Skip to main content

Advertisement

Log in

Toxicity of Nano-Titanium Dioxide (TiO2-NP) Through Various Routes of Exposure: a Review

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Nano-titanium dioxide (TiO2) is one of the most commonly used materials being synthesized for use as one of the top five nanoparticles. Due to the extensive application of TiO2 nanoparticles and their inclusion in many commercial products, the increased exposure of human beings to nanoparticles is possible. This exposure could be routed via dermal penetration, inhalation and oral ingestion or intravenous injection. Therefore, regular evaluation of their potential toxicity and distribution in the bodies of exposed individuals is essential. Keeping in view the potential health hazards of TiO2 nanoparticles for humans, we reviewed the research articles about studies performed on rats or other mammals as animal models. Most of these studies utilized the dermal or skin and the pulmonary exposures as the primary routes of toxicity. It was interesting that only very few studies revealed that the TiO2 nanoparticles could penetrate through the skin and translocate to other tissues, while many other studies demonstrated that no penetration or translocation could happen through the skin. Conversely, the TiO2 nanoparticles that entered through the pulmonary route were translocated to the brain or the systemic circulation from where these reached other organs like the kidney, liver, etc. In most studies, TiO2 nanoparticles appeared to have caused oxidative stress, histopathological alterations, carcinogenesis, genotoxicity and immune disruption. Therefore, the use of such materials in humans must be either avoided or strictly managed to minimise risks for human health in various situations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Dankovic D, Kuempel E, Wheeler M (2007) An approach to risk assessment for TiO2. Inhal Toxicol 19(s1):205–212. doi:10.1080/08958370701497754

    Article  CAS  PubMed  Google Scholar 

  2. Robertson TA, Sanchez WY, Roberts MS (2010) Are commercially available nanoparticles safe when applied to the skin? J Biomed Nanotechnol 6(5):452–468. doi:10.1166/jbn.2010.1145

    Article  CAS  PubMed  Google Scholar 

  3. Weir A, Westerhoff P, Fabricius L, von Goetz N (2012) Titanium dioxide nanoparticles in food and personal care products. Environ Sci Technol 46(4):2242–2250. doi:10.1021/es204168d

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Zhao J, Castranova V (2011) Toxicology of nanomaterials used in nanomedicine. J Toxicol Environ Health, Part B 14(8):593–632. doi:10.1080/10937404.2011.615113

    Article  CAS  Google Scholar 

  5. Saber AT, Jacobsen NR, Mortensen A, Szarek J, Jackson P, Madsen AM, Jensen KA, Koponen IK, Brunborg G, Gützkow KB, Vogel U, Wallin H (2012) Nanotitanium dioxide toxicity in mouse lung is reduced in sanding dust from paint. Part Fibre Toxicol 9:4–4. doi:10.1186/1743-8977-9-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Gao G, Ze Y, Zhao X, Sang X, Zheng L, Ze X, Gui S, Sheng L, Sun Q, Hong J, Yu X, Wang L, Zhang FH (2013) Titanium dioxide nanoparticle-induced testicular damage, spermatogenesis suppression, and gene expression alterations in male mice. J Hazard Mater 258:133–143

    Article  PubMed  CAS  Google Scholar 

  7. Weir A, Westerhoff P, Fabricius L, Hristovski K, Goetz N (2012) Titanium dioxide nanoparticles in food and personal care products. Environ Sci Technol 46(4):2242–2250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Shi H, Magaye R, Castranova V, Zhao J (2013) Titanium dioxide nanoparticles: a review of current toxicological data. Part Fibre Toxicol 10:15–15. doi:10.1186/1743-8977-10-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Senzui M, Tamura T, Miura K, Ikarashi Y, Watanabe Y, Fujii M (2010) Study on penetration of titanium dioxide (TiO2) nanoparticles into intact and damaged skin in vitro. J Toxicol Sci 35(1):107–113. doi:10.2131/jts.35.107

    Article  CAS  PubMed  Google Scholar 

  10. Newman MD, Stotland M, Ellis JI (2009) The safety of nanosized particles in titanium dioxide- and zinc oxide-based sunscreens. J Am Acad Dermatol 61(4):685–692. doi:10.1016/j.jaad.2009.02.051

    Article  CAS  PubMed  Google Scholar 

  11. Sadrieh N, Wokovich AM, Gopee NV, Zheng J, Haines D, Parmiter D, Siitonen PH, Cozart CR, Patri AK, McNeil SE, Howard PC, Doub WH, Buhse LF (2010) Lack of significant dermal penetration of titanium dioxide from sunscreen formulations containing nano- and submicron-size TiO2 particles. Toxicol Sci 115(1):156–166. doi:10.1093/toxsci/kfq041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Escobar-Chavez JJ, Merino-Sanjuan V, Lopez-Cervantes M, Urban-Morlan Z, Pinon-Segundo E, Quintanar-Guerrero D, Ganem-Quintanar A (2008) The tape-stripping technique as a method for drug quantification in skin. J Pharm Pharm Sci 11(1):104–30

    CAS  PubMed  Google Scholar 

  13. Filipe P, Silva JN, Silva R, Cirne de Castro JL, Marques Gomes M, Alves LC, Santus R, Pinheiro T (2009) Stratum corneum is an effective barrier to TiO2 and ZnO nanoparticle percutaneous absorption. Skin Pharmacol Physiol 22(5):266–275

    Article  CAS  PubMed  Google Scholar 

  14. Monteiro-Riviere NA, Wiench K, Landsiedel R, Schulte S, Inman AO, Riviere JE (2011) Safety evaluation of sunscreen formulations containing titanium dioxide and zinc oxide nanoparticles in UVB sunburned skin: an in vitro and in vivo study. Toxicol Sci 123(1):264–280. doi:10.1093/toxsci/kfr148

    Article  CAS  PubMed  Google Scholar 

  15. Bennat C, Müller-Goymann CC (2000) Skin penetration and stabilization of formulations containing microfine titanium dioxide as physical UV filter. Int J Cosmet Sci 22(4):271–83. doi:10.1046/j.1467-2494.2000.00009.x

    Article  CAS  PubMed  Google Scholar 

  16. Furukawa F, Doi Y, Suguro M, Morita O, Kuwahara H, Masunaga T, Hatakeyama Y, Mori F (2011) Lack of skin carcinogenicity of topically applied titanium dioxide nanoparticles in the mouse. Food Chem Toxicol 49(4):744–749. doi:10.1016/j.fct.2010.11.036

    Article  CAS  PubMed  Google Scholar 

  17. Sagawa Y, Futakuchi M, Xu J, Fukamachi K, Sakai Y, Ikarashi Y, Nishimura T, Suzui M, Tsuda H, Morita A (2012) Lack of promoting effect of titanium dioxide particles on chemically-induced skin carcinogenesis in rats and mice. J Toxicol Sci 37(2):317–327. doi:10.2131/jts.37.317

    Article  CAS  PubMed  Google Scholar 

  18. Xu J, Sagawa Y, Futakuchi M, Fukamachi K, Alexander DB, Furukawa F, Ikarashi Y, Uchino T, Nishimura T, Morita A, Suzui M, Tsuda H (2011) Lack of promoting effect of titanium dioxide particles on ultraviolet B-initiated skin carcinogenesis in rats. Food Chem Toxicol 49(6):1298–1302. doi:10.1016/j.fct.2011.03.011

