Skip to main content

Hemodynamic Implications of Prone Positioning in Patients with ARDS

  • Chapter
  • First Online:
Annual Update in Intensive Care and Emergency Medicine 2023

Part of the book series: Annual Update in Intensive Care and Emergency Medicine ((AUICEM))

  • 1298 Accesses

Abstract

Prone positioning is one of the recommended therapies to manage patients with moderate-to-severe acute respiratory distress syndrome (ARDS). It is now widely used as it has been proven to decrease mortality in these patients. In addition to improvement in lung mechanics and increase in arterial oxygenation secondary to a better ventilation/perfusion matching, prone positioning may improve hemodynamics. Indeed, change from the supine to the prone position is associated with an increase in intra-abdominal pressure that would affect venous return and its determinants (mean systemic pressure, right atrial pressure, and resistance to venous return). Eventually, prone positioning may increase right ventricular preload. Also, prone positioning decreases right ventricular afterload and could be highly beneficial in case of right ventricular dysfunction. Nevertheless, the hemodynamic effects of prone positioning are not predictable, and cardiac output may decrease in some patients, especially those in whom the intra-abdominal pressure increases to a large extent with prone positioning. Bedside assessment of hemodynamics could therefore be helpful in prone-positioned patients. It also allows the assessment of preload responsiveness, guiding fluid infusions performed to treat hemodynamic failure happening during the long prone position sessions. Although more clinical studies are needed, recent literature shows that the Trendelenburg maneuver, end-expiratory occlusion test, and tidal volume challenge are reliable to assess preload responsiveness in patients in the prone position.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Papazian L, Aubron C, Brochard L, et al. Formal guidelines: management of acute respiratory distress syndrome. Ann Intensive Care. 2019;9:69.

    Google Scholar 

  2. Hajjar LA, Costa IBSDS, Rizk SI, et al. Intensive care management of patients with COVID-19: a practical approach. Ann Intensive Care. 2021;11:36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Gattinoni L, Mascheroni D, Fumagalli R. Effect of prone positioning on the survival of patients with acute respiratory failure. N Engl J Med. 2001;345:568–73.

    Article  CAS  PubMed  Google Scholar 

  4. Guérin C, Constantin JM, Bellani G, et al. A prospective international observational prevalence study on prone positioning of ARDS patients: the APRONET (ARDS Prone Position Network) study. Intensive Care Med. 2018;44:22–37.

    Article  PubMed  Google Scholar 

  5. Guérin C, Reignier J, Richard JC, et al. Prone positioning in severe acute respiratory distress syndrome. N Engl J Med. 2013;368:2159–68.

    Article  PubMed  Google Scholar 

  6. Bellani G, Laffey JG, Pham T, et al. Epidemiology, patterns of care, and mortality for patients with acute respiratory distress syndrome in intensive care units in 50 countries. JAMA. 2016;315:788.

    Article  CAS  PubMed  Google Scholar 

  7. COVID-ICU Group on behalf of the REVA Network and the COVID-ICU Investigators. Clinical characteristics and day-90 outcomes of 4244 critically ill adults with COVID-19: a prospective cohort study. Intensive Care Med. 2021;47:60–73.

    Article  Google Scholar 

  8. Greco M, De Corte T, Ercole A, et al. Clinical and organizational factors associated with mortality during the peak of first COVID-19 wave: the global UNITE-COVID study. Intensive Care Med. 2022;48:690–705.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Richter T, Bellani G, Harris RS, et al. Effect of prone position on regional shunt, aeration, and perfusion in experimental acute lung injury. Am J Respir Crit Care Med. 2005;172:480–7.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Guérin C, Albert RK, Beitler J, et al. Prone position in ARDS patients: why, when, how and for whom. Intensive Care Med. 2020;46:2385–96.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Boesing C, Graf PT, Schmitt F, et al. Effects of different positive end-expiratory pressure titration strategies during prone positioning in patients with acute respiratory distress syndrome: a prospective interventional study. Crit Care. 2022;26:82.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Jozwiak M, Teboul JL, Anguel N, et al. Beneficial hemodynamic effects of prone positioning in patients with acute respiratory distress syndrome. Am J Respir Crit Care Med. 2013;188:1428–33.

