Skip to main content

Biosurfactants: Challenges and Future Outlooks

  • Chapter
  • First Online:
Advancements in Biosurfactants Research

Abstract

Global sustainability initiatives and green agenda have fostered industrial interest in biosurfactants over their chemical counterparts which are produced from nonrenewable resources. Biosurfactants have been getting serious consideration due to their biological availability, structural heterogeneity, lower toxicity, biodegradability, and activity under extreme environmental conditions. These advantages have encouraged commercial production of biosurfactants. However, production of the biosurfactants on larger scale has been limited by various factors which limit their commercialization. These include lower yields, production of a mixture of congener molecules which differ in their surface and interfacial properties and safety. Rhamnolipids produced by certain bacterial strains have been reported to act as immunomodulators and virulence factors. Addressing these issues will pave way towards large-scale manufacturing and commercialization of biosurfactants. Biosurfactant yields can be improved by optimizing the culture medium and the bioprocessing conditions. Significant efforts should be undertaken to improve downstream processing for biosurfactant recovery in order to improve the overall process economics and reduce environmental toxicity caused by the use of organic solvents. Further designer biosurfactants having specific properties can be constructed for specific industrial applications.

This chapter highlights the core problems associated with commercialization of the biosurfactants and gives a future outlook of biosurfactants in various industries.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdel-Mawgoud AM, Aboulwafa MM, Hassouna NA-H (2008) Characterization of surfactin produced by Bacillus subtilis isolate BS5. Appl Biochem Biotechnol 150:289–303

    Article  CAS  Google Scholar 

  • Abouseoud M, Maachi R, Amrane A, Boudergua S, Nabi A (2008a) Evaluation of different carbon and nitrogen sources in production of biosurfactant by Pseudomonas fluorescens. Desalination 223:143–151

    Article  CAS  Google Scholar 

  • Abouseoud M, Yataghene A, Amrane A, Maachi R (2008b) Biosurfactant production by free and alginate entrapped cells of Pseudomonas fluorescens. J Ind Microbiol Biotechnol 35:1303–1308

    Article  CAS  Google Scholar 

  • Abushady H, Bashandy A, Aziz N, Ibrahim H (2005) Molecular characterization of Bacillus subtilis surfactin producing strain and the factors affecting its production. Int J Agric Biol 3:337–344

    Google Scholar 

  • Adu SA, Naughton PJ, Marchant R, Banat IM (2020) Microbial biosurfactants in cosmetic and personal skincare pharmaceutical formulations. Pharmaceutics 12:1099

    Article  CAS  Google Scholar 

  • Al-Bahry S, Al-Wahaibi Y, Elshafie A, Al-Bemani A, Joshi S, Al-Makhmari H, Al-Sulaimani H (2013) Biosurfactant production by Bacillus subtilis B20 using date molasses and its possible application in enhanced oil recovery. Int Biodeterior Biodegradation 81:141–146

    Article  CAS  Google Scholar 

  • Amin G, Bazaid S, Abd E-HM (2013) A two-stage immobilized cell bioreactor with Bacillus subtilis and Rhodococcus erythropolis for the simultaneous production of biosurfactant and biodesulfurization of model oil. Pet Sci Technol 31:2250–2257

    Article  CAS  Google Scholar 

  • Anburajan L, Meena B, Raghavan RV, Shridhar D, Joseph TC, Vinithkumar NV, Dharani G, Dheenan PS, Kirubagaran R (2015) Heterologous expression, purification, and phylogenetic analysis of oil-degrading biosurfactant biosynthesis genes from the marine sponge-associated bacillus licheniformis NIOT-06. Bioprocess Biosyst Eng 38:1009–1018

    Article  CAS  Google Scholar 

  • Ashby RD, McAloon AJ, Solaiman DK, Yee WC, Reed M (2013) A process model for approximating the production costs of the fermentative synthesis of sophorolipids. J Surfactant Deterg 16:683–691

    Article  CAS  Google Scholar 

  • Banat IM, Carboué Q, Saucedo-Castañeda G, de Jesús C-MJ (2021) Biosurfactants: the green generation of speciality chemicals and potential production using solid-state fermentation (SSF) technology. Bioresour Technol 320:124222

    Article  CAS  Google Scholar 

  • Banat IM, De Rienzo MAD, Quinn GA (2014) Microbial biofilms: biosurfactants as antibiofilm agents. Appl Microbiol Biotechnol 98:9915–9929

    Article  CAS  Google Scholar 

  • Banat IM, Franzetti A, Gandolfi I, Bestetti G, Martinotti MG, Fracchia L, Smyth TJ, Marchant R (2010) Microbial biosurfactants production, applications and future potential. Appl Microbiol Biotechnol 87:427–444

    Article  CAS  Google Scholar 

  • Beuker J, Syldatk C, Hausmann R (2014) Bioreactors for the production of biosurfactants. Biosurfactants: production and utilization; processes, technologies, and economics:117-128

    Google Scholar 

  • Bratovcic A, Nazdrajic S, Odobasic A, Sestan I (2018) The influence of type of surfactant on physicochemical properties of liquid soap. Int J Mat Chem 8:31–37

    CAS  Google Scholar 

  • Brumano LP, Antunes FAF, Souto SG, Dos Santos JC, Venus J, Schneider R, da Silva SS (2017) Biosurfactant production by Aureobasidium pullulans in stirred tank bioreactor: new approach to understand the influence of important variables in the process. Bioresour Technol 243:264–272

    Article  CAS  Google Scholar 

  • Camilios-Neto D, Bugay C, de Santana-Filho AP, Joslin T, de Souza LM, Sassaki GL, Mitchell DA, Krieger N (2011) Production of rhamnolipids in solid-state cultivation using a mixture of sugarcane bagasse and corn bran supplemented with glycerol and soybean oil. Appl Microbiol Biotechnol 89:1395–1403

    Article  CAS  Google Scholar 

  • Cha M, Lee N, Kim M, Kim M, Lee S (2008) Heterologous production of Pseudomonas aeruginosa EMS1 biosurfactant in pseudomonas putida. Bioresour Technol 99:2192–2199

    Article  CAS  Google Scholar 

  • Chandra R, Sharma P, Yadav S, Tripathi S (2018) Biodegradation of endocrine-disrupting chemicals and residual organic pollutants of pulp and paper mill effluent by biostimulation. Front Microbiol 9:960

    Article  Google Scholar 

  • Chen CY, Baker SC, Darton RC (2006) Continuous production of biosurfactant with foam fractionation. J Chem Technol Biotechnol 81:1915–1922

    Article  CAS  Google Scholar 

  • Chen C, Li D, Li R, Shen F, Xiao G, Zhou J (2021) Enhanced biosurfactant production in a continuous fermentation coupled with in situ foam separation. Chemical Engineering and Processing-Process Intensification 159:108206

    Article  CAS  Google Scholar 

  • Chooklin CS, Maneerat S, Saimmai A (2014) Utilization of banana peel as a novel substrate for biosurfactant production by Halobacteriaceae archaeon AS65. Appl Biochem Biotechnol 173:624–645

    Article  CAS  Google Scholar 

  • Christopher FC, Ponnusamy SK, Ganesan JJ, Ramamurthy R (2019) Investigating the prospects of bacterial biosurfactants for metal nanoparticle synthesis–a comprehensive review. IET Nanobiotechnol 13:243–249

    Article  Google Scholar 

  • Chtioui O, Dimitrov K, Gancel F, Dhulster P, Nikov I (2012) Rotating discs bioreactor, a new tool for lipopeptides production. Process Biochem 47:2020–2024

    Article  CAS  Google Scholar 

  • Colla LM, Rizzardi J, Pinto MH, Reinehr CO, Bertolin TE, Costa JAV (2010) Simultaneous production of lipases and biosurfactants by submerged and solid-state bioprocesses. Bioresour Technol 101:8308–8314

    Article  CAS  Google Scholar 

  • Coutte F, Lecouturier D, Ait Yahia S, Leclère V, Béchet M, Jacques P, Dhulster P (2010) Production of surfactin and fengycin by Bacillus subtilis in a bubbleless membrane bioreactor. Appl Microbiol Biotechnol 87:499–507

    Article  CAS  Google Scholar 

  • Das K, Mukherjee AK (2007) Comparison of lipopeptide biosurfactants production by Bacillus subtilis strains in submerged and solid state fermentation systems using a cheap carbon source: some industrial applications of biosurfactants. Process Biochem 42:1191–1199

    Article  CAS  Google Scholar 

  • Dave N, Joshi T (2017) A concise review on surfactants and its significance. Int J Appl Chem 13:663–672

    Article  Google Scholar 

  • Davila A-M, Marchal R, Vandecasteele J-P (1992) Kinetics and balance of a fermentation free from product inhibition: sophorose lipid production by Candida bombicola. Appl Microbiol Biotechnol 38:6–11

    Article  CAS  Google Scholar 

  • Davis D, Lynch H, Varley J (2001) The application of foaming for the recovery of surfactin from B. subtilis ATCC 21332 cultures. Enzym Microb Technol 28:346–354

    Article  CAS  Google Scholar 

  • De Almeida DG, Da Silva S, RdCF LJM, Rufino RD, Santos VA, Banat IM, Sarubbo LA (2016) Biosurfactants: promising molecules for petroleum biotechnology advances. Front Microbiol 7:1718

    Article  Google Scholar 

  • Dehghannoudeh G, Kiani K, Moshafi MH, Dehghannoudeh N, Rajaee M, Salarpour S, Ohadi M (2019) Optimizing the immobilization of biosurfactant-producing Pseudomonas aeruginosa in alginate beads. J Pharm Pharmacogn Res 7:413–420

    CAS  Google Scholar 

  • Desai JD, Banat IM (1997) Microbial production of surfactants and their commercial potential. Microbiol Mol Biol Rev 61:47–64

    CAS  Google Scholar 

  • Dhanya M (2021) Biosurfactant-enhanced bioremediation of petroleum hydrocarbons: potential issues, challenges, and future prospects. In: Bioremediation for environmental Sustainability. Elsevier, pp 215–250

    Chapter  Google Scholar 

  • Diniz Rufino R, Moura de Luna J, de Campos Takaki GM, Asfora SL (2014) Characterization and properties of the biosurfactant produced by Candida lipolytica UCP 0988. Electron J Biotechnol 17:6–6

    Google Scholar 

  • Dogan I, Pagilla KR, Webster DA, Stark BC (2006) Expression of Vitreoscilla hemoglobin in Gordonia amarae enhances biosurfactant production. J Ind Microbiol Biotechnol 33:693–700

    Article  CAS  Google Scholar 

  • Dos Santos AS, Pereira N Jr, Freire DM (2016a) Strategies for improved rhamnolipid production by Pseudomonas aeruginosa PA1. PeerJ 4:e2078

    Article  Google Scholar 

  • Dos Santos BF, Ponezi AN, Fileti AMF (2016b) Strategy for waste management in the production and application of biosurfactant through surface response methodology. Clean Techn Environ Policy 18:787–795

    Article  Google Scholar 

  • Eswari JS, Anand M, Venkateswarlu C (2016) Optimum culture medium composition for lipopeptide production by Bacillus subtilis using response surface model-based ant colony optimization. Sadhana 41:55–65

    Article  CAS  Google Scholar 

  • Farias CBB, Almeida FC, Silva IA, Souza TC, Meira HM, Rita de Cássia F, Luna JM, Santos VA, Converti A, Banat IM (2021) Production of green surfactants: market prospects. Electron J Biotechnol 51:28–39

    Article  CAS  Google Scholar 

  • Farn RJ (2008) Chemistry and technology of surfactants. John Wiley & Sons

    Google Scholar 

  • Fiechter A (1992) Biosurfactants: moving towards industrial application. Trends Food Sci Technol 3:286–293

    Article  CAS  Google Scholar 

  • Flasz A, Rocha C, Mosquera B, Sajo C (1998) A comparative study of the toxicity of a synthetic surfactant and one produced by Pseudomonas aeruginosa ATCC 55925. Med Sci Res 26:181–185

    CAS  Google Scholar 

  • Garrett P (1993) Recent developments in the understanding of foam generation and stability. Chem Eng Sci 48:367–392

    Article  CAS  Google Scholar 

  • Geetha S, Banat IM, Joshi SJ (2018) Biosurfactants: production and potential applications in microbial enhanced oil recovery (MEOR). Biocatal Agric Biotechnol 14:23–32

    Article  Google Scholar 

  • Ghribi D, Ellouze-Chaabouni S (2011) Enhancement of Bacillus subtilis lipopeptide biosurfactants production through optimization of medium composition and adequate control of aeration. Biotechnol Res Int 2011:653654

    Article  Google Scholar 

  • Gudiña EJ, Fernandes EC, Rodrigues AI, Teixeira JA, Rodrigues LR (2015) Biosurfactant production by Bacillus subtilis using corn steep liquor as culture medium. Front Microbiol 6:59

    Google Scholar 

  • Gudiña EJ, Rodrigues AI, de Freitas V, Azevedo Z, Teixeira JA, Rodrigues LR (2016) Valorization of agro-industrial wastes towards the production of rhamnolipids. Bioresour Technol 212:144–150

    Article  Google Scholar 

  • Guez J-S, Vassaux A, Larroche C, Jacques P, Coutte F (2021) New continuous process for the production of lipopeptide biosurfactants in foam overflowing bioreactor. Front Bioeng Biotechnol 9

    Google Scholar 

  • Hames EE, Vardar-Sukan F, Kosaric N (2014) 11 patents on biosurfactants and future trends. Biosurfactants: production and utilization-processes. Technologies, and Economics 159:165

    Google Scholar 

  • Hassan M, Essam T, Yassin AS, Salama A (2016) Optimization of rhamnolipid production by biodegrading bacterial isolates using Plackett–Burman design. Int J Biol Macromol 82:573–579

    Article  CAS  Google Scholar 

  • Henkel M, Müller MM, Kügler JH, Lovaglio RB, Contiero J, Syldatk C, Hausmann R (2012) Rhamnolipids as biosurfactants from renewable resources: concepts for next-generation rhamnolipid production. Process Biochem 47:1207–1219

    Article  CAS  Google Scholar 

  • Heyd M, Franzreb M, Berensmeier S (2011) Continuous rhamnolipid production with integrated product removal by foam fractionation and magnetic separation of immobilized Pseudomonas aeruginosa. Biotechnol Prog 27:706–716

    Article  CAS  Google Scholar 

  • Hmidet N, Jemil N, Nasri M (2019) Simultaneous production of alkaline amylase and biosurfactant by bacillus methylotrophicus DCS1: application as detergent additive. Biodegradation 30:247–258

    Article  CAS  Google Scholar 

  • Hu J, Luo J, Zhu Z, Chen B, Ye X, Zhu P, Zhang B (2021) Multi-scale biosurfactant production by Bacillus subtilis using tuna fish waste as substrate. Catalysts 11:456

    Article  CAS  Google Scholar 

  • Ilori M, Amobi C, Odocha A (2005) Factors affecting biosurfactant production by oil degrading Aeromonas spp. isolated from a tropical environment. Chemosphere 61:985–992

    Article  CAS  Google Scholar 

  • Jain RM, Mody K, Joshi N, Mishra A, Jha B (2013) Effect of unconventional carbon sources on biosurfactant production and its application in bioremediation. Int J Biol Macromol 62:52–58

    Article  CAS  Google Scholar 

  • Jimoh AA, Lin J (2019) Biosurfactant: a new frontier for greener technology and environmental sustainability. Ecotoxicol Environ Saf 184:109607

    Article  CAS  Google Scholar 

  • Junker B (2007) Foam and its mitigation in fermentation systems. Biotechnol Prog 23:767–784

    Article  CAS  Google Scholar 

  • Kavuthodi B, Thomas SK, Sebastian D (2015) Co-production of pectinase and biosurfactant by the newly isolated strain Bacillus subtilis BKDS1. British Microbiology Research Journal 10:1–12

    Article  Google Scholar 

  • Kiran GS, Nishanth LA, Priyadharshini S, Anitha K, Selvin J (2014a) Effect of Fe nanoparticle on growth and glycolipid biosurfactant production under solid state culture by marine Nocardiopsissp. MSA13A. BMC Biotechnol 14:1–10

    Article  Google Scholar 

  • Kiran GS, Sabarathnam B, Thajuddin N, Selvin J (2014b) Production of glycolipid biosurfactant from sponge-associated marine actinobacterium Brachybacterium paraconglomeratum MSA21. J Surfactant Deterg 17:531–542

    Article  CAS  Google Scholar 

  • Koch AK, Reiser J, Käppeli O, Fiechter A (1988) Genetic construction of lactose-utilizing strains of Pseudomonas aeruginosa and their application in biosurfactant production. Bio/Technology 6:1335–1339

    CAS  Google Scholar 

  • Konishi M, Makino M (2018) Selective production of deacetylated mannosylerythritol lipid, MEL-D, by acetyltransferase disruption mutant of Pseudozyma hubeiensis. J Biosci Bioeng 125:105–110

    Article  CAS  Google Scholar 

  • Kosaric N, Sukan FV (2014) Biosurfactants: production and utilization–processes, technologies, and economics, vol 159. CRC Press

    Book  Google Scholar 

  • Kretschner A, Bock H, Wagnee F (1982) Chemical and physical characterization of interfacial-active lipids from Rhodococcus erythropolis grown on n-alkane. Appl Environ Microbiol 44:864–870

    Article  Google Scholar 

  • Kronemberger FAD, Anna LMMS, Fernandes ACLB, Menezes RRD, Borges CP, Freire DMG (2007) Oxygen-controlled biosurfactant production in a bench scale bioreactor. In: Biotechnology for fuels and chemicals. Springer, pp 401–413

    Chapter  Google Scholar 

  • Kumar AP, Janardhan A, Viswanath B, Monika K, Jung J-Y, Narasimha G (2016) Evaluation of orange peel for biosurfactant production by Bacillus licheniformis and their ability to degrade naphthalene and crude oil. 3 Biotech 6:1–10

    Article  Google Scholar 

  • Kuyukina MS, Ivshina IB, Makarov SO, Litvinenko LV, Cunningham CJ, Philp JC (2005) Effect of biosurfactants on crude oil desorption and mobilization in a soil system. Environ Int 31:155–161

    Article  CAS  Google Scholar 

  • Le Guenic S, Chaveriat L, Lequart V, Joly N, Martin P (2019) Renewable surfactants for biochemical applications and nanotechnology. J Surfactant Deterg 22:5–21

    Article  Google Scholar 

  • Lee C-L, Hsieh M-T, Fang M-D (2005) Aliphatic and polycyclic aromatic hydrocarbons in sediments of Kaohsiung harbour and adjacent coast. Taiwan Environ Monit Assess 100:217–234

    Article  CAS  Google Scholar 

  • Li J, Deng M, Wang Y, Chen W (2016) Production and characteristics of biosurfactant produced by bacillus pseudomycoides BS6 utilizing soybean oil waste. Int Biodeterior Biodegradation 112:72–79

    Article  CAS  Google Scholar 

  • Lins AB, Bione A, Silva TC, De Souza D, Campos-Takaki G (2016) Low-cost production of biosurfactant by Cunninghamella phaeospora using agro-industrial wastes. Microbes in the spotlight: recent progress in the understanding of beneficial and harmful microorganisms. Brown Walker Press, Boca Raton, FL, pp 339–343

    Google Scholar 

  • Liu J, Vipulanandan C, Cooper TF, Vipulanandan G (2013) Effects of Fe nanoparticles on bacterial growth and biosurfactant production. J Nanopart Res 15:1–13

    Google Scholar 

  • Luna J, Rufino R, Campos G, Sarubbo L (2012) Properties of the biosurfactant produced by Candida sphaerica cultivated in low-cost substrates. Chem Eng 27:67–72

    Google Scholar 

  • Magalhães ERB, Silva FL, Sousa MADSB, Dos Santos ES (2018) Use of different agroindustrial waste and produced water for biosurfactant production. Biosci Biotechnol Res Asia 15:17–26

    Article  Google Scholar 

  • Makkar R, Cameotra SS (2002) Effects of various nutritional supplements on biosurfactant production by a strain of Bacillus subtilis at 45 C. J Surfactant Deterg 5:11–17

    Article  CAS  Google Scholar 

  • Makkar RS, Cameotra SS, Banat IM (2011) Advances in utilization of renewable substrates for biosurfactant production. AMB Express 1:1–19

    Article  Google Scholar 

  • Marcelino P, Peres G, Terán-Hilares R, Pagnocca F, Rosa C, Lacerda T, Dos Santos J, Da Silva S (2019) Biosurfactants production by yeasts using sugarcane bagasse hemicellulosic hydrolysate as new sustainable alternative for lignocellulosic biorefineries. Ind Crop Prod 129:212–223

    Article  CAS  Google Scholar 

  • Marchant R, Banat IM (2012) Microbial biosurfactants: challenges and opportunities for future exploitation. Trends Biotechnol 30:558–565

    Article  CAS  Google Scholar 

  • McInerney MJ, Jenneman GE, Knapp RM, Menzie DE (1985) Biosurfactant and enhanced oil recovery. Google Patents

    Google Scholar 

  • Miller CA (2008) Antifoaming in aqueous foams. Curr Opin Colloid Interface Sci 13:177–182

    Article  CAS  Google Scholar 

  • Mohan PK, Nakhla G, Yanful EK (2006) Biokinetics of biodegradation of surfactants under aerobic, anoxic and anaerobic conditions. Water Res 40:533–540

    Article  CAS  Google Scholar 

  • Mukherjee S, Das P, Sen R (2006) Towards commercial production of microbial surfactants. Trends Biotechnol 24:509–515

    Article  CAS  Google Scholar 

  • Müller MM, Hörmann B, Syldatk C, Hausmann R (2010) Pseudomonas aeruginosa PAO1 as a model for rhamnolipid production in bioreactor systems. Appl Microbiol Biotechnol 87:167–174

    Article  Google Scholar 

  • Mulligan CN, Chow TY-K, Gibbs BF (1989) Enhanced biosurfactant production by a mutant Bacillus subtilis strain. Appl Microbiol Biotechnol 31:486–489

    Article  CAS  Google Scholar 

  • Mulligan CN, Sharma SK, Mudhoo A (2014) Biosurfactants. Research Trends and Applications. CRC Press, Boca Raton, p 34

    Book  Google Scholar 

  • Nitschke M, Pastore GM (2006) Production and properties of a surfactant obtained from Bacillus subtilis grown on cassava wastewater. Bioresour Technol 97:336–341

    Article  CAS  Google Scholar 

  • Nitschke M, Silva e SS (2018) Recent food applications of microbial surfactants. Crit Rev Food Sci Nutr 58:631–638

    Article  CAS  Google Scholar 

  • Nwaguma IV, Chikere CB, Okpokwasili GC (2016) Isolation, characterization, and application of biosurfactant by Klebsiella pneumoniae strain IVN51 isolated from hydrocarbon-polluted soil in Ogoniland, Nigeria. Bioresources and Bioprocessing 3:1–13

    Article  Google Scholar 

  • Oliveira F, Vazquez L, De Campos N, De Franca F (2009) Production of rhamnolipids by a Pseudomonas alcaligenes strain. Process Biochem 44:383–389

    Article  CAS  Google Scholar 

  • Osman MS, Ibrahim Z, Japper-Jaafar A, Shahir S (2019) Biosurfactants and its prospective application in the petroleum industry. J Sustain Sci Manage 14:125–140

    CAS  Google Scholar 

  • Pagilla K, Sood A, Kim H (2002) Gordonia (Nocardia) amarae foaming due to biosurfactant production. Water Sci Technol 46:519–524

    Article  CAS  Google Scholar 

  • Patil Y, Rao P (2014) Industrial waste management in the era of climate change: a smart sustainable model based on utilization of passive biomass. In: Filho WL (ed) Handbook of climate change adaptation. Springer-Verlag, Berlin Heidelberg, Germany, pp 1–13

    Google Scholar 

  • Pekin G, Vardar-Sukan F, Kosaric N (2005) Production of sophorolipids from Candida bombicola ATCC 22214 using Turkish corn oil and honey. Eng Life Sci 5:357–362

    Article  CAS  Google Scholar 

  • Peters A, Otter J, Moldovan A, Parneix P, Voss A, Pittet D (2018) Keeping hospitals clean and safe without breaking the bank; summary of the healthcare cleaning forum 2018, vol 7. Springer

    Google Scholar 

  • Petrides D (2000) Bioprocess design and economics. In: Bioseparations science and engineering, pp 1–83

    Google Scholar 

  • Poremba K, Gunkel W, Lang S, Wagner F (1991) Toxicity testing of synthetic and biogenic surfactants on marine microorganisms. Environ Toxicol Water Qual 6:157–163

    Article  CAS  Google Scholar 

  • Pornsunthorntawee O, Maksung S, Huayyai O, Rujiravanit R, Chavadej S (2009) Biosurfactant production by Pseudomonas aeruginosa SP4 using sequencing batch reactors: effects of oil loading rate and cycle time. Bioresour Technol 100:812–818

    Article  CAS  Google Scholar 

  • Radzuan MN, Banat IM, Winterburn J (2017) Production and characterization of rhamnolipid using palm oil agricultural refinery waste. Bioresour Technol 225:99–105

    Article  CAS  Google Scholar 

  • Raheb J, Hajipour M (2011) The stable rhamnolipid biosurfactant production in genetically engineered pseudomonas strain reduced energy consumption in biodesulfurization. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 33:2113–2121

    Article  CAS  Google Scholar 

  • Ramani K, Jain SC, Mandal A, Sekaran G (2012) Microbial induced lipoprotein biosurfactant from slaughterhouse lipid waste and its application to the removal of metal ions from aqueous solution. Colloids Surf B: Biointerfaces 97:254–263

    Article  CAS  Google Scholar 

  • Ramírez IM, Vaz DA, Banat IM, Marchant R, Alameda EJ, Román MG (2016) Hydrolysis of olive mill waste to enhance rhamnolipids and surfactin production. Bioresour Technol 205:1–6

    Article  Google Scholar 

  • Raza ZA, Rehman A, Khan MS, Khalid ZM (2007) Improved production of biosurfactant by a Pseudomonas aeruginosa mutant using vegetable oil refinery wastes. Biodegradation 18:115–121

    Article  CAS  Google Scholar 

  • Rikalović MG, Vrvić MM, Karadžić IM (2015) Rhamnolipid biosurfactant from Pseudomonas aeruginosa: from discovery to application in contemporary technology. J Serb Chem Soc 80:279–304

    Article  Google Scholar 

  • Rocha Silva NMP, Meira HM, FCG A, da Silva RdCF S, Almeida DG, Luna JM, Rufino RD, Santos VA, Sarubbo LA (2019) Natural surfactants and their applications for heavy oil removal in industry. Separation & Purification Reviews 48:267–281

    Article  Google Scholar 

  • Rodrigues L, Teixeira J, Oliveira R (2006) Low-cost fermentative medium for biosurfactant production by probiotic bacteria. Biochem Eng J 32:135–142

    Article  CAS  Google Scholar 

  • Rubio-Ribeaux D, da Silva Andrade RF, da Silva GS, de Holanda RA, Pele MA, Nunes P, Junior JCV, de Resende-Stoianoff MA, Campos-Takaki G (2017) Promising biosurfactant produced by a new Candida tropicalis UCP 1613 strain using substrates from renewable-resources. Afr J Microbiol Res 11:981–991

    Article  CAS  Google Scholar 

  • Sachdev DP, Cameotra SS (2013) Biosurfactants in agriculture. Appl Microbiol Biotechnol 97:1005–1016

    Article  CAS  Google Scholar 

  • Sahebnazar Z, Mowla D, Karimi G (2018) Enhancement of Pseudomonas aeruginosa growth and rhamnolipid production using iron-silica nanoparticles in low-cost medium. J Nanostruc 8:1–10

    CAS  Google Scholar 

  • Sahnoun R, Mnif I, Fetoui H, Gdoura R, Chaabouni K, Makni-Ayadi F, Kallel C, Ellouze-Chaabouni S, Ghribi D (2014) Evaluation of Bacillus subtilis SPB1 lipopeptide biosurfactant toxicity towards mice. Int J Pept Res Ther 20:333–340

    Article  CAS  Google Scholar 

  • Santos DKF, Rufino RD, Luna JM, Santos VA, Sarubbo LA (2016) Biosurfactants: multifunctional biomolecules of the 21st century. Int J Mol Sci 17:401

    Article  Google Scholar 

  • Santos AS, Sampaio APW, Vasquez GS, Anna LMS, Pereira N, Freire DM (2002) Evaluation of different carbon and nitrogen sources in production of rhamnolipids by a strain of Pseudomonas aeruginosa. In: Biotechnology for fuels and chemicals. Springer, pp 1025–1035

    Chapter  Google Scholar 

  • Saoares A, Guieysse B, Jefferson B, Cartmell E, Lester J (2008) Nonylphenol in the environment: a critical review on occurrence, fate, toxicity and treatment in wastewater. Environ Int 34:1033–1049

    Article  Google Scholar 

  • Sarubbo LA, Maria da Gloria CS, Durval IJB, Bezerra KGO, Ribeiro BG, Silva IA, Twigg MS, Banat IM (2022) Biosurfactants: production, properties, applications, trends, and general perspectives. Biochem Eng J 108377

    Google Scholar 

  • Sawant R, Devale A, Mujumdar S, Pardesi K, Shouche Y (2021) Promising strategies for economical production of biosurfactants. Microbial surfactants: Volume I: production and applications: 266

    Google Scholar 

  • Sellami M, Khlifi A, Frikha F, Miled N, Belbahri L, Rebah FB (2021) Agro-industrial waste based growth media optimization for biosurfactant production by Aneurinibacillus migulanus. J Microbiol Biotechnol Food Sci 2021:578–583

    Google Scholar 

  • Sharma D, Ansari MJ, Gupta S, Al Ghamdi A, Pruthi P, Pruthi V (2015) Structural characterization and antimicrobial activity of a biosurfactant obtained from Bacillus pumilus DSVP18 grown on potato peels. Jundishapur J Microbiol 8:e21257

    Article  Google Scholar 

  • Sharma D, Gupta E, Singh J, Vyas P, Dhanjal DS (2018) Microbial biosurfactants in food sanitation. In: Sustainable food systems from agriculture to industry. Elsevier, pp 341–368

    Chapter  Google Scholar 

  • Shepherd R, Rockey J, Sutherland IW, Roller S (1995) Novel bioemulsifiers from microorganisms for use in foods. J Biotechnol 40:207–217

    Article  CAS  Google Scholar 

  • Silva S, Farias C, Rufino R, Luna J, Sarubbo L (2010) Glycerol as substrate for the production of biosurfactant by Pseudomonas aeruginosa UCP0992. Colloids Surf B: Biointerfaces 79:174–183

    Article  CAS  Google Scholar 

  • Singh P, Patil Y, Rale V (2019) Biosurfactant production: emerging trends and promising strategies. J Appl Microbiol 126:2–13

    Article  CAS  Google Scholar 

  • Sivapathasekaran C, Sen R (2013) Performance evaluation of an ANN–GA aided experimental modeling and optimization procedure for enhanced synthesis of marine biosurfactant in a stirred tank reactor. J Chem Technol Biotechnol 88:794–799

    Article  CAS  Google Scholar 

  • Slivinski CT, Mallmann E, de Araújo JM, Mitchell DA, Krieger N (2012) Production of surfactin by Bacillus pumilus UFPEDA 448 in solid-state fermentation using a medium based on okara with sugarcane bagasse as a bulking agent. Process Biochem 47:1848–1855

    Article  CAS  Google Scholar 

  • Smyth T, Perfumo A, Marchant R, Banat I (2010) Isolation and analysis of low molecular weight microbial glycolipids. In: Handbook of hydrocarbon and lipid microbiology. Springer, pp 3705–3723

    Chapter  Google Scholar 

  • Srivastava S, Mondal MK, Agrawal SB (2021) Biosurfactants for heavy metal remediation and bioeconomics. Biosurfactants for a sustainable future: Production and Applications in the Environment and Biomedicine: 79–98

    Google Scholar 

  • Toribio J, Escalante AE, Soberón-Chávez G (2010) Rhamnolipids: production in bacteria other than Pseudomonas aeruginosa. Eur J Lipid Sci Technol 112:1082–1087

    Article  CAS  Google Scholar 

  • Tortora F, Innocenzi V, Prisciandaro M, De Michelis I, Vegliò F, Mazziotti di Celso G (2018) Removal of tetramethyl ammonium hydroxide from synthetic liquid wastes of electronic industry through micellar enhanced ultrafiltration. J Dispers Sci Technol 39:207–213

    Article  CAS  Google Scholar 

  • Van Bogaert IN, Sabirova J, Develter D, Soetaert W, Vandamme EJ (2009) Knocking out the MFE-2 gene of Candida bombicola leads to improved medium-chain sophorolipid production. FEMS Yeast Res 9:610–617

    Article  Google Scholar 

  • Van Bogaert IN, Saerens K, De Muynck C, Develter D, Soetaert W, Vandamme EJ (2007) Microbial production and application of sophorolipids. Appl Microbiol Biotechnol 76:23–34

    Article  Google Scholar 

  • Varvaresou A, Iakovou K (2015) Biosurfactants in cosmetics and biopharmaceuticals. Lett Appl Microbiol 61:214–223

    Article  CAS  Google Scholar 

  • Vaz DA, Gudina EJ, Alameda EJ, Teixeira JA, Rodrigues LR (2012) Performance of a biosurfactant produced by a Bacillus subtilis strain isolated from crude oil samples as compared to commercial chemical surfactants. Colloids Surf B: Biointerfaces 89:167–174

    Article  CAS  Google Scholar 

  • Vecino X, Rodríguez-López L, Gudiña EJ, Cruz J, Moldes A, Rodrigues L (2017) Vineyard pruning waste as an alternative carbon source to produce novel biosurfactants by lactobacillus paracasei. J Ind Eng Chem 55:40–49

    Article  CAS  Google Scholar 

  • Velikonja J, Kosaric N (1993) Biosurfactants in food applications. Surfactant Science Series:419–419

    Google Scholar 

  • VelioÄŸlu Z, ÃœREK RÖ. (2015) Biosurfactant production by Pleurotus ostreatus in submerged and solid-state fermentation systems. Turk J Biol 39:160–166

    Article  Google Scholar 

  • Vigneshwaran C, Sivasubramanian V, Vasantharaj K, Krishnanand N, Jerold M (2018) Potential of Brevibacillus sp. AVN 13 isolated from crude oil contaminated soil for biosurfactant production and its optimization studies. J Environ Chem Eng 6:4347–4356

    Article  CAS  Google Scholar 

  • Vijayakumar S, Saravanan V (2015) Biosurfactants-types, sources and applications. Res J Microbiol 10:181

    Article  Google Scholar 

  • Winterburn J, Martin P (2012) Foam mitigation and exploitation in biosurfactant production. Biotechnol Lett 34:187–195

    Article  CAS  Google Scholar 

  • Wittgens A, Kovacic F, Müller MM, Gerlitzki M, Santiago-Schübel B, Hofmann D, Tiso T, Blank LM, Henkel M, Hausmann R (2017) Novel insights into biosynthesis and uptake of rhamnolipids and their precursors. Appl Microbiol Biotechnol 101:2865–2878

    Article  CAS  Google Scholar 

  • Xu G, Chen Y, Eksteen J, Xu J (2018) Surfactant-aided coal dust suppression: a review of evaluation methods and influencing factors. Sci Total Environ 639:1060–1076

    Article  CAS  Google Scholar 

  • Yeh MS, Wei YH, Chang JS (2005) Enhanced production of Surfactin from Bacillussubtilis by addition of solid carriers. Biotechnol Prog 21:1329–1334

    Article  CAS  Google Scholar 

  • Yeh M-S, Wei Y-H, Chang J-S (2006) Bioreactor design for enhanced carrier-assisted surfactin production with Bacillus subtilis. Process Biochem 41:1799–1805

    Article  CAS  Google Scholar 

  • Zargar AN, Kumar A, Sinha A, Kumar M, Skiadas I, Mishra S, Srivastava P (2021) Asphaltene biotransformation for heavy oil upgradation. AMB Express 11:1–19

    Article  Google Scholar 

  • Zargar AN, Lymperatou A, Skiadas I, Kumar M, Srivastava P (2022a) Structural and functional characterization of a novel biosurfactant from bacillus sp. IITD106. J Hazard Mater 423:127201

    Article  CAS  Google Scholar 

  • Zargar AN, Mishra S, Kumar M, Srivastava P (2022b) Isolation and chemical characterization of the biosurfactant produced by Gordonia sp. IITR100. Plos one 17:e0264202

    Article  CAS  Google Scholar 

  • Zhu Z, Zhang G, Luo Y, Ran W, Shen Q (2012) Production of lipopeptides by bacillus amyloliquefaciens XZ-173 in solid state fermentation using soybean flour and rice straw as the substrate. Bioresour Technol 112:254–260

    Article  CAS  Google Scholar 

  • Zouari R, Ellouze-Chaabouni S, Ghribi-Aydi D (2014) Optimization of Bacillus subtilis SPB1 biosurfactant production under solid-state fermentation using by-products of a traditional olive mill factory. Achievements in the Life Sciences 8:162–169

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Preeti Srivastava .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zargar, A.N., Kumar, M., Srivastava, P. (2023). Biosurfactants: Challenges and Future Outlooks. In: Aslam, R., Mobin, M., Aslam, J., Zehra, S. (eds) Advancements in Biosurfactants Research. Springer, Cham. https://doi.org/10.1007/978-3-031-21682-4_25

Download citation

Publish with us

Policies and ethics