    Article  CAS  PubMed  Google Scholar 

  19. Wu J, Liu W, Xue C, Zhou S, Lan F, Bi L, Xu H, Yang X, Zeng F-D (2009) Toxicity and penetration of TiO2 nanoparticles in hairless mice and porcine skin after subchronic dermal exposure. Toxicol Lett 191(1):1–8. doi:10.1016/j.toxlet.2009.05.020

    Article  CAS  PubMed  Google Scholar 

  20. Warheit DB, Hoke RA, Finlay C, Donner EM, Reed KL, Sayes CM (2007) Development of a base set of toxicity tests using ultrafine TiO2 particles as a component of nanoparticle risk management. Toxicol Lett 171(3):99–110. doi:10.1016/j.toxlet.2007.04.008

    Article  CAS  PubMed  Google Scholar 

  21. Liu Q, Hong Z, Guo B-g, Zhang Y, Li Y, Liu J (2006) Experimental study on toxicity of nanosized titanium dioxide. Mod Prev Med 33:1211–1212

    CAS  Google Scholar 

  22. Unnithan J, Rehman M, Ahmad F, Samim M (2011) Aqueous synthesis and concentration-dependent dermal toxicity of TiO2 nanoparticles in Wistar rats. Biol Trace Elem Res 143(3):1682–1694. doi:10.1007/s12011-011-9010-4

    Article  CAS  PubMed  Google Scholar 

  23. Yanagisawa R, Takano H, K-i I, Koike E, Kamachi T, Sadakane K, Ichinose T (2009) Titanium dioxide nanoparticles aggravate atopic dermatitis-like skin lesions in NC/Nga mice. Exp Biol Med 234(3):314–322. doi:10.3181/0810-rm-304

    Article  CAS  Google Scholar 

  24. Simkó M, Mattsson M-O (2010) Risks from accidental exposures to engineered nanoparticles and neurological health effects: a critical review. Part Fibre Toxicol 7:42–42. doi:10.1186/1743-8977-7-42

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Kuempel ED, Tran CL, Castranova V, Bailer AJ (2006) Lung dosimetry and risk assessment of nanoparticles: evaluating and extending current models in rats and humans. Inhal Toxicol 18(10):717–24. doi:10.1080/08958370600747887

    Article  CAS  PubMed  Google Scholar 

  26. Mühlfeld C, Geiser M, Kapp N, Gehr P, Rothen-Rutishauser B (2007) Re-evaluation of pulmonary titanium dioxide nanoparticle distribution using the “relative deposition index”: evidence for clearance through microvasculature. Part Fibre Toxicol 4:7–7. doi:10.1186/1743-8977-4-7

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. van Ravenzwaay B, Landsiedel R, Fabian E, Burkhardt S, Strauss V, Ma-Hock L (2009) Comparing fate and effects of three particles of different surface properties: nano-TiO2, pigmentary TiO2 and quartz. Toxicol Lett 186(3):152–159. doi:10.1016/j.toxlet.2008.11.020

    Article  PubMed  CAS  Google Scholar 

  28. Bermudez E, Mangum JB, Wong BA, Asgharian B, Hext PM, Warheit DB, Everitt JI (2004) Pulmonary responses of mice, rats, and hamsters to subchronic inhalation of ultrafine titanium dioxide particles. Toxicol Sci 77(2):347–357. doi:10.1093/toxsci/kfh019

    Article  CAS  PubMed  Google Scholar 

  29. Lindberg HK, Falck GCM, Catalán J, Koivisto AJ, Suhonen S, Järventaus H, Rossi EM, Nykäsenoja H, Peltonen Y, Moreno C, Alenius H, Tuomi T, Savolainen KM, Norppa H (2012) Genotoxicity of inhaled nanosized TiO2 in mice. Mutat Res Gen Toxicol Environ Mutagen 745(1–2):58–64. doi:10.1016/j.mrgentox.2011.10.011

    Article  CAS  Google Scholar 

  30. Nurkiewicz TR, Porter DW, Hubbs AF, Stone S, Chen BT, Frazer DG, Boegehold MA, Castranova V (2009) Pulmonary nanoparticle exposure disrupts systemic microvascular nitric oxide signaling. Toxicol Sci 110(1):191–203. doi:10.1093/toxsci/kfp051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. LeBlanc AJ, Cumpston JL, Chen BT, Frazer D, Castranova V, Nurkiewicz TR (2009) Nanoparticle inhalation impairs endothelium-dependent vasodilation in subepicardial arterioles. J Toxicol Environ Health Part A 72(24):1576–1584. doi:10.1080/15287390903232467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Knuckles TL, Yi J, Frazer DG, Leonard HD, Chen BT, Castranova V, Nurkiewicz TR (2012) Nanoparticle inhalation alters systemic arteriolar vasoreactivity through sympathetic and cyclooxygenase-mediated pathways. Nanotoxicol 6(7):724–735. doi:10.3109/17435390.2011.606926

    Article  CAS  Google Scholar 

  33. LeBlanc AJ, Moseley AM, Chen BT, Frazer D, Castranova V, Nurkiewicz TR (2010) Nanoparticle inhalation impairs coronary microvascular reactivity via a local reactive oxygen species-dependent mechanism. Cardiovasc Toxicol 10(1):27–36. doi:10.1007/s12012-009-9060-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Nurkiewicz TR, Porter DW, Hubbs AF, Stone S, Moseley AM, Cumpston JL, Goodwill AG, Frisbee SJ, Perrotta PL, Brock RW, Frisbee JC, Boegehold MA, Frazer DG, Chen BT, Castranova V (2011) Pulmonary particulate matter and systemic microvascular dysfunction. Res Rep Health Eff Inst 164:3–48

    PubMed  Google Scholar 

  35. Scuri M, Chen BT, Castranova V, Reynolds JS, Johnson VJ, Samsell L, Walton C, Piedimonte G (2010) Effects of titanium dioxide nanoparticle exposure on neuroimmune responses in rat airways. J Toxicol Environ Health Part A 73(20):1353–1369. doi:10.1080/15287394.2010.497436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Hougaard K, Jackson P, Jensen K, Sloth J, Loschner K, Larsen E, Birkedal R, Vibenholt A, Boisen A-M, Wallin H, Vogel U (2010) Effects of prenatal exposure to surface-coated nanosized titanium dioxide (UV-Titan). A study in mice. Part Fibre Toxicol 7(1):16

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Halappanavar S, Jackson P, Williams A, Jensen KA, Hougaard KS, Vogel U, Yauk CL, Wallin H (2011) Pulmonary response to surface-coated nanotitanium dioxide particles includes induction of acute phase response genes, inflammatory cascades, and changes in microRNAs: a toxicogenomic study. Environ Mol Mutagen 52(6):425–439. doi:10.1002/em.20639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Noël A, Charbonneau M, Cloutier Y, Tardif R, Truchon G (2013) Rat pulmonary responses to inhaled nano-TiO2: effect of primary particle size and agglomeration state. Part Fibre Toxicol 10(1):48

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Ma-Hock L, Burkhardt S, Strauss V, Gamer AO, Wiench K, van Ravenzwaay B, Landsiedel R (2009) Development of a short-term inhalation test in the rat using nano-titanium dioxide as a model substance. Inhal Toxicol 21(2):102–118. doi:10.1080/08958370802361057

    Article  CAS  PubMed  Google Scholar 

  40. Grassian VH, O’Shaughnessy PT, Adamcakova-Dodd A, Pettibone JM, Thorne PS (2007) Inhalation exposure study of titanium dioxide nanoparticles with a primary particle size of 2 to 5 nm. Environ Health Perspect 115(3):397–402. doi:10.1289/ehp.9469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Sun Q, Hong X, Wold LE (2010) Cardiovascular effects of ambient particulate air pollution exposure. Circulation 121(25):2755–2765. doi:10.1161/CIRCULATIONAHA.109.893461

    Article  PubMed  PubMed Central  Google Scholar 

  42. Rossi EM, Pylkkänen L, Koivisto A, Nykasenoja H, Wolff H, Savolainen K, Alenius H (2010) Inhalation exposure to nanosized and fine TiO2 particles inhibits features of allergic asthma in a murine model. Part Fibre Toxicol 7(1):35

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Rossi EM, Pylkkänen L, Koivisto AJ, Vippola M, Jensen KA, Miettinen M, Sirola K, Nykäsenoja H, Karisola P, Stjernvall T, Vanhala E, Kiilunen M, Pasanen P, Mäkinen M, Hämeri K, Joutsensaari J, Tuomi T, Jokiniemi J, Wolff H, Savolainen K, Matikainen S, Alenius H (2010) Airway exposure to silica-coated TiO2 nanoparticles induces pulmonary neutrophilia in mice. Toxicol Sci 113(2):422–433. doi:10.1093/toxsci/kfp254

    Article  CAS  PubMed  Google Scholar 

  44. Morimoto Y, Oyabu T, Ogami A, Myojo T, Kuroda E, Hirohashi M, Shimada M, Lenggoro W, Okuyama K, Tanaka I (2011) Investigation of gene expression of MMP-2 and TIMP-2 mRNA in rat lung in inhaled nickel oxide and titanium dioxide nanoparticles. Ind Health 49(3):344–352. doi:10.2486/indhealth.MS1218

    Article  CAS  PubMed  Google Scholar 

  45. Leppänen M, Korpi A, Miettinen M, Leskinen J, Torvela T, Rossi E, Vanhala E, Wolff H, Alenius H, Kosma V-M, Joutsensaari J, Jokiniemi J, Pasanen P (2011) Nanosized TiO2 caused minor airflow limitation in the murine airways. Arch Toxicol 85(7):827–839. doi:10.1007/s00204-011-0644-y

    Article  PubMed  CAS  Google Scholar 

  46. Eydner M, Schaudien D, Creutzenberg O, Ernst H, Hansen T, Baumgärtner W, Rittinghausen S (2012) Impacts after inhalation of nano- and fine-sized titanium dioxide particles: morphological changes, translocation within the rat lung, and evaluation of particle deposition using the relative deposition index. Inhal Toxicol 24(9):557–569. doi:10.3109/08958378.2012.697494

    Article  CAS  PubMed  Google Scholar 

  47. Lee KP, Trochimowicz HJ, Reinhardt CF (1985) Pulmonary response of rats exposed to titanium dioxide (TiO2) by inhalation for two years. Toxicol Appl Pharmacol 79(2):179–192. doi:10.1016/0041-008X(85)90339-4

    Article  CAS  PubMed  Google Scholar 

  48. Baskerville A, Fitzgeorge RB, Gilmour MI, Dowsett AB, Williams A, Featherstone AS (1988) Effects of inhaled titanium dioxide dust on the lung and on the course of experimental Legionnaires’ disease. Br J Exp Pathol 69(6):781–792

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Warheit DB, Yuen IS, Kelly DP, Snajdr S, Hartsky MA (1996) Subchronic inhalation of high concentrations of low toxicity, low solubility particulates produces sustained pulmonary inflammation and cellular proliferation. Toxicol Lett 88(1–3):249–53

    Article  CAS  PubMed  Google Scholar 

  50. Warheit DB, Hansen JF, Yuen IS, Kelly DP, Snajdr SI, Hartsky MA (1997) Inhalation of high concentrations of low toxicity dusts in rats results in impaired pulmonary clearance mechanisms and persistent inflammation. Toxicol Appl Pharmacol 145(1):10–22. doi:10.1006/taap.1997.8102

    Article  CAS  PubMed  Google Scholar 

  51. Bermudez E, Mangum JB, Asgharian B, Wong BA, Reverdy EE, Janszen DB, Hext PM, Warheit DB, Everitt JI (2002) Long-term pulmonary responses of three laboratory rodent species to subchronic inhalation of pigmentary titanium dioxide particles. Toxicol Sci 70(1):86–97. doi:10.1093/toxsci/70.1.86

    Article  CAS  PubMed  Google Scholar 

  52. Driscoll KE, Costa DL, Hatch G, Henderson R, Oberdorster G, Salem H, Schlesinger RB (2000) Intratracheal instillation as an exposure technique for the evaluation of respiratory tract toxicity: uses and limitations. Toxicol Sci 55(1):24–35. doi:10.1093/toxsci/55.1.24

    Article  CAS  PubMed  Google Scholar 

  53. Sager TM, Kommineni C, Castranova V (2008) Pulmonary response to intratracheal instillation of ultrafine versus fine titanium dioxide: role of particle surface area. Part Fibre Toxicol 5:17–17. doi:10.1186/1743-8977-5-17

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Li Y, Li J, Yin J, Li W, Kang C, Huang Q, Li Q (2010) Systematic influence induced by 3 nm titanium dioxide following intratracheal instillation of mice. J Nanosci Nanotechnol 10(12):8544–9

    Article  CAS  PubMed  Google Scholar 

  55. Park E-J, Yoon J, Choi K, Yi J, Park K (2009) Induction of chronic inflammation in mice treated with titanium dioxide nanoparticles by intratracheal instillation. Toxicol 260(1–3):37–46. doi:10.1016/j.tox.2009.03.005

    Article  CAS  Google Scholar 

  56. Kobayashi N, Naya M, Endoh S, Maru J, Yamamoto K, Nakanishi J (2009) Comparative pulmonary toxicity study of nano-TiO2 particles of different sizes and agglomerations in rats: different short- and long-term post-instillation results. Toxicol 264(1–2):110–118. doi:10.1016/j.tox.2009.08.002

    Article  CAS  Google Scholar 

  57. Liu R, Yin L, Pu Y, Liang G, Zhang J, Su Y, Xiao Z, Ye B (2009) Pulmonary toxicity induced by three forms of titanium dioxide nanoparticles via intra-tracheal instillation in rats. Prog Nat Sci 19(5):573–579. doi:10.1016/j.pnsc.2008.06.020

    Article  CAS  Google Scholar 

  58. Sager T, Castranova V (2009) Surface area of particle administered versus mass in determining the pulmonary toxicity of ultrafine and fine carbon black: comparison to ultrafine titanium dioxide. Part Fibre Toxicol 6(1):15

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Tang M, Zhang T, Xue Y, Wang S, Huang M, Yang Y, Lu M, Lei H, Kong L, Yuepu P (2010) Dose dependent in vivo metabolic characteristics of titanium dioxide nanoparticles. J Nanosci Nanotechnol 10(12):8575–8583

    Article  CAS  PubMed  Google Scholar 

  60. Roursgaard M, Jensen KA, Poulsen SS, Jensen NE, Poulsen LK, Hammer M, Nielsen GD, Larsen ST (2011) Acute and subchronic airway inflammation after intratracheal instillation of quartz and titanium dioxide agglomerates in mice. Sci World J 11:801–825. doi:10.1100/tsw.2011.67

    Article  CAS  Google Scholar 

  61. Nemmar A, Melghit K, Al-Salam S, Zia S, Dhanasekaran S, Attoub S, Al-Amri I, Ali BH (2011) Acute respiratory and systemic toxicity of pulmonary exposure to rutile Fe-doped TiO2 nanorods. Toxicol 279(1–3):167–175. doi:10.1016/j.tox.2010.10.007

    Article  CAS  Google Scholar 

  62. Sun Q, Tan D, Ze Y, Sang X, Liu X, Gui S, Cheng Z, Cheng J, Hu R, Gao G, Liu G, Zhu M, Zhao X, Sheng L, Wang L, Tang M, Hong F (2012) Pulmotoxicological effects caused by long-term titanium dioxide nanoparticles exposure in mice. J Hazard Mater 235–236:47–53. doi:10.1016/j.jhazmat.2012.05.072

    Article  PubMed  CAS  Google Scholar 

  63. Sun Q, Tan D, Zhou Q, Liu X, Cheng Z, Liu G, Zhu M, Sang X, Gui S, Cheng J, Hu R, Tang M, Hong F (2012) Oxidative damage of lung and its protective mechanism in mice caused by long-term exposure to titanium dioxide nanoparticles. J Biomed Mater Res Part A 100A(10):2554–2562. doi:10.1002/jbm.a.34190

    Article  CAS  Google Scholar 

  64. Husain M, Saber AT, Guo C, Jacobsen NR, Jensen KA, Yauk CL, Williams A, Vogel U, Wallin H, Halappanavar S (2013) Pulmonary instillation of low doses of titanium dioxide nanoparticles in mice leads to particle retention and gene expression changes in the absence of inflammation. Toxicol Appl Pharmacol 269(3):250–262. doi:10.1016/j.taap.2013.03.018

    Article  CAS  PubMed  Google Scholar 

  65. Liang G, Pu Y, Yin L, Liu R, Ye B, Su Y, Li Y (2009) Influence of different sizes of titanium dioxide nanoparticles on hepatic and renal functions in rats with correlation to oxidative stress. J Toxicol Environ Health Part A 72(11–12):740–745. doi:10.1080/15287390902841516

    Article  CAS  PubMed  Google Scholar 

  66. Tang M, Zhang T, Xue Y, Wang S, Huang M, Yang Y, Lu M, Lei H, Kong L, Wang Y, Pu Y (2011) Metabonomic studies of biochemical changes in the serum of rats by intratracheally instilled TiO2 nanoparticles. J Nanosci Nanotechnol 11(4):3065–3074. doi:10.1166/jnn.2011.3604

    Article  CAS  PubMed  Google Scholar 

  67. Gustafsson Å, Lindstedt E, Elfsmark LS, Bucht A (2011) Lung exposure of titanium dioxide nanoparticles induces innate immune activation and long-lasting lymphocyte response in the Dark Agouti rat. J Immunotoxicol 8(2):111–121. doi:10.3109/1547691X.2010.546382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Liu R, Zhang X, Pu Y, Yin L, Li Y, Zhang X, Liang G, Li X, Zhang J (2010) Small-sized titanium dioxide nanoparticles mediate immune toxicity in rat pulmonary alveolar macrophages in vivo. J Nanosci Nanotechnol 10(8):5161–5169. doi:10.1166/jnn.2010.2420

    Article  CAS  PubMed  Google Scholar 

  69. Fu Y, Zhang Y, Chang X, Zhang Y, Ma S, Sui J, Yin L, Pu Y, Liang G (2014) Systemic immune effects of titanium dioxide nanoparticles after repeated intratracheal instillation in rat. Int J Mol Sci 15(4):6961–6973. doi:10.3390/ijms15046961

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Naya M, Kobayashi N, Ema M, Kasamoto S, Fukumuro M, Takami S, Nakajima M, Hayashi M, Nakanishi J (2012) In vivo genotoxicity study of titanium dioxide nanoparticles using comet assay following intratracheal instillation in rats. Regul Toxicol Pharmacol 62(1):1–6. doi:10.1016/j.yrtph.2011.12.002

    Article  CAS  PubMed  Google Scholar 

  71. Cho W-S, Duffin R, Poland CA, Howie SEM, MacNee W, Bradley M, Megson IL, Donaldson K (2010) Metal oxide nanoparticles induce unique inflammatory footprints in the lung: important implications for nanoparticle testing. Environ Health Perspect 118(12):1699–1706. doi:10.1289/ehp.1002201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Zhang G, Shinohara N, Kano H, Senoh H, Suzuki M, Sasaki T, Fukushima S, Gamo M (2015) Quantitative evaluation of the pulmonary microdistribution of TiO2 nanoparticles using X-ray fluorescence microscopy after intratracheal administration with a microsprayer in rats. J Appl Toxicol 35(6):623–630. doi:10.1002/jat.3109

    Article  CAS  PubMed  Google Scholar 

  73. Courtois A, Andujar P, Ladeiro Y, Ducret T, Rogerieux F, Lacroix G, Baudrimont I, Guibert C, Roux E, Canal-Raffin M, Brochard P, Marano F, Marthan R, Muller B (2010) Effect of engineered nanoparticles on vasomotor responses in rat intrapulmonary artery. Toxicol Appl Pharmacol 245(2):203–210. doi:10.1016/j.taap.2010.03.002

    Article  CAS  PubMed  Google Scholar 

  74. Liu R, Yin LH, Pu YP, Li YH, Zhang XQ, Liang GY, Li XB, Zhang J, Li YF, Zhang XY (2010) The immune toxicity of titanium dioxide on primary pulmonary alveolar macrophages relies on their surface area and crystal structure. J Nanosci Nanotechnol 10(12):8491–9

    Article  CAS  PubMed  Google Scholar 

  75. Hussain S, Vanoirbeek JAJ, Luyts K, De Vooght V, Verbeken E, Thomassen LCJ, Martens JA, Dinsdale D, Boland S, Marano F, Nemery B, Hoet PHM (2011) Lung exposure to nanoparticles modulates an asthmatic response in a mouse model. Eur Respir J 37(2):299–309. doi:10.1183/09031936.00168509

    Article  CAS  PubMed  Google Scholar 

  76. Zhang Y, Tao J, He P, Tang Y, Wang Y (2009) Bio-effects of nano-TiO2 on lungs of mice. Sheng Wu Yi Xue Gong Cheng Xue Za Zhi 26(4):803–6

    CAS  PubMed  Google Scholar 

  77. Oberdorster G, Finkelstein JN, Johnston C, Gelein R, Cox C, Baggs R, Elder AC (2000) Acute pulmonary effects of ultrafine particles in rats and mice. Res Rep Health Eff Inst (96):5–74; disc. 75–86.

  78. Hu JQ, Chen CY, Bai R, Zhen S, Du XM, Zang JJ, Li JC, Gu YQ, Jia G (2010) Effect of nano-TiO(2) intratracheal instillation on lipid metabolism of AopE gene-knockout mice. Zhonghua Yu Fang Yi Xue Za Zhi 44(9):780–4

    CAS  PubMed  Google Scholar 

  79. Warheit DB, Webb TR, Sayes CM, Colvin VL, Reed KL (2006) Pulmonary instillation studies with nanoscale TiO2 rods and dots in rats: toxicity is not dependent upon particle size and surface area. Toxicol Sci 91(1):227–236. doi:10.1093/toxsci/kfj140

    Article  CAS  PubMed  Google Scholar 

  80. Yu X, Zhao X, Ze Y, Wang L, Liu D, Hong J, Xu B, Lin A, Zhang C, Zhao Y, Li B, Hong F (2014) Changes of serum parameters of TiO2 nanoparticle-induced atherosclerosis in mice. J Hazard Mater 280:364–371. doi:10.1016/j.jhazmat.2014.08.015

    Article  CAS  PubMed  Google Scholar 

  81. Wang J, Chen C, Liu Y, Jiao F, Li W, Lao F, Li Y, Li B, Ge C, Zhou G, Gao Y, Zhao Y, Chai Z (2008) Potential neurological lesion after nasal instillation of TiO2 nanoparticles in the anatase and rutile crystal phases. Toxicol Lett 183(1–3):72–80. doi:10.1016/j.toxlet.2008.10.001

    Article  CAS  PubMed  Google Scholar 

  82. Wang J, Liu Y, Jiao F, Lao F, Li W, Gu Y, Li Y, Ge C, Zhou G, Li B, Zhao Y, Chai Z, Chen C (2008) Time-dependent translocation and potential impairment on central nervous system by intranasally instilled TiO2 nanoparticles. Toxicol 254(1–2):82–90. doi:10.1016/j.tox.2008.09.014

    Article  CAS  Google Scholar 

  83. Chen J, Dong X, Xin Y, Zhao M (2011) Effects of titanium dioxide nano-particles on growth and some histological parameters of zebrafish (Danio rerio) after a long-term exposure. Aquat Toxicol 101(3–4):493–499. doi:10.1016/j.aquatox.2010.12.004

    Article  CAS  PubMed  Google Scholar 

  84. Ze Y, Zheng L, Zhao X, Gui S, Sang X, Su J, Guan N, Zhu L, Sheng L, Hu R, Cheng J, Cheng Z, Sun Q, Wang L, Hong F (2013) Molecular mechanism of titanium dioxide nanoparticles-induced oxidative injury in the brain of mice. Chemosphere 92(9):1183–1189. doi:10.1016/j.chemosphere.2013.01.094

    Article  CAS  PubMed  Google Scholar 

  85. Ze Y, Hu R, Wang X, Sang X, Ze X, Li B, Su J, Wang Y, Guan N, Zhao X, Gui S, Zhu L, Cheng Z, Cheng J, Sheng L, Sun Q, Wang L, Hong F (2014) Neurotoxicity and gene-expressed profile in brain-injured mice caused by exposure to titanium dioxide nanoparticles. J Biomed Mater Res Part A 102(2):470–478. doi:10.1002/jbm.a.34705

    Article  CAS  Google Scholar 

  86. Wang JX, Li YF, Zhou GQ, Li B, Jiao F, Chen CY, Gao YX, Zhao YL, Chai ZF (2007) Influence of intranasal instilled titanium dioxide nanoparticles on monoaminergic neurotransmitters of female mice at different exposure time. Zhonghua Yu Fang Yi Xue Za Zhi Chin J Prevent Med 41(2):91–95

    CAS  Google Scholar 

  87. Hagens WI, Oomen AG, de Jong WH, Cassee FR, Sips AJAM (2007) What do we (need to) know about the kinetic properties of nanoparticles in the body? Reg Toxicol Pharmacol 49(3):217–229. doi:10.1016/j.yrtph.2007.07.006

    Article  CAS  Google Scholar 

  88. Lomer MCE, Thompson RPH, Powell JJ (2002) Fine and ultrafine particles of the diet: influence on the mucosal immune response and association with Crohn’s disease. Proc Nutr Soc 61(01):123–130. doi:10.1079/PNS2001134

    Article  PubMed  Google Scholar 

  89. Hillyer JF, Albrecht RM (2001) Gastrointestinal persorption and tissue distribution of differently sized colloidal gold nanoparticles. J Pharm Sci 90(12):1927–1936. doi:10.1002/jps.1143

    Article  CAS  PubMed  Google Scholar 

  90. El-Sharkawy NI, Hamza SM, Abou-Zeid EH (2010) Toxic impact of titanium dioxide (TiO2) in male albino rats with special reference to its effect on reproductive system. J Am Sci 6(11):865–872

    Google Scholar 

  91. Wang J, Zhou G, Chen C, Yu H, Wang T, Ma Y, Jia G, Gao Y, Li B, Sun J, Li Y, Jiao F, Zhao Y, Chai Z (2007) Acute toxicity and biodistribution of different sized titanium dioxide particles in mice after oral administration. Toxicol Lett 168(2):176–185. doi:10.1016/j.toxlet.2006.12.001

    Article  CAS  PubMed  Google Scholar 

  92. Bu Q, Yan G, Deng P, Peng F, Lin H, Xu Y, Cao Z, Zhou T, Xue A, Wang Y, Cen X, Zhao YL (2010) NMR-based metabonomic study of the sub-acute toxicity of titanium dioxide nanoparticles in rats after oral administration. Nanotechnol 21(12):125105. doi:10.1088/0957-4484/21/12/125105

    Article  CAS  Google Scholar 

  93. Shrivastava R, Raza S, Yadav A, Kushwaha P, Flora SJS (2014) Effects of sub-acute exposure to TiO2, ZnO and Al2O3 nanoparticles on oxidative stress and histological changes in mouse liver and brain. Drug Chem Toxicol 37(3):336–347. doi:10.3109/01480545.2013.866134

    Article  CAS  PubMed  Google Scholar 

  94. Fadda LM, Abdel Baky N, Al-Rasheed NM, Al-Rasheed NM, Bassiouni YA (2013) Ameliorative effect of quercetin and idebenone against oxidative stress, inflammation, DNA damage and apoptosis induced in rat livers after oral exposure to titanium dioxide nanoparticles. J Clin Toxicol 3:5. doi:10.4172/2161-0495.S1.008

    Google Scholar 

  95. Vasantharaja D, Ramalingam V, Aadinaath Reddy G (2015) Oral toxic exposure of titanium dioxide nanoparticles on serum biochemical changes in adult male Wistar rats. Nanomedicine J 2(1):46–53

    Google Scholar 

  96. Elbastawisy YM, Saied HA (2013) Effects of exposure to titanium dioxide nanoparticles on albino rat visual cortex “electron microscopic study”. J Am Sci 9(5):432–439

    Google Scholar 

  97. Faddah LM, Abdel Baky NA, Al-Rasheed NM, Al-Rasheed NM (2013) Biochemical responses of nanosize titanium dioxide in the heart of rats following administration of idepenone and quercetin. Afr J Pharm Pharmacol 7(38):2639–2651. doi:10.5897/AJPP2013.3426

    Article  CAS  Google Scholar 

  98. Mohammadipour A, Hosseini M, Fazel A, Haghir H, Rafatpanah H, Pourganji M, Ebrahimzadeh Bideskan A (2013) The effects of exposure to titanium dioxide nanoparticles during lactation period on learning and memory of rat offspring. Toxicol Ind Health. doi:10.1177/0748233713498440

    PubMed  Google Scholar 

  99. Ze Y, Sheng L, Zhao X, Hong J, Ze X, Yu X, Pan X, Lin A, Zhao Y, Zhang C, Zhou Q, Wang L, Hong F (2014) TiO2 nanoparticles induced hippocampal neuroinflammation in mice. PLoS ONE 9(3), e92230. doi:10.1371/journal.pone.0092230

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Geraets L, Oomen A, Krystek P, Jacobsen N, Wallin H, Laurentie M, Verharen H, Brandon E, de Jong W (2014) Tissue distribution and elimination after oral and intravenous administration of different titanium dioxide nanoparticles in rats. Part Fibre Toxicol 11(1):30

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  101. Chalew TEA, Ajmani GS, Huang H, Schwab KJ (2013) Evaluating nanoparticle breakthrough during drinking water treatment. Environ Health Perspect 121(10):1161–1166. doi:10.1289/ehp.1306574

    PubMed Central  Google Scholar 

  102. Trouiller B, Reliene R, Westbrook A, Solaimani P, Schiestl RH (2009) Titanium dioxide nanoparticles induce DNA damage and genetic instability in vivo in mice. Cancer Res 69(22):8784–8789. doi:10.1158/0008-5472.can-09-2496

    Article  CAS  PubMed  Google Scholar 

  103. Swart AM, Burdett S, Ledermann J, Mook P, Parmar MK (2008) Why i.p. therapy cannot yet be considered as a standard of care for the first-line treatment of ovarian cancer: a systematic review. Ann Oncol 19(4):688–95. doi:10.1093/annonc/mdm518

    Article  CAS  PubMed  Google Scholar 

  104. Bihari P, Holzer M, Praetner M, Fent J, Lerchenberger M, Reichel CA, Rehberg M, Lakatos S, Krombach F (2010) Single-walled carbon nanotubes activate platelets and accelerate thrombus formation in the microcirculation. Toxicol 269(2–3):148–154. doi:10.1016/j.tox.2009.08.011

    Article  CAS  Google Scholar 

  105. Younes NRB, Amara S, Mrad I, Ben-Slama I, Jeljeli M, Omri K, El Ghoul J, El Mir L, Rhouma K, Abdelmelek H, Sakly M (2015) Subacute toxicity of titanium dioxide (TiO2) nanoparticles in male rats: emotional behavior and pathophysiological examination. Environ Sci Pollut Res 22(11):8728–8737. doi:10.1007/s11356-014-4002-5

    Article  CAS  Google Scholar 

  106. Chen J, Dong X, Zhao J, Tang G (2009) In vivo acute toxicity of titanium dioxide nanoparticles to mice after intraperitoneal injection. J Appl Toxicol 29(4):330–337. doi:10.1002/jat.1414

    Article  CAS  PubMed  Google Scholar 

  107. Guo LL, Liu XH, Qin DX, Gao L, Zhang HM, Liu JY, Cui YG (2009) Effects of nanosized titanium dioxide on the reproductive system of male mice. Zhonghua Nan Ke Xue 15(6):517–22

    CAS  PubMed  Google Scholar 

  108. Li N, Duan Y, Hong M, Zheng L, Fei M, Zhao X, Wang J, Cui Y, Liu H, Cai J, Gong S, Wang H, Hong F (2010) Spleen injury and apoptotic pathway in mice caused by titanium dioxide nanoparticles. Toxicol Lett 195(2–3):161–168. doi:10.1016/j.toxlet.2010.03.1116

    Article  CAS  PubMed  Google Scholar 

  109. Moon E-Y, Yi G-H, Kang J-S, Lim J-S, Kim H-M, Pyo S (2011) An increase in mouse tumor growth by an in vivo immunomodulating effect of titanium dioxide nanoparticles. J Immunotoxicol 8(1):56–67. doi:10.3109/1547691X.2010.543995

    Article  CAS  PubMed  Google Scholar 

  110. Moon C, Park H-J, Choi Y-H, Park E-M, Castranova V, Kang JL (2010) Pulmonary inflammation after intraperitoneal administration of ultrafine titanium dioxide (TiO2) at rest or in lungs primed with lipopolysaccharide. J Toxicol Environ Health Part A 73(5–6):396–409. doi:10.1080/15287390903486543

    Article  CAS  PubMed  Google Scholar 

  111. Shin JA, Lee EJ, Seo SM, Kim HS, Kang JL, Park EM (2010) Nanosized titanium dioxide enhanced inflammatory responses in the septic brain of mouse. Neuroscience 165(2):445–454. doi:10.1016/j.neuroscience.2009.10.057

    Article  CAS  PubMed  Google Scholar 

  112. Alarifi S, Ali D, Al-Doaiss AA, Ali BA, Ahmed M, Al-Khedhairy AA (2013) Histologic and apoptotic changes induced by titanium dioxide nanoparticles in the livers of rats. Int J Nanomedicine 8:3937–43. doi:10.2147/ijn.s47174

    PubMed  PubMed Central  Google Scholar 

  113. Jeon Y-M, Kim W-J, Lee M-Y (2013) Studies on liver damage induced by nanosized-titanium dioxide in mouse. J Environ Biol 34(2):283–287

    PubMed  Google Scholar 

  114. Liu H, Ma L, Zhao J, Liu J, Yan J, Ruan J, Hong F (2009) Biochemical toxicity of nano-anatase TiO2 particles in mice. Biol Trace Elem Res 129(1–3):170–180. doi:10.1007/s12011-008-8285-6

    Article  CAS  PubMed  Google Scholar 

  115. Ma L, Zhao J, Wang J, Liu J, Duan Y, Liu H, Li N, Yan J, Ruan J, Wang H, Hong F (2009) The acute liver injury in mice caused by nano-anatase TiO(2). Nanoscale Res Lett 4(11):1275–1285. doi:10.1007/s11671-009-9393-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Ma L, Liu J, Li N, Wang J, Duan Y, Yan J, Liu H, Wang H, Hong F (2010) Oxidative stress in the brain of mice caused by translocated nanoparticulate TiO2 delivered to the abdominal cavity. Biomaterials 31(1):99–105. doi:10.1016/j.biomaterials.2009.09.028

    Article  CAS  PubMed  Google Scholar 

  117. Larsen ST, Roursgaard M, Jensen KA, Nielsen GD (2010) Nano titanium dioxide particles promote allergic sensitization and lung inflammation in mice. Basic Clin Pharmacol Toxicol 106(2):114–117. doi:10.1111/j.1742-7843.2009.00473.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Takeda K, K-i S, Ishihara A, Kubo-Irie M, Fujimoto R, Tabata M, Oshio S, Nihei Y, Ihara T, Sugamata M (2009) Nanoparticles transferred from pregnant mice to their offspring can damage the genital and cranial nerve systems. J Health Sci 55(1):95–102. doi:10.1248/jhs.55.95

    Article  CAS  Google Scholar 

  119. Umezawa M, Tainaka H, Kawashima N, Shimizu M, Takeda K (2012) Effect of fetal exposure to titanium dioxide nanoparticle on brain development—brain region information. J Toxicol Sci 37(6):1247–1252. doi:10.2131/jts.37.1247

    Article  CAS  PubMed  Google Scholar 

  120. Shimizu M, Tainaka H, Oba T, Mizuo K, Umezawa M, Takeda K (2009) Maternal exposure to nanoparticulate titanium dioxide during the prenatal period alters gene expression related to brain development in the mouse. Part Fibre Toxicol 6(1):20

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  121. Takahashi Y, Mizuo K, Shinkai Y, Oshio S, Takeda K (2010) Prenatal exposure to titanium dioxide nanoparticles increases dopamine levels in the prefrontal cortex and neostriatum of mice. J Toxicol Sci 35(5):749–756. doi:10.2131/jts.35.749

    Article  CAS  PubMed  Google Scholar 

  122. Hansen T, Clermont G, Alves A, Eloy R, Brochhausen C, Boutrand JP, Gatti AM, Kirkpatrick CJ (2006) Biological tolerance of different materials in bulk and nanoparticulate form in a rat model: sarcoma development by nanoparticles. J R Soc Interface 3(11):767–775. doi:10.1098/rsif.2006.0145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Gatti A, Kirkpatrick J, Gambarelli A, Capitani F, Hansen T, Eloy R, Clermont G (2008) ESEM evaluations of muscle/nanoparticles interface in a rat model. J Mater Sci Mater Med 19(4):1515–1522. doi:10.1007/s10856-008-3385-6

    Article  CAS  PubMed  Google Scholar 

  124. Onuma K, Sato Y, Ogawara S, Shirasawa N, Kobayashi M, Yoshitake J, Yoshimura T, Iigo M, Fujii J, Okada F (2009) Nano-scaled particles of titanium dioxide convert benign mouse fibrosarcoma cells into aggressive tumor cells. Am J Pathol 175(5):2171–2183. doi:10.2353/ajpath.2009.080900

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Xu J, Shi H, Ruth M, Yu H, Lazar L, Zou B, Yang C, Wu A, Zhao J (2013) Acute toxicity of intravenously administered titanium dioxide nanoparticles in mice. PLoS ONE 8(8), e70618. doi:10.1371/journal.pone.0070618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Scown TM, van Aerle R, Johnston BD, Cumberland S, Lead JR, Owen R, Tyler CR (2009) High doses of intravenously administered titanium dioxide nanoparticles accumulate in the kidneys of rainbow trout but with no observable impairment of renal function. Toxicol Sci 109(2):372–380. doi:10.1093/toxsci/kfp064

    Article  CAS  PubMed  Google Scholar 

  127. Yamashita K, Yoshioka Y, Higashisaka K, Mimura K, Morishita Y, Nozaki M, Yoshida T, Ogura T, Nabeshi H, Nagano K, Abe Y, Kamada H, Monobe Y, Imazawa T, Aoshima H, Shishido K, Kawai Y, Mayumi T, S-i T, Itoh N, Yoshikawa T, Yanagihara I, Saito S, Tsutsumi Y (2011) Silica and titanium dioxide nanoparticles cause pregnancy complications in mice. Nat Nano 6(5):321–328. doi:10.1038/nnano.2011.41

    Article  CAS  Google Scholar 

  128. González-Esquivel AE, Charles-Niño CL, Pacheco-Moisés FP, Ortiz GG, Jaramillo-Juárez F, Rincón-Sánchez AR (2015) Beneficial effects of quercetin on oxidative stress in liver and kidney induced by titanium dioxide (TiO2) nanoparticles in rats. Toxicol Mech Methods 25(3):166–175. doi:10.3109/15376516.2015.1006491

    Article  PubMed  CAS  Google Scholar 

  129. Wang J-X, Fan Y-B, Gao Y, Hu Q-H, Wang T-C (2009) TiO2 nanoparticles translocation and potential toxicological effect in rats after intraarticular injection. Biomaterials 30(27):4590–4600. doi:10.1016/j.biomaterials.2009.05.008

    Article  CAS  PubMed  Google Scholar 

  130. Wang J, Gao Y, Hou Y, Zhao F, Pu F, Liu X, Wu Z, Fan Y (2012) Evaluation on cartilage morphology after intra-articular injection of titanium dioxide nanoparticles in rats. J Nanomat 2012:11. doi:10.1155/2012/452767

    Google Scholar 

  131. Cui Y, Chen X, Zhou Z, Lei Y, Ma M, Cao R, Sun T, Xu J, Huo M, Cao R, Wen C, Che Y (2014) Prenatal exposure to nanoparticulate titanium dioxide enhances depressive-like behaviors in adult rats. Chemosphere 96:99–104. doi:10.1016/j.chemosphere.2013.07.051

    Article  CAS  PubMed  Google Scholar 

  132. Cui Y, Gong X, Duan Y, Li N, Hu R, Liu H, Hong M, Zhou M, Wang L, Wang H, Hong F (2010) Hepatocyte apoptosis and its molecular mechanisms in mice caused by titanium dioxide nanoparticles. J Hazard Mater 183(1–3):874–880. doi:10.1016/j.jhazmat.2010.07.109

    Article  CAS  PubMed  Google Scholar 

  133. Cui Y, Liu H, Zhou M, Duan Y, Li N, Gong X, Hu R, Hong M, Hong F (2011) Signaling pathway of inflammatory responses in the mouse liver caused by TiO2 nanoparticles. J Biomed Mater Res Part A 96A(1):221–229. doi:10.1002/jbm.a.32976

    Article  CAS  Google Scholar 

  134. Hu R, Zheng L, Zhang T, Gao G, Cui Y, Cheng Z, Cheng J, Hong M, Tang M, Hong F (2011) Molecular mechanism of hippocampal apoptosis of mice following exposure to titanium dioxide nanoparticles. J Hazard Mater 191(1–3):32–40. doi:10.1016/j.jhazmat.2011.04.027

    Article  CAS  PubMed  Google Scholar 

  135. Wang J, Li N, Zheng L, Wang S, Wang Y, Zhao X, Duan Y, Cui Y, Zhou M, Cai J, Gong S, Wang H, Hong F (2011) P38-Nrf-2 signaling pathway of oxidative stress in mice caused by nanoparticulate TiO2. Biol Trace Elem Res 140(2):186–197. doi:10.1007/s12011-010-8687-0

    Article  CAS  PubMed  Google Scholar 

  136. Gui S, Sang X, Zheng L, Ze Y, Zhao X, Sheng L, Sun Q, Cheng Z, Cheng J, Hu R, Wang L, Hong F, Tang M (2013) Intragastric exposure to titanium dioxide nanoparticles induced nephrotoxicity in mice, assessed by physiological and gene expression modifications. Part Fibre Toxicol 10(1):4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Duan Y, Liu J, Ma L, Li N, Liu H, Wang J, Zheng L, Liu C, Wang X, Zhao X, Yan J, Wang S, Wang H, Zhang X, Hong F (2010) Toxicological characteristics of nanoparticulate anatase titanium dioxide in mice. Biomaterials 31(5):894–899. doi:10.1016/j.biomaterials.2009.10.003

    Article  CAS  PubMed  Google Scholar 

  138. Hu R, Gong X, Duan Y, Li N, Che Y, Cui Y, Zhou M, Liu C, Wang H, Hong F (2010) Neurotoxicological effects and the impairment of spatial recognition memory in mice caused by exposure to TiO2 nanoparticles. Biomaterials 31(31):8043–8050. doi:10.1016/j.biomaterials.2010.07.011

    Article  CAS  PubMed  Google Scholar 

  139. Sang X, Zheng L, Sun Q, Li N, Cui Y, Hu R, Gao G, Cheng Z, Cheng J, Gui S, Liu H, Zhang Z, Hong F (2012) The chronic spleen injury of mice following long-term exposure to titanium dioxide nanoparticles. J Biomed Mater Res Part A 100A(4):894–902. doi:10.1002/jbm.a.34024

    Article  CAS  Google Scholar 

  140. Zhao X, Ze Y, Gao G, Sang X, Li B, Gui S, Sheng L, Sun Q, Cheng J, Cheng Z, Hu R, Wang L, Hong F (2013) Nanosized TiO2-induced reproductive system dysfunction and its mechanism in female mice. PLoS ONE 8(4), e59378. doi:10.1371/journal.pone.0059378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Zhao J, Li N, Wang S, Zhao X, Wang J, Yan J, Ruan J, Wang H, Hong F (2010) The mechanism of oxidative damage in the nephrotoxicity of mice caused by nano-anatase TiO2. J Exp Nanosci 5(5):447–462. doi:10.1080/17458081003628931

    Article  CAS  Google Scholar 

  142. Mohamed HRH (2014) Attenuation of nano-TiO2 induced genotoxicity, mutagenicity and apoptosis by chlorophyllin in mice cardiac cells. Int J Sci Res 3(6):2625–2636

    Google Scholar 

  143. Jeon Y-M, Park S-K, Lee M-Y (2011) Toxicoproteomic identification of TiO2 nanoparticle-induced protein expression changes in mouse brain. Anim Cells Syst 15(2):107–114. doi:10.1080/19768354.2011.555144

    Article  CAS  Google Scholar 

  144. Li N, Ma L, Wang J, Zheng L, Liu J, Duan Y, Liu H, Zhao X, Wang S, Wang H, Hong F, Xie Y (2010) Interaction between nano-anatase TiO2 and liver DNA from mice in vivo. Nanoscale Res Lett 5(1):108–115. doi:10.1007/s11671-009-9451-2

    Article  CAS  PubMed Central  Google Scholar 

  145. Li S-Q, Zhu R-R, Zhu H, Xue M, Sun X-Y, Yao S-D, Wang S-L (2008) Nanotoxicity of TiO2 nanoparticles to erythrocyte in vitro. Food Chem Toxicol 46(12):3626–3631. doi:10.1016/j.fct.2008.09.012

    Article  CAS  PubMed  Google Scholar 

  146. Aisaka Y, Kawaguchi R, Watanabe S, Ikeda M, Igisu H (2008) Hemolysis caused by titanium dioxide particles. Inhal Toxicol 20(9):891–893. doi:10.1080/08958370802304123

    Article  CAS  PubMed  Google Scholar 

  147. Zhang J, Song W, Guo J, Zhang J, Sun Z, Li L, Ding F, Gao M (2013) Cytotoxicity of different sized TiO2 nanoparticles in mouse macrophages. Toxicol Ind Health 29(6):523–533. doi:10.1177/0748233712442708

    Article  CAS  PubMed  Google Scholar 

  148. Qi K, Deng FR, Guo XB (2009) Effects of nanoscale titanium dioxide on intercellular gap junction communication in human lung fibroblasts. Beijing Da Xue Xue Bao 41(3):297–301

    CAS  PubMed  Google Scholar 

  149. Adachi K, Yamada N, Yamamoto K, Yoshida Y, Yamamoto O (2010) In vivo effect of industrial titanium dioxide nanoparticles experimentally exposed to hairless rat skin. Nanotoxicol 4(3):296–306. doi:10.3109/17435391003793095

    Article  CAS  Google Scholar 

  150. Miquel-Jeanjean C, Crépel F, Raufast V, Payre B, Datas L, Bessou-Touya S, Duplan H (2012) Penetration study of formulated nanosized titanium dioxide in models of damaged and sun-irradiated skins. Photochem Photobiol 88(6):1513–1521. doi:10.1111/j.1751-1097.2012.01181.x

    Article  CAS  PubMed  Google Scholar 

  151. Braydich-Stolle LK, Schaeublin NM, Murdock RC, Jiang J, Biswas P, Schlager J, Hussain SM (2009) Crystal structure mediates mode of cell death in TiO2 nanotoxicity. J Nanoparticle Res 11(6):1361–1374. doi:10.1007/s11051-008-9523-8

    Article  CAS  Google Scholar 

  152. Savi M, Rossi S, Bocchi L, Gennaccaro L, Cacciani F, Perotti A, Amidani D, Alinovi R, Goldoni M, Aliatis I, Lottici PP, Bersani D, Campanini M, Pinelli S, Petyx M, Frati C, Gervasi A, Urbanek K, Quaini F, Buschini A, Stilli D, Rivetti C, Macchi E, Mutti A, Miragoli M, Zaniboni M (2014) Titanium dioxide nanoparticles promote arrhythmias via a direct interaction with rat cardiac tissue. Part Fibre Toxicol 11(1):63. doi:10.1186/s12989-014-0063-3

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  153. Wang Y, Wu Q, Sui K, Chen X-X, Fang J, Hu X, Wu M, Liu Y (2013) A quantitative study of exocytosis of titanium dioxide nanoparticles from neural stem cells. Nanoscale 5(11):4737–4743. doi:10.1039/C3NR00796K

    Article  CAS  PubMed  Google Scholar 

  154. Wang Y, Wang J, Deng X, Wang J, Wang H, Wu M, Jiao Z, Liu Y (2009) Direct imaging of titania nanotubes located in mouse neural stem cell nuclei. Nano Res 2(7):543–552. doi:10.1007/s12274-009-9052-5

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farhat Jabeen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shakeel, M., Jabeen, F., Shabbir, S. et al. Toxicity of Nano-Titanium Dioxide (TiO2-NP) Through Various Routes of Exposure: a Review. Biol Trace Elem Res 172, 1–36 (2016). https://doi.org/10.1007/s12011-015-0550-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-015-0550-x

Keywords

Navigation