    Article  PubMed  Google Scholar 

  13. Vieillard-Baron A, Charron C, Caille V, Belliard G, Page B, Jardin F. Prone positioning unloads the right ventricle in severe ARDS. Chest. 2007;132:1440–6.

    Article  PubMed  Google Scholar 

  14. Walter T, Zucman N, Mullaert J, et al. Extended prone positioning duration for COVID-19-related ARDS: benefits and detriments. Crit Care. 2022;26:208.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Persichini R, Lai C, Teboul JL, Adda I, Guérin L, Monnet X. Venous return and mean systemic filling pressure: physiology and clinical applications. Crit Care. 2022;26:150.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Guyton AC, Lindsey AW, Abernathy B, Richardson T. Venous return at various right atrial pressures and the normal venous return curve. Am J Physiol. 1957;189:609–15.

    Google Scholar 

  17. Lai C, Adda I, Teboul JL, et al. Effects of prone positioning on venous return in patients with acute respiratory distress syndrome. Crit Care Med. 2021;49:781–9.

    Article  CAS  PubMed  Google Scholar 

  18. Jabot J, Teboul JL, Richard C, Monnet X. Passive leg raising for predicting fluid responsiveness: importance of the postural change. Intensive Care Med. 2009;35:85–90.

    Article  PubMed  Google Scholar 

  19. Mezidi M, Parrilla FJ, Yonis H, et al. Effects of positive end-expiratory pressure strategy in supine and prone position on lung and chest wall mechanics in acute respiratory distress syndrome. Ann Intensive Care. 2018;8:86.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Mekontso Dessap A, Boissier F, Charron C, et al. Acute cor pulmonale during protective ventilation for acute respiratory distress syndrome: prevalence, predictors, and clinical impact. Intensive Care Med. 2016;42:862–70.

    Article  PubMed  Google Scholar 

  21. Huang S, Vignon P, Mekontso Dessap A, et al. Echocardiography findings in COVID-19 patients admitted to intensive care units: a multi-national observational study (the ECHO-COVID study). Intensive Care Med. 2022;48:667–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lhéritier G, Legras A, Caille A, et al. Prevalence and prognostic value of acute cor pulmonale and patent foramen ovale in ventilated patients with early acute respiratory distress syndrome: a multicenter study. Intensive Care Med. 2013;39:1734–42.

    Article  PubMed  Google Scholar 

  23. Vieillard-Baron A, Schmitt JM, Augarde R, et al. Acute cor pulmonale in acute respiratory distress syndrome submitted to protective ventilation: incidence, clinical implications, and prognosis. Crit Care Med. 2001;29:5–1555.

    Article  Google Scholar 

  24. Sylvester JT, Shimoda LA, Aaronson PI, Ward JPT. Hypoxic pulmonary vasoconstriction. Physiol Rev. 2012;92:367–520.

    Article  CAS  PubMed  Google Scholar 

  25. Pandolfi R, Barreira B, Moreno E, et al. Role of acid sphingomyelinase and IL-6 as mediators of endotoxin-induced pulmonary vascular dysfunction. Thorax. 2017;72:460–71.

    Article  PubMed  Google Scholar 

  26. Ryan D, Frohlich S, McLoughlin P. Pulmonary vascular dysfunction in ARDS. Ann Intensive Care. 2014;4:28.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Fougères E, Teboul JL, Richard C, Osman D, Chemla D, Monnet X. Hemodynamic impact of a positive end-expiratory pressure setting in acute respiratory distress syndrome: importance of the volume status. Crit Care Med. 2010;38:802–7.

    Article  PubMed  Google Scholar 

  28. Mahmood SS, Pinsky MR. Heart-lung interactions during mechanical ventilation: the basics. Ann Transl Med. 2018;6:349.

