008)

    Google Scholar 

  46. D.M. Mitrano, E. Rimmele, A. Wichser, R. Erni, M. Height, B. Nowack: Presence of nanoparticles in wash water from conventional silver and nano-silver textiles, ACS Nano 8, 7208–7219 (2014)

    Google Scholar 

  47. R. Kaegi, A. Voegelin, C. Ort, B. Sinnet, B. Thalmann, J. Krismer, H. Hagendorfer, M. Elumelu, E. Mueller: Fate and transformation of silver nanoparticles in urban wastewater systems, Water Res 47, 3866–3877 (2013)

    Google Scholar 

  48. R. Kaegi, A. Voegelin, B. Sinnet, S. Zuleeg, H. Hagendorfer, M. Burkhardt, H. Siegrist: Behavior of metallic silver nanoparticles in a pilot wastewater treatment plant, Environ. Sci. Technol. 45, 3902–3908 (2011)

    Google Scholar 

  49. Y. Yin, J. Liu, G. Jiang: Sunlight-induced reduction of ionic Ag and Au to metallic nanoparticles by dissolved organic matter, ACS Nano 6, 7910–7919 (2012)

    Google Scholar 

  50. N. Akaighe, R.I. Maccuspie, D.A. Navarro, D.S. Aga, S. Banerjee, M. Sohn, V.K. Sharma: Humic acid-induced silver nanoparticle formation under environmentally relevant conditions, Environ. Sci. Technol. 45, 3895–3901 (2011)

    Google Scholar 

  51. N.F. Adegboyega, V.K. Sharma, K. Siskova, R. Zboril, M. Sohn, B.J. Schultz, S. Banerjee: Interactions of aqueous Ag+ with fulvic acids: Mechanisms of silver nanoparticle formation and investigation of stability, Environ. Sci. Technol. 47, 757–764 (2013)

    Google Scholar 

  52. D. Lu, Q. Liu, T. Zhang, Y. Cai, Y. Yin, G. Jiang: Stable silver isotope fractionation in the natural transformation process of silver nanoparticles, Nat. Nanotechnol. 11, 682–686 (2016)

    Google Scholar 

  53. Y. Li, J.A. Bhalli, W. Ding, J. Yan, M.G. Pearce, R. Sadiq, C.K. Cunningham, M.Y. Jones, W.A. Monroe, P.C. Howard, T. Zhou, T. Chen: Cytotoxicity and genotoxicity assessment of silver nanoparticles in mouse, Nanotoxicology 8(Suppl 1), 36–45 (2014)

    Google Scholar 

  54. Z. Wang, G. Qu, L. Su, L. Wang, Z. Yang, J. Jiang, S. Liu, G. Jiang: Evaluation of the biological fate and the transport through biological barriers of nanosilver in mice, Curr. Pharm. Des. 19, 6691–6697 (2013)

    Google Scholar 

  55. Y. Zhang, Y. Zhang, G. Hong, W. He, K. Zhou, K. Yang, F. Li, G. Chen, Z. Liu, H. Dai, Q. Wang: Biodistribution, pharmacokinetics and toxicology of Ag2S near-infrared quantum dots in mice, Biomaterials 34, 3639–3646 (2013)

    Google Scholar 

  56. R. Chen, L. Zhao, R. Bai, Y. Liu, L.P. Han, Z.F. Xu, F. Chen, H. Autrup, D.X. Long, C.Y. Chen: Silver nanoparticles induced oxidative and endoplasmic reticulum stresses in mouse tissues: Implications for the development of acute toxicity after intravenous administration, Toxicol. Res. 5, 602–608 (2016)

    Google Scholar 

  57. A. Chrastina, J.E. Schnitzer: Iodine-125 radiolabeling of silver nanoparticles for in vivo SPECT imaging, Int. J. Nanomed. 5, 653–659 (2010)

    Google Scholar 

  58. D.P. Lankveld, A.G. Oomen, P. Krystek, A. Neigh, A. Troost-de Jong, C.W. Noorlander, J.C. Van Eijkeren, R.E. Geertsma, W.H. De Jong: The kinetics of the tissue distribution of silver nanoparticles of different sizes, Biomaterials 31, 8350–8361 (2010)

    Google Scholar 

  59. Y. Xue, S. Zhang, Y. Huang, T. Zhang, X. Liu, Y. Hu, Z. Zhang, M. Tang: Acute toxic effects and gender-related biokinetics of silver nanoparticles following an intravenous injection in mice, J. Appl. Toxicol. 32, 890–899 (2012)

    Google Scholar 

  60. Y. Li, T. Qin, T. Ingle, J. Yan, W. He, J.J. Yin, T. Chen: Differential genotoxicity mechanisms of silver nanoparticles and silver ions, Arch. Toxicol. 91, 509–519 (2017)

    Google Scholar 

  61. S. Kim, D.Y. Ryu: Silver nanoparticle-induced oxidative stress, genotoxicity and apoptosis in cultured cells and animal tissues, J. Appl. Toxicol. 33, 78–89 (2013)

    Google Scholar 

  62. L. Wang, J. Li, J. Pan, X. Jiang, Y. Ji, Y. Li, Y. Qu, Y. Zhao, X. Wu, C. Chen: Revealing the binding structure of the protein corona on gold nanorods using synchrotron radiation-based techniques: understanding the reduced damage in cell membranes, J. Am. Chem. Soc. 135, 17359–17368 (2013)

    Google Scholar 

  63. Y. Qu, W. Li, Y. Zhou, X. Liu, L. Zhang, L. Wang, Y.F. Li, A. Iida, Z. Tang, Y. Zhao, Z. Chai, C. Chen: Full assessment of fate and physiological behavior of quantum dots utilizing Caenorhabditis elegans as a model organism, Nano Lett 11, 3174–3183 (2011)

    Google Scholar 

  64. X. Jiang, T. Miclaus, L. Wang, R. Foldbjerg, D.S. Sutherland, H. Autrup, C. Chen, C. Beer: Fast intracellular dissolution and persistent cellular uptake of silver nanoparticles in CHO-K1 cells: Implication for cytotoxicity, Nanotoxicology 9, 181–189 (2015)

    Google Scholar 

  65. C. Pang, A. Brunelli, C. Zhu, D. Hristozov, Y. Liu, E. Semenzin, W. Wang, W. Tao, J. Liang, A. Marcomini, C. Chen, B. Zhao: Demonstrating approaches to chemically modify the surface of Ag nanoparticles in order to influence their cytotoxicity and biodistribution after single dose acute intravenous administration, Nanotoxicology 10, 129–139 (2016)

    Google Scholar 

  66. M. Ahamed, M. Karns, M. Goodson, J. Rowe, S.M. Hussain, J.J. Schlager, Y. Hong: DNA damage response to different surface chemistry of silver nanoparticles in mammalian cells, Toxicol. Appl. Pharmacol. 233, 404–410 (2008)

    Google Scholar 

  67. A.K. Suresh, D.A. Pelletier, W. Wang, J.L. Morrellfalvey, B. Gu, M.J. Doktycz: Cytotoxicity induced by engineered silver nanocrystallites is dependent on surface coatings and cell types, Langmuir 28, 2727–2735 (2012)

    Google Scholar 

  68. X. Yang, A.P. Gondikas, S.M. Marinakos, M. Auffan, J. Liu, H. Hsu-Kim, J.N. Meyer: Mechanism of silver nanoparticle toxicity is dependent on dissolved silver and surface coating in Caenorhabditis elegans, Environ. Sci. Technol. 46, 1119–1127 (2012)

    Google Scholar 

  69. S.R. Saptarshi, A. Duschl, A.L. Lopata: Biological reactivity of zinc oxide nanoparticles with mammalian test systems: An overview, Nanomedicine 10, 2075–2092 (2015)

    Google Scholar 

  70. M.J. Osmond, M.J. McCall: Zinc oxide nanoparticles in modern sunscreens: An analysis of potential exposure and hazard, Nanotoxicology 4, 15–41 (2010)

    Google Scholar 

  71. B. Gulson, M. McCall, M. Korsch, L. Gomez, P. Casey, Y. Oytam, A. Taylor, M. McCulloch, J. Trotter, L. Kinsley, G. Greenoak: Small amounts of zinc from zinc oxide particles in sunscreens applied outdoors are absorbed through human skin, Toxicol. Sci. 118, 140–149 (2010)

    Google Scholar 

  72. T.G. Smijs, S. Pavel: Titanium dioxide and zinc oxide nanoparticles in sunscreens: Focus on their safety and effectiveness, Nanotechnol. Sci. Appl. 4, 95–112 (2011)

    Google Scholar 

  73. P. Kelleher, K. Pacheco, L.S. Newman: Inorganic dust pneumonias: The metal-related parenchymal disorders, Environ. Health Perspect. 108, 685–696 (2000), Suppl 4

    Google Scholar 

  74. J.M. Fine, T. Gordon, L.C. Chen, P. Kinney, G. Falcone, W.S. Beckett: Metal fume fever: characterization of clinical and plasma IL-6 responses in controlled human exposures to zinc oxide fume at and below the threshold limit value, J. Occup. Environ. Med. 39, 722–726 (1997)

    Google Scholar 

  75. W.G. Kuschner, A. D’Alessandro, H. Wong, P.D. Blanc: Early pulmonary cytokine responses to zinc oxide fume inhalation, Environ. Res. 75, 7–11 (1997)

    Google Scholar 

  76. H.C. Chuang, H.T. Juan, C.N. Chang, Y.H. Yan, T.H. Yuan, J.S. Wang, H.C. Chen, Y.H. Hwang, C.H. Lee, T.J. Cheng: Cardiopulmonary toxicity of pulmonary exposure to occupationally relevant zinc oxide nanoparticles, Nanotoxicology 8, 593–604 (2014)

    Google Scholar 

  77. L. Huo, R. Chen, X. Shi, R. Bai, P. Wang, Y. Chang, C. Chen: High-content screening for assessing nanomaterial toxicity, J. Nanosci. Nanotechnol. 15, 1143–1149 (2015)

    Google Scholar 

  78. V. Sharma, P. Singh, A.K. Pandey, A. Dhawan: Induction of oxidative stress, DNA damage and apoptosis in mouse liver after sub-acute oral exposure to zinc oxide nanoparticles, Mutat. Res. 745, 84–91 (2012)

    Google Scholar 

  79. J. Wang, X. Deng, F. Zhang, D. Chen, W. Ding: ZnO nanoparticle-induced oxidative stress triggers apoptosis by activating JNK signaling pathway in cultured primary astrocytes, Nanoscale Res. Lett. 9, 117 (2014)

    Google Scholar 

  80. V. Sharma, R.K. Shukla, N. Saxena, D. Parmar, M. Das, A. Dhawan: DNA damaging potential of zinc oxide nanoparticles in human epidermal cells, Toxicol. Lett. 185, 211–218 (2009)

    Google Scholar 

  81. R. Chen, L. Huo, X. Shi, R. Bai, Z. Zhang, Y. Zhao, Y. Chang, C. Chen: Endoplasmic reticulum stress induced by zinc oxide nanoparticles is an earlier biomarker for nanotoxicological evaluation, ACS Nano 8, 2562–2574 (2014)

    Google Scholar 

  82. M. Ramasamy, M. Das, S.S. An, D.K. Yi: Role of surface modification in zinc oxide nanoparticles and its toxicity assessment toward human dermal fibroblast cells, Int. J. Nanomed. 9, 3707–3718 (2014)

    Google Scholar 

  83. M. Luo, C. Shen, B.N. Feltis, L.L. Martin, A.E. Hughes, P.F. Wright, T.W. Turney: Reducing ZnO nanoparticle cytotoxicity by surface modification, Nanoscale 6, 5791–5798 (2014)

    Google Scholar 

  84. H. Yin, R. Chen, P.S. Casey, P.C. Ke, T.P. Davis, C. Chen: Reducing the cytotoxicity of ZnO nanoparticles by a pre-formed protein corona in a supplemented cell culture medium, RSC Adv 5, 73963–73973 (2015)

    Google Scholar 

  85. R. Chen, C. Chen: Nanotoxicity. In: The Nanobiotechnology Handbook, ed. by Y. Xie (Taylor Francis, Abingdon 2012) pp. 599–620

    Google Scholar 

  86. T.C. Le, H. Yin, R. Chen, Y. Chen, L. Zhao, P.S. Casey, C. Chen, D.A. Winkler: An experimental and computational approach to the development of ZnO nanoparticles that are safe by design, Small 12, 3568–3577 (2016)

    Google Scholar 

  87. F. Zhao, H. Meng, L. Yan, B. Wang, Y. Zhao: Nanosurface chemistry and dose govern the bioaccumulation and toxicity of carbon nanotubes, metal nanomaterials and quantum dots in vivo, Sci. Bull. 60, 3–20 (2015)

    Google Scholar 

  88. H.S. Nalwa, Y. Zhao: Nanotoxicology (American Scientific, Stewenson Ranch 2007)

    Google Scholar 

  89. Z. Chen, H. Meng, G. Xing, C. Chen, Y. Zhao, G. Jia, T. Wang, H. Yuan, C. Ye, F. Zhao, Z. Chai, C. Zhu, X. Fang, B. Ma, L. Wan: Acute toxicological effects of copper nanoparticles in vivo, Toxicol. Lett. 163, 109–120 (2006)

    Google Scholar 

  90. Y. Liu, Y. Gao, L. Zhang, T. Wang, J. Wang, F. Jiao, W. Li, Y. Liu, Y. Li, B. Li, Z. Chai, G. Wu, C. Chen: Potential health impact on mice after nasal instillation of nano-sized copper particles and their translocation in mice, J. Nanosci. Nanotechnol. 9, 6335–6343 (2009)

    Google Scholar 

  91. L. Zhang, R. Bai, B. Li, C. Ge, J. Du, Y. Liu, L. Le Guyader, Y. Zhao, Y. Wu, S. He, Y. Ma, C. Chen: Rutile TiO(2) particles exert size and surface coating dependent retention and lesions on the murine brain, Toxicol. Lett. 207, 73–81 (2011)

    Google Scholar 

  92. C. Carlson, S.M. Hussain, A.M. Schrand, L.K. Braydich-Stolle, K.L. Hess, R.L. Jones, J.J. Schlager: Unique cellular interaction of silver nanoparticles: size-dependent generation of reactive oxygen species, J. Phys. Chem. B 112, 13608–13619 (2008)

    Google Scholar 

  93. J. Rejman, V. Oberle, I. Zuhorn, D. Hoekstra: Size-dependent internalization of particles via the pathways of clathrinand caveolae-mediated endocytosis, Biochem. J. 377, 159–169 (2004)

    Google Scholar 

  94. G. Oberdörster, J. Ferin, B.E. Lehnert: Correlation between particle size, in vivo particle persistence and lung injury, Environ. Health Perspect. 102, 173–179 (1994), Suppl 5

    Google Scholar 

  95. S. Beg, M. Rizwan, A.M. Sheikh, M.S. Hasnain, K. Anwer, K. Kohli: Advancement in carbon nanotubes: Basics, biomedical applications and toxicity, J. Pharm. Pharmacol. 63, 141–163 (2011)

    Google Scholar 

  96. G. Jia, H. Wang, L. Yan, X. Wang, R. Pei, T. Yan, Y. Zhao, X. Guo: Cytotoxicity of carbon nanomaterials: single-wall nanotube, multi-wall nanotube, and fullerene, Environ. Sci. Technol. 39, 1378–1383 (2005)

    Google Scholar 

  97. Y. Qiu, Y. Liu, L. Wang, L. Xu, R. Bai, Y. Ji, X. Wu, Y. Zhao, Y. Li, C. Chen: Surface chemistry and aspect ratio mediated cellular uptake of Au nanorods, Biomaterials 31, 7606–7619 (2010)

    Google Scholar 

  98. L. Meng, R. Chen, A. Jiang, L. Wang, P. Wang, C.Z. Li, R. Bai, Y. Zhao, H. Autrup, C. Chen: Short multiwall carbon nanotubes promote neuronal differentiation of PC12 cells via up-regulation of the neurotrophin signaling pathway, Small 9, 1786–1798 (2013)

    Google Scholar 

  99. J. Wang, Y. Liu, F. Jiao, F. Lao, W. Li, Y. Gu, Y. Li, C. Ge, G. Zhou, B. Li, Y. Zhao, Z. Chai, C. Chen: Time-dependent translocation and potential impairment on central nervous system by intranasally instilled TiO(2) nanoparticles, Toxicology 254, 82–90 (2008)

    Google Scholar 

  100. R.A. Yokel, R.C. Macphail: Engineered nanomaterials: Exposures, hazards and risk prevention, J. Occup. Med. Toxicol. 6, 7 (2011)

    Google Scholar 

  101. M. Seipenbusch, A. Binder, G. Kasper: Temporal evolution of nanoparticle aerosols in workplace exposure, Ann. Occup. Hyg. 52, 707–716 (2008)

    Google Scholar 

  102. D. Brouwer: Exposure to manufactured nanoparticles in different workplaces, Toxicology 269, 120–127 (2010)

    Google Scholar 

  103. R. Chen, B. Hu, Y. Liu, J. Xu, G. Yang, D. Xu, C. Chen: Beyond PM2.5: The role of ultrafine particles on adverse health effects of air pollution, Biochim. Biophys. Acta - Gen. Subjects 1860, 2844–2855 (2016)

    Google Scholar 

  104. R. Chen, X. Shi, R. Bai, W. Rang, L. Huo, L. Zhao, D. Long, D. Pui, C. Chen: Airborne nanoparticle pollution in a wire electrical discharge machining workshop and potential health risks, Aerosol Air Qual. Res. 15, 284–294 (2015)

    Google Scholar 

  105. X. Shi, R. Chen, L. Huo, L. Zhao, R. Bai, D. Long, D.Y. Pui, W. Rang, C. Chen: Evaluation of nanoparticles emitted from printers in a clean chamber, a copy center and office rooms: Health risks of indoor air quality, J. Nanosci. Nanotechnol. 15, 9554–9564 (2015)

    Google Scholar 

  106. L.E. Murr, K.F. Soto, K.M. Garza, P.A. Guerrero, F. Martinez, E.V. Esquivel, D.A. Ramirez, Y. Shi, J.J. Bang, J. Venzor III: Combustion-generated nanoparticulates in the El Paso, TX, USA/Juarez, Mexico Metroplex: Their comparative characterization and potential for adverse health effects, Int. J. Environ. Res. Public Health 3, 48–66 (2006)

    Google Scholar 

  107. F.R. Cassee, H. Muijser, E. Duistermaat, J.J. Freijer, K.B. Geerse, J.C. Marijnissen, J.H. Arts: Particle size-dependent total mass deposition in lungs determines inhalation toxicity of cadmium chloride aerosols in rats. Application of a multiple path dosimetry model, Arch. Toxicol. 76, 277–286 (2002)

    Google Scholar 

  108. S. Anjilvel, B. Asgharian: A multiple-path model of particle deposition in the rat lung, Fundam. Appl. Toxicol. 28, 41–50 (1995)

    Google Scholar 

  109. M.M. Methner, M.E. Birch, D.E. Evans, B.K. Ku, K. Crouch, M.D. Hoover: Identification and characterization of potential sources of worker exposure to carbon nanofibers during polymer composite laboratory operations, J. Occup. Environ. Hyg. 4, D125–130 (2007)

    Google Scholar 

  110. L. Belyanskaya, S. Weigel, C. Hirsch, U. Tobler, H.F. Krug, P. Wick: Effects of carbon nanotubes on primary neurons and glial cells, Neurotoxicology 30, 702–711 (2009)

    Google Scholar 

  111. K. Pulskamp, S. Diabate, H.F. Krug: Carbon nanotubes show no sign of acute toxicity but induce intracellular reactive oxygen species in dependence on contaminants, Toxicol. Lett. 168, 58–74 (2007)

    Google Scholar 

  112. C. Ge, W. Li, Y. Li, B. Li, J. Du, Y. Qiu, Y. Liu, Y. Gao, Z. Chai, C. Chen: Significance and systematic analysis of metallic impurities of carbon nanotubes produced by different manufacturers, J. Nanosci. Nanotechnol. 11, 2389–2397 (2011)

    Google Scholar 

  113. L. Meng, A. Jiang, R. Chen, C.Z. Li, L. Wang, Y. Qu, P. Wang, Y. Zhao, C. Chen: Inhibitory effects of multiwall carbon nanotubes with high iron impurity on viability and neuronal differentiation in cultured PC12 cells, Toxicology 313, 49–58 (2013)

    Google Scholar 

  114. G. Zeng, G. Wang, F. Guan, K. Chang, H. Jiao, W. Gao, S. Xi, B. Yang: Human amniotic membrane-derived mesenchymal stem cells labeled with superparamagnetic iron oxide nanoparticles: the effect on neuron-like differentiation in vitro, Mol. Cell Biochem. 357, 331–341 (2011)

    Google Scholar 

  115. J.J. Yin, F. Lao, P.P. Fu, W.G. Wamer, Y. Zhao, P.C. Wang, Y. Qiu, B. Sun, G. Xing, J. Dong, X.J. Liang, C. Chen: The scavenging of reactive oxygen species and the potential for cell protection by functionalized fullerene materials, Biomaterials 30, 611–621 (2009)

    Google Scholar 

  116. Y. Liu, F. Jiao, Y. Qiu, W. Li, F. Lao, G. Zhou, B. Sun, G. Xing, J. Dong, Y. Zhao, Z. Chai, C. Chen: The effect of GdC82(OH)22 nanoparticles on the release of Th1/Th2 cytokines and induction of TNF-alpha mediated cellular immunity, Biomaterials 30, 3934–3945 (2009)

    Google Scholar 

  117. L. Wang, Y.F. Li, L. Zhou, Y. Liu, L. Meng, K. Zhang, X. Wu, L. Zhang, B. Li, C. Chen: Characterization of gold nanorods in vivo by integrated analytical techniques: Their uptake, retention, and chemical forms, Anal. Bioanal. Chem. 396, 1105–1114 (2010)

    Google Scholar 

  118. R.R. Arvizo, O.R. Miranda, M.A. Thompson, C.M. Pabelick, R. Bhattacharya, J.D. Robertson, V.M. Rotello, Y.S. Prakash, P. Mukherjee: Effect of nanoparticle surface charge at the plasma membrane and beyond, Nano Lett 10, 2543–2548 (2010)

    Google Scholar 

  119. Y. Liu, W. Li, F. Lao, Y. Liu, L. Wang, R. Bai, Y. Zhao, C. Chen: Intracellular dynamics of cationic and anionic polystyrene nanoparticles without direct interaction with mitotic spindle and chromosomes, Biomaterials 32, 8291–8303 (2011)

    Google Scholar 

  120. H.F. Krug: Nanosafety research–are we on the right track?, Angew. Chem. Int. Ed. Engl. 53, 12304–12319 (2014)

    Google Scholar 

  121. H. Thomas: Toxicology for the twenty-first century, Nature 460, 208–212 (2009)

    Google Scholar 

  122. M. Firestone, R. Kavlock, H. Zenick, M. Kramer, U.E.W.G.F. Toxicity: The US environmental protection agency strategic plan for evaluating the toxicity of chemicals, J. Toxicol. Environ. Health B Crit. Rev. 13, 139–162 (2010)

    Google Scholar 

  123. D. Krewski, D. Acosta Jr., M. Andersen, H. Anderson, J.C. Bailar III, K. Boekelheide, R. Brent, G. Charnley, V.G. Cheung, S. Green Jr., K.T. Kelsey, N.I. Kerkvliet, A.A. Li, L. McCray, O. Meyer, R.D. Patterson, W. Pennie, R.A. Scala, G.M. Solomon, M. Stephens, J. Yager, L. Zeise: Toxicity testing in the 21st century: A vision and a strategy, J. Toxicol. Environ. Health B Crit. Rev. 13, 51–138 (2010)

    Google Scholar 

  124. A. Nel, T. Xia, L. Madler, N. Li: Toxic potential of materials at the nanolevel, Science 311, 622–627 (2006)

    Google Scholar 

  125. L. Wang, Y. Min, D. Xu, F. Yu, W. Zhou, A. Cuschieri: Membrane lipid peroxidation by the peroxidase-like activity of magnetite nanoparticles, Chem. Commun. 50, 11147–11150 (2014)

    Google Scholar 

  126. Y. Li, Y. Liu, Y. Fu, T. Wei, L.L. Guyader, G. Gao, R.S. Liu, Y.Z. Chang, C. Chen: The triggering of apoptosis in macrophages by pristine graphene through the MAPK and TGF-beta signaling pathways, Biomaterials 33, 402–411 (2012)

    Google Scholar 

  127. L. Huo, R. Chen, L. Zhao, X. Shi, R. Bai, D. Long, F. Chen, Y. Zhao, Y.Z. Chang, C. Chen: Silver nanoparticles activate endoplasmic reticulum stress signaling pathway in cell and mouse models: The role in toxicity evaluation, Biomaterials 61, 307–315 (2015)

    Google Scholar 

  128. R. Chen, D. Ling, L. Zhao, S. Wang, Y. Liu, R. Bai, S. Baik, Y. Zhao, C. Chen, T. Hyeon: Parallel comparative studies on mouse toxicity of oxide nanoparticle- and gadolinium-based T1 MRI contrast agents, ACS Nano 9, 12425–12435 (2015)

    Google Scholar 

  129. H. Yuan, Q. Zhang, J. Guo, T. Zhang, J. Zhao, J. Li, A. White, P.L. Carmichael, C. Westmoreland, S. Peng: A PGC-1alpha-mediated transcriptional network maintains mitochondrial redox and bioenergetic homeostasis against doxorubicin-induced toxicity in human cardiomyocytes: Implementation of TT21C, Toxicol. Sci. 150, 400–417 (2016)

    Google Scholar 

  130. H. James, N. Sashi, S. Rachel, C. Conn, K. Sinead, W. Yvonne: A high-throughput dual parameter assay for assessing drug-induced mitochondrial dysfunction provides additional predictivity over two established mitochondrial toxicity assays, Toxicol. Vitro 27, 560–569 (2012)

    Google Scholar 

  131. J. Xu, M. Han, Y. Ren, J. Li: The principle of compromise in competition: Exploring stability condition of protein folding, Sci. Bull. 60, 76–85 (2015)

    Google Scholar 

  132. A. van Schadewijk: E.F. van’t Wout, J. Stolk, P.S. Hiemstra: A quantitative method for detection of spliced x-box binding protein-1 (XBP1) mRNA as a measure of endoplasmic reticulum (ER) stress, Cell Stress Chaperones 17, 275–279 (2012)

    Google Scholar 

  133. A. Nel, T. Xia, H. Meng, X. Wang, S. Lin, Z. Ji, H. Zhang: Nanomaterial toxicity testing in the 21st century: Use of a predictive toxicological approach and high-throughput screening, Acc. Chem. Res. 46, 607–621 (2013)

    Google Scholar 

  134. C. Chen, Y.F. Li, Y. Qu, Z. Chai, Y. Zhao: Advanced nuclear analytical and related techniques for the growing challenges in nanotoxicology, Chem. Soc. Rev. 42, 8266–8303 (2013)

    Google Scholar 

  135. Z. Chai, X. Mao, Z. Hu, Z. Zhang, C. Chen, W. Feng, S. Hu, H. Ouyang: Overview of the methodology of nuclear analytical techniques for speciation studies of trace elements in the biological and environmental sciences, Anal. Bioanal. Chem. 372, 407–411 (2002)

    Google Scholar 

  136. L. Wang, C. Chen: Pathophysiologic mechanisms of biomedical nanomaterials, Toxicol. Appl. Pharm. 299, 30–40 (2016)

    Google Scholar 

  137. Y.F. Li, C. Chen, A. Bai, S. Li, Q. Wang, J. Wang, Y. Gao, Y. Zhao, Z. Chai: Simultaneous speciation of selenium and mercury in human urine samples from long-term mercury-exposed populations with supplementation of selenium-enriched yeast by HPLC-ICP-MS, J. Anal. At. Spectrom. 22, 925–930 (2007)

    Google Scholar 

  138. C. Chen, Z. Chai, Y. Gao: Nuclear Analytical Techniques for Metallomics and Metalloproteomics (RSC, Cambridge 2010)

    Google Scholar 

  139. D. Chen, W. Chao, N. Xin, S. Li, R. Li, M. Guan, L. Zhuang, C. Chen, C. Wang, C. Shu: Photoacoustic imaging guided near-infrared photothermal therapy using highly water-dispersible single-walled carbon nanohorns as theranostic agents, Adv. Funct. Mater. 24, 6621–6628 (2014)

    Google Scholar 

  140. L. Wang, J. Li, J. Pan, X. Jiang, Y. Ji, Y. Li, Y. Qu, Y. Zhao, X. Wu, C. Chen: Revealing the binding structure of the protein corona on gold nanorods using synchrotron radiation-based techniques: Understanding the reduced damage in cell membranes, J. Am. Chem. Soc. 135, 17359–17368 (2013)

    Google Scholar 

  141. L. Wang, T. Zhang, P. Li, W. Huang, J. Tang, P. Wang, J. Liu, Q. Yuan, R. Bai, B. Li, K. Zhang, Y. Zhao, C. Chen: Use of synchrotron radiation-analytical techniques to reveal chemical origin of silver-nanoparticle cytotoxicity, ACS Nano 9, 6532–6547 (2015)

    Google Scholar 

  142. D. Drescher, P. Guttmann, T. Büchner, S. Werner, G. Laube, A. Hornemann, B. Tarek, G. Schneider, J. Kneipp: Specific biomolecule corona is associated with ring-shaped organization of silver nanoparticles in cells, Nanoscale 5, 9193–9198 (2013)

    Google Scholar 

  143. P. Zhang, Y. Ma, Z. Zhang, X. He, J. Zhang, Z. Guo, R. Tai, Y. Zhao, Z. Chai: Biotransformation of ceria nanoparticles in cucumber plants, ACS Nano 6, 9943–9950 (2012)

    Google Scholar 

  144. Z. Chen, L. Ying, B. Sun, L. Han, J. Dong, L. Zhang, L. Wang, W. Peng, Y. Zhao, C. Chen: Polyhydroxylated metallofullerenols stimulate IL-1β secretion of macrophage through TLRs/MyD88/NF-κB pathway and NLRP3 inflammasome activation, Small 10, 2362–2372 (2014)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Ministry of Science and Technology of China (2016YFA0201600), the National Natural Science Foundation of China (21477029, 21320102003, 21277037, 21403043, and 21277080), the Chinese Academy of Sciences (XDA09040400), the Beijing Natural Science Foundation (No. 2152037), Major Project of the National Social Science Fund (Grant No. 12&ZD117) ‘‘Ethical issues of high-tech'', and the National Science Fund for Distinguished Young Scholars (11425520).

Author information

Authors and Affiliations

Authors

Editor information

Bharat Bhushan

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag GmbH Germany

About this chapter

Cite this chapter

Chen, R., Chen, C. (2017). Environment, Health and Safety Issues in Nanotechnology. In: Bhushan, B. (eds) Springer Handbook of Nanotechnology. Springer Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-54357-3_45

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-54357-3_45

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-54355-9

  • Online ISBN: 978-3-662-54357-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics