Skip to main content

Advertisement

Log in

Foam mitigation and exploitation in biosurfactant production

  • Review
  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

Biosurfactants could potentially outperform traditional surfactants in many applications whilst being more sustainable to source, manufacture, use and dispose of. However, currently available fermentation production methods are too inefficient to manufacture biosurfactants for these high volume markets. Foaming in an inherent issue with biosurfactant production and adds significantly to the cost of production using traditional unit operations. This review illustrates how the application of process engineering has enabled nuisance foaming to be transformed into a cost saving feature of the production system. The scope of biosurfactants and their application is discussed and the fundamentals of foam generation and control are reviewed. The range of specific phenomena associated with the interaction of foams with bioproducts is assessed. Finally, recent work which has aimed at taking advantage of some of these phenomena in order to intensify the biosurfactant production process is discussed in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abdel-Mawgoud AM, Lépine F, Déziel E (2010) Rhamnolipids: diversity of structures, microbial origins and roles. Appl Microbiol Biot 86:1323–1336

    Article  CAS  Google Scholar 

  • Angarska ZhK, Elenskyi AA, Yampolskaya GP, Tachev KD (2011) Foam films from mixed solutions of bovine serum albumin and n-dodecyl-β-D-maltoside. Colloid Surface A 382:102–112

    Article  CAS  Google Scholar 

  • Banat IM, Franzetti A, Gandolfi I, Bestetti G, Martinotti MG, Fracchia L, Smyth TJ, Marchant R (2010) Microbial biosurfactants production, applications and future potential. Appl Microbiol Biot 87:427–444

    Article  CAS  Google Scholar 

  • Camilios-Neto D, Bugay C et al (2011) Production of rhamnolipids in solid-state cultivation using a mixture of sugarcane bagasse and corn bran supplemented with glycerol and soybean oil. Appl Microbiol Biot 89:1395–1403

    Article  CAS  Google Scholar 

  • Chen CY, Baker SC, Darton RC (2006a) Batch production of biosurfactant with foam fractionation. J ChemTechnol Biot 81:1923–1931

    Article  CAS  Google Scholar 

  • Chen CY, Baker SC, Darton RC (2006b) Continuous production of biosurfactant with foam fractionation. J ChemTechnol Biot 81:1915–1922

    Article  CAS  Google Scholar 

  • Clarkson JR, Cui ZF, Darton RC (1999) Protein denaturation in foam: II. Surface activity and conformational change. J Colloid Interf Sci 215:333–338

    Article  CAS  Google Scholar 

  • Davis DA, Lynch HC, Varley J (2001) The application of foaming for the recovery of surfactin from B. subtilis ATCC 21332 cultures. Enzyme Microb Tech 28:346–354

    Article  CAS  Google Scholar 

  • Deleu M, Paquot M (2004) From renewable vegetables resources to microorganisms: new trends in surfactants. Comptes Rendus Chimie 7:641–646

    Article  CAS  Google Scholar 

  • Desai JD, Banat IM (1997) Microbial production of surfactants and their commercial potential. Microbiol Mol Biol Rev 61:47–64

    PubMed  CAS  Google Scholar 

  • Dhanasekharan KM, Sanyal J, Jain A, Haidari A (2005) A generalized approach to model oxygen transfer in bioreactors using population balances and computational fluid dynamics. Chem Eng Sci 60:213–218

    Article  CAS  Google Scholar 

  • Etoc A, Delvigne F, Lecomte JP, Thonart P (2006) Foam control in fermentation bioprocess: from simple aeration tests to bioreactor. App Biochem Biotech 130:392–404

    Article  Google Scholar 

  • Fernsler JG, Zasadzinski JA (2009) Competitive adsorption: a physical model for lung surfactant inactivation. Langmuir 25:8131–8143

    Article  PubMed  CAS  Google Scholar 

  • Franzetti A, Gandolfi I, Bestetti G, Smyth TJP, Banat IM (2010) Production and applications of trehalose lipid biosurfactants. Eur J Lipid Sci Tech 112:617–627

    Article  CAS  Google Scholar 

  • Garrett PR (1993) Recent developments in the understanding of foam generation and stability. Chem EngSci 48:367–392

    Article  CAS  Google Scholar 

  • Gharaei-Fathabad E (2011) Biosurfactants in pharmaceutical industry: a mini-review. Am J Drug Discov Devel 1:58–69

    Article  Google Scholar 

  • Heyd M, Franzreb M, Berensmeier S (2011) Continuous rhamnolipid production with integrated product removal by foam fractionation and magnetic separation of immobilized Pseudomonas aeruginosa. Biotechnol Progr 27:706–716

    Article  CAS  Google Scholar 

  • Iyer A, Mody K, Jha B (2006) Emulsifying properties of a marine bacterial exopolysaccharide. Enzyme Microb Tech 38:220–222

    Article  CAS  Google Scholar 

  • Junker B (2007) Foam and its mitigation in fermentation systems. Biotechnol Progr 23:767–784

    CAS  Google Scholar 

  • Lemlich R, (1972) Adsorptive Bubble Separation Techniques. Academic Press, New York, USA:1–49

  • Liu W, Zheng H, Wu Z, Wang Y (2010) Effects of pH profiles on nisin fermentation coupling with foam separation. Appl Microbiol Biot 85:1401–1407

    Article  Google Scholar 

  • Martin PJ, Dutton HM, Winterburn JB, Baker S, Russell AB (2010) Foam fractionation with reflux. Chem Eng Sci 65:3825–3835

    Article  CAS  Google Scholar 

  • Middelberg APJ, Dimitrijev-Dwyer M (2011) A designed biosurfactant protein for switchable foam control. Chem Phys Chem 12:1426–1429

    Article  PubMed  CAS  Google Scholar 

  • Miller CA (2008) Antifoaming in aqueous foams. Curr Opin Colloid In 13:177–182

    Article  CAS  Google Scholar 

  • Nitschke M, Costa SGVAO (2007) Biosurfactants in food industry. Trends Food Sci Tech 18:252–259

    Article  CAS  Google Scholar 

  • Sarachat T, Pornsunthorntawee O, Chavadej S, Rujiravanit R (2010) Purification and concentration of a rhamnolipid biosurfactant produced by Pseudomonas aeruginosa SP4 using foam fractionation. Bioresource Technol 101:324–330

    Article  CAS  Google Scholar 

  • Singh A, Van Hamme JD, Ward OP (2007) Surfactants in microbiology and biotechnology: part 2. Application aspects. Biotechnol Adv 25:99–121

    Article  PubMed  CAS  Google Scholar 

  • Singh P, Cameotra SS (2004) Potential applications of microbial surfactants in biomedical sciences. Trends Biotechnol 22:142–146

    Article  PubMed  CAS  Google Scholar 

  • Stevnson P, Li X, Evans GM (2008) A mechanism for internal reflux in foam fractionation. Biochem Eng J 39:590–593

    Article  Google Scholar 

  • Stocks SM, Cooke M, Heggs PJ (2005) Inverted hollow spinning cone as a device for controlling foam and hold-up in pilot scale gassed agitated fermentation vessels. Chem Eng Sci 60:2231–2238

    Article  CAS  Google Scholar 

  • Tanaka Y, Takashi T, Kazuhik U (1997) Method of producing iturin A and antifungal agent for profound mycosis. Biotechnol Adv 15:234–235

    Google Scholar 

  • Van Hamme JD, Singh A, Ward OP (2006) Physiological aspects. (Part 1 in a series of papers devoted to surfactants in microbiology and biotechnology). Biotechnol Adv 24:604–620

    Article  PubMed  Google Scholar 

  • Van Hee P, Elumbaring ACMR, van der Lans RGJM, Van der Wielen LAM (2006) Selective recovery of polyhydroxyalkanoate inclusion bodies from fermentation broth by dissolved-air flotation. J Colloid Interf Sci 297:595–606

    Article  Google Scholar 

  • Wessels JGH (1996) Hydrophobins: proteins that change the nature of the fungal surface. Adv Microb Physiol 38:1–45

    Article  Google Scholar 

  • Winterburn JB, Martin PJ (2008) Mechanisms of ultrasound foam interactions. Asia Pa J Chem Eng 4:184–190

    Article  Google Scholar 

  • Winterburn JB, Russell AB, Martin PJ (2011a) Characterisation of HFBII biosurfactant production and foam fractionation with and without antifoaming agents. Appl Microbiol Biot 90:911–920

    Article  CAS  Google Scholar 

  • Winterburn JB, Russell AB, Martin PJ (2011b) Integrated recirculating foam fractionation for the continuous recovery of biosurfactant from fermenters. Biochem Eng J 54:132–139

    Article  CAS  Google Scholar 

  • Yoo YJ, Hong J (1986) Bubble entrainment aeration for high foaming fermentation. Biotechnol Bioeng 28:756–760

    Article  PubMed  CAS  Google Scholar 

  • Zhang Q, Lo C-M, Ju L-K (2007) Factors affecting foaming behavior in cellulase fermentation by Trichoderma reesei Rut C-30. Bioresour Technol 98(4):753–760

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

The authors gratefully acknowledge support through an EPSRC PhD Plus award which facilitated this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. J. Martin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Winterburn, J.B., Martin, P.J. Foam mitigation and exploitation in biosurfactant production. Biotechnol Lett 34, 187–195 (2012). https://doi.org/10.1007/s10529-011-0782-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10529-011-0782-6

Keywords

Navigation