    Article  PubMed  PubMed Central  Google Scholar 

  29. West JB, Dollery CT, Naimark A. Distribution of blood flow in isolated lung; relation to vascular and alveolar pressures. J Appl Physiol. 1964;19:713–24.

    Article  CAS  PubMed  Google Scholar 

  30. Orchard CH, Sanchez de Leon R, Sykes MK. The relationship between hypoxic pulmonary vasoconstriction and arterial oxygen tension in the intact dog. J Physiol. 1983;338:61–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Gattinoni L, Caironi P, Cressoni M, et al. Lung recruitment in patients with the acute respiratory distress syndrome. N Engl J Med. 2006;354:1775–86.

    Article  CAS  PubMed  Google Scholar 

  32. Fossali T, Pavlovsky B, Ottolina D, et al. Effects of prone position on lung recruitment and ventilation-perfusion matching in patients with COVID-19 acute respiratory distress syndrome: a combined CT scan/electrical impedance tomography study. Crit Care Med. 2022;50:723–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Whittenberger JL, McGregor M, Berglund E, Borst HG. Influence of state of inflation of the lung on pulmonary vascular resistance. J Appl Physiol. 1960;15:878–82.

    Article  CAS  PubMed  Google Scholar 

  34. Albert RK, Keniston A, Baboi L, Ayzac L, Guérin C. Prone position–induced improvement in gas exchange does not predict improved survival in the acute respiratory distress syndrome. Am J Respir Crit Care Med. 2014;189:494–6.

    Article  PubMed  Google Scholar 

  35. Borelli M, Lampati L, Vascotto E, Fumagalli R, Pesenti A. Hemodynamic and gas exchange response to inhaled nitric oxide and prone positioning in acute respiratory distress syndrome patients. Crit Care Med. 2000;28:2707–12.

    Article  CAS  PubMed  Google Scholar 

  36. Michelet P, Roch A, Gainnier M, Sainty J-M, Auffray JP, Papazian L. Influence of support on intra-abdominal pressure, hepatic kinetics of indocyanine green and extravascular lung water during prone positioning in patients with ARDS: a randomized crossover study. Crit Care. 2005;9:R251–7.

    Article  PubMed  PubMed Central  Google Scholar 

  37. McAuley D, Giles S, Fichter H, Perkins G, Gao F. What is the optimal duration of ventilation in the prone position in acute lung injury and acute respiratory distress syndrome? Intensive Care Med. 2002;28:414–8.

    Article  CAS  PubMed  Google Scholar 

  38. Rialp G, Betbesé AJ, Pérez-Márquez M, Mancebo J. Short-term effects of inhaled nitric oxide and prone position in pulmonary and extrapulmonary acute respiratory distress syndrome. Am J Respir Crit Care Med. 2001;164:243–9.

    Article  CAS  PubMed  Google Scholar 

  39. Matejovic M, Rokyta R, Radermacher P, Krouzecky A, Sramek V, Novak I. Effect of prone position on hepato-splanchnic hemodynamics in acute lung injury. Intensive Care Med. 2002;28:1750–5.

    Article  PubMed  Google Scholar 

  40. Hering R, Vorwerk R, Wrigge H, et al. Prone positioning, systemic hemodynamics, hepatic indocyanine green kinetics, and gastric intramucosal energy balance in patients with acute lung injury. Intensive Care Med. 2002;28:53–8.

    Article  PubMed  Google Scholar 

  41. Hering R, Wrigge H, Vorwerk R, Brensing KA. The effects of prone positioning on intraabdominal pressure and cardiovascular and renal function in patients with acute lung injury. Anesth Analg. 2001;92:1226–31.

    Article  CAS  PubMed  Google Scholar 

  42. Ruste M, Bitker L, Yonis H, et al. Hemodynamic effects of extended prone position sessions in ARDS. Ann Intensive Care. 2018;8:120.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Takata M, Wise RA, Robotham JL. Effects of abdominal pressure on venous return: abdominal vascular zone conditions. J Appl Physiol. 1990;69:1961–72.

    Article  CAS  PubMed  Google Scholar 

  44. Kitano Y, Takata M, Sasaki N, Zhang Q, Yamamoto S, Miyasaka K. Influence of increased abdominal pressure on steady-state cardiac performance. J Appl Physiol. 1999;86:1651–6.

    Article  CAS  PubMed  Google Scholar 

  45. Chiumello D, Cressoni M, Racagni M, et al. Effects of thoraco-pelvic supports during prone position in patients with acute lung injury/acute respiratory distress syndrome: a physiological study. Crit Care. 2006;10:R87.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Kirkpatrick AW, Pelosi P, De Waele JJ, et al. Clinical review: intra-abdominal hypertension: does it influence the physiology of prone ventilation? Crit Care. 2010;14:232.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Brun-Buisson C, Minelli C, Bertolini G, et al. Epidemiology and outcome of acute lung injury in European intensive care units. Results from the ALIVE study. Intensive Care Med. 2004;30:51–61.

    Article  PubMed  Google Scholar 

  48. Michard F, Teboul JL. Predicting fluid responsiveness in ICU patients: a critical analysis of the evidence. Chest. 2002;121:2000–8.

    Article  PubMed  Google Scholar 

  49. Silversides JA, Major E, Ferguson AJ, et al. Conservative fluid management or deresuscitation for patients with sepsis or acute respiratory distress syndrome following the resuscitation phase of critical illness: a systematic review and meta-analysis. Intensive Care Med. 2017;43:155–70.

    Article  PubMed  Google Scholar 

  50. Jozwiak M, Silva S, Persichini R, et al. Extravascular lung water is an independent prognostic factor in patients with acute respiratory distress syndrome. Crit Care Med. 2013;41:472–80.

    Article  PubMed  Google Scholar 

  51. Monnet X, Shi R, Teboul JL. Prediction of fluid responsiveness. What’s new? Ann Intensive Care. 2022;12:46.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Monnet X, Teboul JL. Passive leg raising: five rules, not a drop of fluid! Crit Care. 2015;19:18.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Monnet X, Marik P, Teboul JL. Passive leg raising for predicting fluid responsiveness: a systematic review and meta-analysis. Intensive Care Med. 2016;42:1935–47.

    Article  PubMed  Google Scholar 

  54. Cherpanath TGV, Hirsch A, Geerts BF, et al. Predicting fluid responsiveness by passive leg raising: a systematic review and meta-analysis of 23 clinical trials. Crit Care Med. 2016;44:981–91.

    Article  PubMed  Google Scholar 

  55. Yonis H, Bitker L, Aublanc M, et al. Change in cardiac output during Trendelenburg maneuver is a reliable predictor of fluid responsiveness in patients with acute respiratory distress syndrome in the prone position under protective ventilation. Crit Care. 2017;21:295.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Luo J, Su Y, Dong L, et al. Trendelenburg maneuver predicts fluid responsiveness in patients on veno-arterial extracorporeal membrane oxygenation. Ann Intensive Care. 2021;11:16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Gavelli F, Teboul JL, Monnet X. The end-expiratory occlusion test: please, let me hold your breath! Crit Care. 2019;23:274.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Messina A, Dell’Anna A, Baggiani M, et al. Functional hemodynamic tests: a systematic review and a metanalysis on the reliability of the end-expiratory occlusion test and of the mini-fluid challenge in predicting fluid responsiveness. Crit Care. 2019;23:264.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Messina A, Montagnini C, Cammarota G, et al. Assessment of fluid responsiveness in prone neurosurgical patients undergoing protective ventilation: role of dynamic indices, tidal volume challenge, and end-expiratory occlusion test. Anesth Analg. 2020;130:752–61.

    Article  CAS  PubMed  Google Scholar 

  60. Shi R, Ayed S, Moretto F, et al. Tidal volume challenge to predict preload responsiveness in patients with acute respiratory distress syndrome under prone position. Crit Care. 2022;26:219.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Gavelli F, Shi R, Teboul J-L, Azzolina D, Monnet X. The end-expiratory occlusion test for detecting preload responsiveness: a systematic review and meta-analysis. Ann Intensive Care. 2020;10:65.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Teboul JL, Monnet X, Chemla D, Michard F. Arterial pulse pressure variation with mechanical ventilation. Am J Respir Crit Care Med. 2019;199:22–31.

    Article  PubMed  Google Scholar 

  63. Yang X, Du B. Does pulse pressure variation predict fluid responsiveness in critically ill patients? A systematic review and meta-analysis. Crit Care. 2014;18:650.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Michard F, Boussat S, Chemla D, et al. Relation between respiratory changes in arterial pulse pressure and fluid responsiveness in septic patients with acute circulatory failure. Am J Respir Crit Care Med. 2000;162:134–8.

    Article  CAS  PubMed  Google Scholar 

  65. Ali A, Abdullah T, Sabanci PA, Dogan L, Orhan-Sungur M, Akinci IO. Comparison of ability of pulse pressure variation to predict fluid responsiveness in prone and supine position: an observational study. J Clin Monit Comput. 2019;33:573–80.

    Article  PubMed  Google Scholar 

  66. Biais M, Bernard O, Ha JC, Degryse C, Sztark F. Abilities of pulse pressure variations and stroke volume variations to predict fluid responsiveness in prone position during scoliosis surgery. Br J Anaesth. 2010;104:407–13.

    Article  CAS  PubMed  Google Scholar 

  67. Yang SY, Shim JK, Song Y, Seo SJ, Kwak YL. Validation of pulse pressure variation and corrected flow time as predictors of fluid responsiveness in patients in the prone position. Br J Anaesth. 2013;110:713–20.

    Article  PubMed  Google Scholar 

  68. Monnet X, Bleibtreu A, Ferré A, et al. Passive leg-raising and end-expiratory occlusion tests perform better than pulse pressure variation in patients with low respiratory system compliance. Crit Care Med. 2012;40:152–7.

    Article  PubMed  Google Scholar 

  69. Alvarado Sánchez JI, Caicedo Ruiz JD, Diaztagle Fernández JJ, Amaya Zuñiga WF, Ospina-Tascón GA, Cruz Martínez LE. Predictors of fluid responsiveness in critically ill patients mechanically ventilated at low tidal volumes: systematic review and meta-analysis. Ann Intensive Care. 2021;11:28.

    Article  PubMed  PubMed Central  Google Scholar 

  70. De Backer D, Heenen S, Piagnerelli M, Koch M, Vincent JL. Pulse pressure variations to predict fluid responsiveness: influence of tidal volume. Intensive Care Med. 2005;31:517–23.

    Article  PubMed  Google Scholar 

  71. Myatra SN, Prabu NR, Divatia JV, Monnet X, Kulkarni AP, Teboul JL. The changes in pulse pressure variation or stroke volume variation after a “tidal volume challenge” reliably predict fluid responsiveness during low tidal volume ventilation. Crit Care Med. 2017;45:415–21.

    Article  PubMed  Google Scholar 

  72. Muller L, Toumi M, Bousquet PJ, et al. An increase in aortic blood flow after an infusion of 100 ml colloid over 1 minute can predict fluid responsiveness: the mini-fluid challenge study. Anesthesiology. 2011;115:541–7.

    Article  CAS  PubMed  Google Scholar 

  73. Mallat J, Meddour M, Durville E, et al. Decrease in pulse pressure and stroke volume variations after mini-fluid challenge accurately predicts fluid responsiveness. Br J Anaesth. 2015;115:449–56.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Lai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lai, C., Monnet, X., Teboul, J.L. (2023). Hemodynamic Implications of Prone Positioning in Patients with ARDS. In: Vincent, JL. (eds) Annual Update in Intensive Care and Emergency Medicine 2023. Annual Update in Intensive Care and Emergency Medicine. Springer, Cham. https://doi.org/10.1007/978-3-031-23005-9_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-23005-9_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-23004-2

  • Online ISBN: 978-3-031-23005-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics