Skip to main content

Epidemiology and Pathogenesis of Type 1 Diabetes

  • Chapter
  • First Online:
Transplantation of the Pancreas

Abstract

Type 1 diabetes is an autoimmune disease that affects 0.1 to nearly 1% of the population, dependent on the country, with its highest incidence around 10–15 years of age. The incidence has increased over time, approximately doubling over the past 2–3 decades. The incidence varies across the world, with the highest among populations of (Northern) European origin and the lowest in Japan. Most diabetic patients do not have affected first-degree relatives, but genetic predispostion encoded in the HLA class II DR- and DQ loci is proabably necessary, albeit not sufficient, for developing disease. Exposure to environmental factors in early life appears to also impact the risk of disease development, but available evidence does not allow for strong conclusions to be drawn. The past decade has brought new data from human pancreatic donors. Hoewever, the timing between etiological triggers and the pathogenesis is poorly defined, and the disease mechanisms need to be elucidated. It is still not possible to prevent or cure type 1 diabetes. The latter can currently only be achieved using invasive beta-cell repacement therapies through transplantation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Diamond Project Group. Incidence and trends of childhood type 1 diabetes worldwide 1990–1999. Diabet Med. 2006;23(8):857–66.

    Article  Google Scholar 

  2. Patterson CC, Harjutsalo V, Rosenbauer J, Neu A, Cinek O, Skrivarhaug T, et al. Trends and cyclical variation in the incidence of childhood type 1 diabetes in 26 European centres in the 25 year period 1989–2013: a multicentre prospective registration study. Diabetologia. 2019;62(3):408–17.

    Article  PubMed  Google Scholar 

  3. Divers J, Mayer-Davis EJ, Lawrence JM, Isom S, Dabelea D, Dolan L, et al. Trends in incidence of type 1 and type 2 diabetes among youths–selected counties and Indian reservations, United States, 2002-2015. MMWR Morb Mortal Wkly Rep. 2020;69(6):161–5.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Skrivarhaug T, Stene LC, Drivvoll AK, Strøm H, Joner G. Incidence of type 1 diabetes in Norway among children aged 0-14 years between 1989 and 2012: has the incidence stopped rising? Results from the Norwegian childhood diabetes registry. Diabetologia. 2014;57(1):57–62.

    Article  PubMed  Google Scholar 

  5. Haynes A, Bulsara MK, Bergman P, Cameron F, Couper J, Craig ME, et al. Incidence of type 1 diabetes in 0 to 14 year olds in Australia from 2002 to 2017. Pediatr Diabetes. 2020;21(5):707–12.

    Article  PubMed  Google Scholar 

  6. Parviainen A, But A, Siljander H, Knip M, Finnish Pediatric Diabetes Register. Decreased incidence of type 1 diabetes in young Finnish children. Diabetes Care. 2020;43(12):2953–8.

    Article  PubMed  Google Scholar 

  7. Gong C, Meng X, Jiang Y, Wang X, Cui H, Chen X. Trends in childhood type 1 diabetes mellitus incidence in Beijing from 1995 to 2010: a retrospective multicenter study based on hospitalization data. Diabetes Technol Ther. 2015;17(3):159–65.

    Article  PubMed  Google Scholar 

  8. Cartee AK, Owens LA, Lahr BD, Yawn BP, Murray JA, Kudva YC. Incidence of type 1 diabetes is not increasing in a population-based cohort in Olmsted county, Minnesota, USA. Mayo Clin Proc. 2016;91(8):1066–73.

    Article  PubMed  Google Scholar 

  9. Tuomilehto J, Karvonen M, Pitkäniemi J, Virtala E, Kohtamäki K, Toivanen L, et al. Record high incidence of type 1 (insulin-dependent) diabetes mellitus in Finnish children. Diabetologia. 1999;42(6):655–60.

    Article  CAS  PubMed  Google Scholar 

  10. Harjutsalo V, Sund R, Knip M, Groop PH. Incidence of type 1 diabetes in Finland. JAMA. 2013;310(4):427–8.

    Article  CAS  PubMed  Google Scholar 

  11. Shaltout AA, Wake D, Thanaraj TA, Omar DM, Al-AbdulRazzaq D, Channanath A, et al. Incidence of type 1 diabetes has doubled in Kuwaiti children 0-14 years over the last 20 years. Pediatr Diabetes. 2017;18(8):761–6.

    Article  PubMed  Google Scholar 

  12. Wacher NH, Gomez-Diaz RA, Ascencio-Montiel IJ, Rascon-Pacheco RA, Aguilar-Salinas CA, Borja-Aburto VH. Type 1 diabetes incidence in children and adolescents in Mexico: data from a nation-wide institutional register during 2000-2018. Diabetes Res Clin Pract. 2019;159:107949.

    Article  PubMed  Google Scholar 

  13. Hussen HI, Persson M, Moradi T. The trends and the risk of type 1 diabetes over the past 40 years: an analysis by birth cohorts and by parental migration background in Sweden. BMJ Open. 2013;3(10):e003418.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Mayer-Davis EJ, Lawrence JM, Dabelea D, Divers J, Isom S, Dolan L, et al. Incidence trends of type 1 and type 2 diabetes among youths, 2002-2012. N Engl J Med. 2017;376(15):1419–29.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Chobot A, Polanska J, Brandt A, Deja G, Glowinska-Olszewska B, Pilecki O, et al. Updated 24-year trend of type 1 diabetes incidence in children in Poland reveals a sinusoidal pattern and sustained increase. Diabet Med. 2017;34(9):1252–8.

    Article  CAS  PubMed  Google Scholar 

  16. Touhami M, Zennaki A, Bouchetara A, Naceur M, Aoui A, Gharnouti M, et al. Epidemiological evolution of type 1 diabetes in children: data from the register of the Department of Oran, Algeria, 1973-2017. Rev Epidemiol Sante Publique. 2019;67(6):369–74.

    Article  CAS  PubMed  Google Scholar 

  17. Kawasaki E, Matsuura N, Eguchi K. Type 1 diabetes in Japan. Diabetologia. 2006;49(5):828–36.

    Article  CAS  PubMed  Google Scholar 

  18. Onda Y, Sugihara S, Ogata T, Yokoya S, Yokoyama T, Tajima N, et al. Incidence and prevalence of childhood-onset type 1 diabetes in Japan: the T1D study. Diabet Med. 2017;34(7):909–15.

    Article  CAS  PubMed  Google Scholar 

  19. Edghill EL, Dix RJ, Flanagan SE, Bingley PJ, Hattersley AT, Ellard S, et al. HLA genotyping supports a nonautoimmune etiology in patients diagnosed with diabetes under the age of 6 months. Diabetes. 2006;55(6):1895–8.

    Article  CAS  PubMed  Google Scholar 

  20. Johnson MB, Patel KA, De Franco E, Hagopian W, Killian M, McDonald TJ, et al. Type 1 diabetes can present before the age of 6 months and is characterised by autoimmunity and rapid loss of beta cells. Diabetologia. 2020;63(12):2605–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Huopio H, Miettinen PJ, Ilonen J, Nykanen P, Veijola R, Keskinen P, et al. Clinical, genetic, and biochemical characteristics of early-onset diabetes in the Finnish population. J Clin Endocrinol Metab. 2016;101(8):3018–26.

    Article  CAS  PubMed  Google Scholar 

  22. Weng J, Zhou Z, Guo L, Zhu D, Ji L, Luo X, et al. Incidence of type 1 diabetes in China, 2010-13: population based study. BMJ. 2018;360:j5295.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Mølbak AG, Christau B, Marner B, Borch-Johnsen K, Nerup J. Incidence of insulin-dependent diabetes mellitus in age groups over 30 years in Denmark. Diabet Med. 1994;11:650–5.

    Article  PubMed  Google Scholar 

  24. Carstensen B, Rønn PF, Jørgensen ME. Prevalence, incidence and mortality of type 1 and type 2 diabetes in Denmark 1996-2016. BMJ Open Diabetes Res Care. 2020;8:e001071.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Pundziute-Lyckå A, Dahlquist G, Nyström L, Arnqvist H, Björk E, Blohmé G, et al. The incidence of type I diabetes has not increased but shifted to a younger age at diagnosis in the 0-34 years group in Sweden 1983 to 1998. Diabetologia. 2002;45(6):783–91.

    Article  PubMed  Google Scholar 

  26. Christau B, Kromann H, Andersen OO, Christy M, Buschard K, Arnung K, et al. Incidence, seasonal and geographical patterns of juvenile-onset insulin-dependent diabetes mellitus in Denmark. Diabetologia. 1977;13(4):281–4.

    Article  CAS  PubMed  Google Scholar 

  27. Gale EA, Gillespie KM. Diabetes and gender. Diabetologia. 2001;44(1):3–15.

    Article  CAS  PubMed  Google Scholar 

  28. Jeffery AN, Metcalf BS, Hosking J, Streeter AJ, Voss LD, Wilkin TJ. Age before stage: insulin resistance rises before the onset of puberty: a 9-year longitudinal study (EarlyBird 26). Diabetes Care. 2012;35(3):536–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lammi N, Taskinen O, Moltchanova E, Notkola IL, Eriksson JG, Tuomilehto J, et al. A high incidence of type 1 diabetes and an alarming increase in the incidence of type 2 diabetes among young adults in Finland between 1992 and 1996. Diabetologia. 2007;50(7):1393–400.

    Article  CAS  PubMed  Google Scholar 

  30. Diaz-Valencia PA, Bougneres P, Valleron AJ. Global epidemiology of type 1 diabetes in young adults and adults: a systematic review. BMC Public Health. 2015;15:255.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Habeb AM, Al-Magamsi MS, Halabi S, Eid IM, Shalaby S, Bakoush O. High incidence of childhood type 1 diabetes in Al-Madinah, North West Saudi Arabia (2004-2009). Pediatr Diabetes. 2011;12(8):676–81.

    Article  PubMed  Google Scholar 

  32. Kyvik KO, Nystrom L, Gorus F, Songini M, Oestman J, Castell C, et al. The epidemiology of type 1 diabetes mellitus is not the same in young adults as in children. Diabetologia. 2004;47(3):377–84.

    Article  CAS  PubMed  Google Scholar 

  33. Serrano-Rìos M, Goday A, Martinez LT. Migrant populations and the incidence of type 1 diabetes mellitus: an overview of the literature with a focus on the Spanish-heritage countries in Latin America. Diabetes Metab Res Rev. 1999;15:113–32.

    Article  PubMed  Google Scholar 

  34. Lipton RB. Epidemiology of childhood diabetes mellitus in non-caucasian populations. In: Ekoé J-M, Rewers M, Williams R, Zimmet P, editors. The epidemiology of diabetes mellitus. 2nd ed. Chichester: Wiley-Blackwell; 2008. p. 385–402.

    Chapter  Google Scholar 

  35. Blumenfeld O, Dichtiar R, Shohat T. Trends in the incidence of type 1 diabetes among Jews and Arabs in Israel. Pediatr Diabetes. 2014;15(6):422–7.

    Article  PubMed  Google Scholar 

  36. Al-Herbish AS, El-Mouzan MI, Al-Salloum AA, Al-Qurachi MM, Al-Omar AA. Prevalence of type 1 diabetes mellitus in Saudi Arabian children and adolescents. Saudi Med J. 2008;29(9):1285–8.

    PubMed  Google Scholar 

  37. Kondrashova A, Reunanen A, Romanov A, Karvonen A, Viskari H, Vesikari T, et al. A six-fold gradient in the incidence of type 1 diabetes at the eastern border of Finland. Ann Med. 2005;37(1):67–72.

    Article  PubMed  Google Scholar 

  38. Bruno G, Maule M, Merletti F, Novelli G, Falorni A, Iannilli A, et al. Age-period-cohort analysis of 1990-2003 incidence time trends of childhood diabetes in Italy: the RIDI study. Diabetes. 2010;59(9):2281–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ji J, Hemminki K, Sundquist J, Sundquist K. Ethnic differences in incidence of type 1 diabetes among second-generation immigrants and adoptees from abroad. J Clin Endocrinol Metab. 2010;95(2):847–50.

    Article  CAS  PubMed  Google Scholar 

  40. Söderström U, Åman J, Hjern A. Being born in Sweden increases the risk for type 1 diabetes—a study of migration of children to Sweden as a natural experiment. Acta Paediatr. 2012;101(1):73–7.

    Article  PubMed  Google Scholar 

  41. Dahlquist G, Blom L, Tuvemo T, Nystrøm L, Sandstrøm A, Wall S. The Swedish childhood diabetes study—results from a nine year case register and a one year case-referent study indicating that type 1 diabetes mellitus is associated with both type 2 diabetes mellitus and autoimmune disorders. Diabetologia. 1989;32:2–6.

    Article  CAS  PubMed  Google Scholar 

  42. Warram JH, Krolewski AS, Gottlieb MS, Kahn CR. Differences in risk of insulin-dependent diabetes in offspring of diabetic mothers and diabetic fathers. N Engl J Med. 1984;311(3):149–52.

    Article  CAS  PubMed  Google Scholar 

  43. Lorenzen T, Pociot F, Hougaard P, Nerup J. Long-term risk of IDDM in first-degree relatives of patients with IDDM. Diabetologia. 1994;37(3):321–7.

    Article  CAS  PubMed  Google Scholar 

  44. Gillespie KM, Gale EA, Bingley PJ. High familial risk and genetic susceptibility in early onset childhood diabetes. Diabetes. 2002;51(1):210–4.

    Article  CAS  PubMed  Google Scholar 

  45. Harjutsalo V, Podar T, Tuomilehto J. Cumulative incidence of type 1 diabetes in 10,168 siblings of Finnish young-onset type 1 diabetic patients. Diabetes. 2005;54(2):563–9.

    Article  CAS  PubMed  Google Scholar 

  46. Harjutsalo V, Reunanen A, Tuomilehto J. Differential transmission of type 1 diabetes from diabetic fathers and mothers to their offspring. Diabetes. 2006;55(5):1517–24.

    Article  CAS  PubMed  Google Scholar 

  47. Kyvik KO, Green A, Beck-Nielsen H. Concordance rates of insulin dependent diabetes mellitus: a population based study of young Danish twins. BMJ. 1995;311(7010):913–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Kumar D, Gemayel NS, Deapen D, Kapadia D, Yamashita PH, Lee M, et al. North-American twins with IDDM. Genetic, etiological, and clinical significance of disease concordance according to age, zygosity, and the interval after diagnosis in first twin. Diabetes. 1993;42(9):1351–63.

    Article  CAS  PubMed  Google Scholar 

  49. Redondo MJ, Yu L, Hawa M, Mackenzie T, Pyke DA, Eisenbarth GS, et al. Heterogeneity of type I diabetes: analysis of monozygotic twins in Great Britain and the United States. Diabetologia. 2001;44(3):354–62.

    Article  CAS  PubMed  Google Scholar 

  50. Hyttinen V, Kaprio J, Kinnunen L, Koskenvuo M, Tuomilehto J. Genetic liability of type 1 diabetes and the onset age among 22,650 young Finnish twin pairs: a nationwide follow-up study. Diabetes. 2003;52(4):1052–5.

    Article  CAS  PubMed  Google Scholar 

  51. Nistico L, Iafusco D, Galderisi A, Fagnani C, Cotichini R, Toccaceli V, et al. Emerging effects of early environmental factors over genetic background for type 1 diabetes susceptibility: evidence from a nationwide Italian twin study. J Clin Endocrinol Metab. 2012;97(8):E1483–E91.

    Article  CAS  PubMed  Google Scholar 

  52. Pacaud D, Nucci AM, Cuthbertson D, Becker DJ, Virtanen SM, Ludvigsson J, et al. Association between family history, early growth and the risk of beta cell autoimmunity in children at risk for type 1 diabetes. Diabetologia. 2021;64(1):119–28.

    Article  CAS  PubMed  Google Scholar 

  53. Warram JH, Krolewski AS, Kahn CR. Determinants of IDDM and perinatal mortality in children of diabetic mothers. Diabetes. 1988;37(10):1328–34.

    Article  CAS  PubMed  Google Scholar 

  54. Holm BC, Svensson J, Åkesson C, Arvastsson J, Ljungberg J, Lynch K, et al. Evidence for immunological priming and increased frequency of CD4+ CD25+ cord blood T cells in children born to mothers with type 1 diabetes. Clin Exp Immunol. 2006;146(3):493–502.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Knoop J, Eugster A, Gavrisan A, Lickert R, Sedlmeier EM, Dietz S, et al. Maternal type 1 diabetes reduces autoantigen-responsive CD4(+) T cells in offspring. Diabetes. 2020;69(4):661–9.

    Article  CAS  PubMed  Google Scholar 

  56. Hanukoglu A, Mizrachi A, Dalal I, Admoni O, Rakover Y, Bistritzer Z, et al. Extrapancreatic autoimmune manifestations in type 1 diabetes patients and their first-degree relatives: a multicenter study. Diabetes Care. 2003;26(4):1235–40.

    Article  PubMed  Google Scholar 

  57. Tait KF, Marshall T, Berman J, Carr-Smith J, Rowe B, Todd JA, et al. Clustering of autoimmune disease in parents of siblings from the type 1 diabetes warren repository. Diabet Med. 2004;21(4):358–62.

    Article  CAS  PubMed  Google Scholar 

  58. Anaya JM, Castiblanco J, Tobón GJ, García J, Abad V, Cuervo H, et al. Familial clustering of autoimmune diseases in patients with type 1 diabetes mellitus. J Autoimmun. 2006;26(3):208–14.

    Article  CAS  PubMed  Google Scholar 

  59. Kuo CF, Chou IJ, Grainge MJ, Luo SF, See LC, Yu KH, et al. Familial aggregation and heritability of type 1 diabetes mellitus and coaggregation of chronic diseases in affected families. Clin Epidemiol. 2018;10:1447–55.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Wagner AM, Santana A, Hernndez M, Wiebe JC, Novoa J, Mauricio D. Predictors of associated autoimmune diseases in families with type 1 diabetes: results from the type 1 diabetes genetics consortium. Diabetes Metab Res Rev. 2011;27(5):493–8.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Jones EY, Fugger L, Strominger JL, Siebold C. MHC class II proteins and disease: a structural perspective. Nat Rev Immunol. 2006;6(4):271–82.

    Article  CAS  PubMed  Google Scholar 

  62. Pociot F, Lernmark Å. Genetic risk factors for type 1 diabetes. Lancet. 2016;387(10035):2331–9.

    Article  CAS  PubMed  Google Scholar 

  63. Nerup J, Platz P, Andersen OO, Christy M, Lyngsøe J, Poulsen JE, et al. HL-A antigens and diabetes mellitus. Lancet. 1974;2(7885):864–6.

    Article  CAS  PubMed  Google Scholar 

  64. Thorsby E, Rønningen KS. Particular HLA-DQ molecules play a dominant role in determining susceptibility or resistance to type 1 (insulin-dependent) diabetes mellitus. Diabetologia. 1993;36:371–7.

    Article  CAS  PubMed  Google Scholar 

  65. Graham J, Hagopian WA, Kockum I, Li LS, Sanjeevi CB, Lowe RM, et al. Genetic effects on age-dependent onset and islet cell autoantibody markers in type 1 diabetes. Diabetes. 2002;51(5):1346–55.

    Article  CAS  PubMed  Google Scholar 

  66. Todd JA, Bell JI, McDevitt HO. HLA-DQb gene contributes to susceptibility and resistance to insulin-dependent diabetes mellitus. Nature. 1987;329(6140):599–604.

    Article  CAS  PubMed  Google Scholar 

  67. Zhao LP, Papadopoulos GK, Kwok WW, Moustakas AK, Bondinas GP, Larsson HE, et al. Motifs of three HLA-DQ amino acid residues (a44, b57, b135) capture full association with the risk of type 1 diabetes in DQ2 and DQ8 children. Diabetes. 2020;69(7):1573–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Hu X, Deutsch AJ, Lenz TL, Onengut-Gumuscu S, Han B, Chen WM, et al. Additive and interaction effects at three amino acid positions in HLA-DQ and HLA-DR molecules drive type 1 diabetes risk. Nat Genet. 2015;47(8):898–905.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. James EA, Mallone R, Kent SC, DiLorenzo TP. T-cell epitopes and neo-epitopes in type 1 diabetes: a comprehensive update and reappraisal. Diabetes. 2020;69(7):1311–35.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Thomson G, Valdes AM, Noble JA, Kockum I, Grote MN, Najman J, et al. Relative predispositional effects of HLA class II DRB1-DQB1 haplotypes and genotypes on type 1 diabetes: a meta-analysis. Tissue Antigens. 2007;70(2):110–27.

    Article  CAS  PubMed  Google Scholar 

  71. Bjørnvold M, Undlien DE, Joner G, Dahl-Jørgensen K, Njølstad PR, Akselsen HE, et al. Joint effects of HLA, INS, PTPN22 and CTLA4 genes on the risk of type 1 diabetes. Diabetologia. 2008;51(4):589–96.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Caillat-Zucman S, Garchon HJ, Timsit J, Assan R, Boitard C, Djilali-Saiah I, et al. Age-dependent HLA genetic heterogeneity of type 1 insulin-dependent diabetes mellitus. J Clin Invest. 1992;90(6):2242–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Graham J, Kockum I, Sanjeevi CB, Landin-Olsson M, Nyström L, Sundkvist G, et al. Negative association between type 1 diabetes and HLA DQB1*0602-DQA1*0102 is attenuated with age at onset. Eur J Immunogenet. 1999;26(2–3):117–27.

    CAS  PubMed  Google Scholar 

  74. Howson JM, Rosinger S, Smyth DJ, Boehm BO, Todd JA, The ADBW-END Study Group. Genetic analysis of adult-onset autoimmune diabetes. Diabetes. 2011;60(10):2645–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Nejentsev S, Howson JM, Walker NM, Szeszko J, Field SF, Stevens HE, et al. Localization of type 1 diabetes susceptibility to the MHC class I genes HLA-B and HLA-A. Nature. 2007;450(7171):887–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Husebye ES, Anderson MS, Kämpe O. Autoimmune polyendocrine syndromes. N Engl J Med. 2018;378(12):1132–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Flanagan SE, Haapaniemi E, Russell MA, Caswell R, Lango AH, De FE, et al. Activating germline mutations in STAT3 cause early-onset multi-organ autoimmune disease. Nat Genet. 2014;46(8):812–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Bell GI, Horita S, Karam JH. A polymorphic locus near the human insulin gene is associated with insulin-dependent diabetes mellitus. Diabetes. 1984;33:176–83.

    Article  CAS  PubMed  Google Scholar 

  79. Bottini N, Musumeci L, Alonso A, Rahmouni S, Nika K, Rostamkhani M, et al. A functional variant of lymphoid tyrosine phosphatase is associated with type I diabetes. Nat Genet. 2004;36(4):337–8.

    Article  CAS  PubMed  Google Scholar 

  80. Barrett JC, Clayton DG, Concannon P, Akolkar B, Cooper JD, Erlich HA, et al. Genome-wide association study and meta-analysis find that over 40 loci affect risk of type 1 diabetes. Nat Genet. 2009;41(6):703–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Pugliese A, Zeller M, Fernandez A Jr, Zalcberg LJ, Bartlett RJ, Ricordi C, et al. The insulin gene is transcribed in the human thymus and transcription levels correlated with allelic variation at the INS VNTR-IDDM2 susceptibility locus for type 1 diabetes. Nat Genet. 1997;15(3):293–7.

    Article  CAS  PubMed  Google Scholar 

  82. Vafiadis P, Bennett ST, Todd JA, Nadeau J, Grabs R, Goodyer CG, et al. Insulin expression in human thymus is modulated by INS VNTR alleles at the IDDM2 locus. Nat Genet. 1997;15(3):289–92.

    Article  CAS  PubMed  Google Scholar 

  83. Bottini N, Peterson EJ. Tyrosine phosphatase PTPN22: multifunctional regulator of immune signaling, development, and disease. Annu Rev Immunol. 2014;32:83–119.

    Article  CAS  PubMed  Google Scholar 

  84. Nejentsev S, Walker N, Riches D, Egholm M, Todd JA. Rare variants of IFIH1, a gene implicated in antiviral responses, protect against type 1 diabetes. Science. 2009;324(5925):387–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Krischer JP, Liu X, Vehik K, Akolkar B, Hagopian WA, Rewers MJ, et al. Predicting islet cell autoimmunity and type 1 diabetes: an 8-year TEDDY study progress report. Diabetes Care. 2019;42(6):1051–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Robertson CC, Inshaw JRJ, Onengut-Gumuscu S, Chen WM, Flores Santa Cruz D, Yang H, et al. Fine-mapping, trans-ancestral and genomic analyses identify causal variants, cells, genes and drug targets for type 1 diabetes. Nat Genet. 2021;53(7):962–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Inshaw JRJ, Cutler AJ, Burren OS, Stefana MI, Todd JA. Approaches and advances in the genetic causes of autoimmune disease and their implications. Nat Immunol. 2018;19(7):674–84.

    Article  CAS  PubMed  Google Scholar 

  88. Clayton DG. Prediction and interaction in complex disease genetics: experience in type 1 diabetes. PLoS Genet. 2009;5(7):e1000540.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Sharp SA, Rich SS, Wood AR, Jones SE, Beaumont RN, Harrison JW, et al. Development and standardization of an improved type 1 diabetes genetic risk score for use in newborn screening and incident diagnosis. Diabetes Care. 2019;42(2):200–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Bonifacio E, Beyerlein A, Hippich M, Winkler C, Vehik K, Weedon MN, et al. Genetic scores to stratify risk of developing multiple islet autoantibodies and type 1 diabetes: a prospective study in children. PLoS Med. 2018;15(4):e1002548.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Ferrat LA, Vehik K, Sharp SA, Lernmark Å, Rewers MJ, She JX, et al. A combined risk score enhances prediction of type 1 diabetes among susceptible children. Nat Med. 2020;26(8):1247–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Aly TA, Ide A, Jahromi MM, Barker JM, Fernando MS, Babu SR, et al. Extreme genetic risk for type 1A diabetes. Proc Natl Acad Sci U S A. 2006;103(38):14074–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Bonifacio E, Hummel M, Walter M, Schmid S, Ziegler AG. IDDM1 and multiple family history of type 1 diabetes combine to identify neonates at high risk for type 1 diabetes. Diabetes Care. 2004;27(11):2695–700.

    Article  PubMed  Google Scholar 

  94. Tuomilehto J, Ogle GD, Lund-Blix NA, Stene LC. Update on worldwide trends in occurrence of childhood type 1 diabetes in 2020. Pediatr Endocrinol Rev. 2020;17(Suppl 1):198–209.

    PubMed  Google Scholar 

  95. Hermann R, Knip M, Veijola R, Simell O, Laine AP, Åkerblom HK, et al. Temporal changes in the frequencies of HLA genotypes in patients with type 1 diabetes-indication of an increased environmental pressure? Diabetologia. 2003;46(3):420–5.

    Article  CAS  PubMed  Google Scholar 

  96. Gillespie KM, Bain SC, Barnett AH, Bingley PJ, Christie MR, Gill GV, et al. The rising incidence of childhood type 1 diabetes and reduced contribution of high-risk HLA haplotypes. Lancet. 2004;364(9446):1699–700.

    Article  PubMed  Google Scholar 

  97. Vehik K, Hamman RF, Lezotte D, Norris JM, Klingensmith GJ, Rewers M, et al. Trends in high-risk HLA susceptibility genes among colorado youth with type 1 diabetes. Diabetes Care. 2008;31(7):1392–6.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Fourlanos S, Varney MD, Tait BD, Morahan G, Honeyman MC, Colman PG, et al. The rising incidence of type 1 diabetes is accounted for by cases with lower-risk human leukocyte antigen genotypes. Diabetes Care. 2008;31(8):1546–9.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Resic-Lindehammer S, Larsson K, Örtqvist E, Carlsson A, Cederwall E, Cilio CM, et al. Temporal trends of HLA genotype frequencies of type 1 diabetes patients in Sweden from 1986 to 2005 suggest altered risk. Acta Diabetol. 2008;45(4):231–5.

    Article  CAS  PubMed  Google Scholar 

  100. Rewers M, Ludvigsson J. Environmental risk factors for type 1 diabetes. Lancet. 2016;387(10035):2340–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Norris JM, Johnson RK, Stene LC. Type 1 diabetes-early life origins and changing epidemiology. Lancet Diabetes Endocrinol. 2020;8(3):226–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Stene LC, Gale EA. The prenatal environment and type 1 diabetes. Diabetologia. 2013;56(9):1888–97.

    Article  CAS  PubMed  Google Scholar 

  103. Gale EA. Spring harvest? Reflections on the rise of type 1 diabetes. Diabetologia. 2005;48(12):2445–50.

    Article  CAS  PubMed  Google Scholar 

  104. Yoon JW, Austin M, Onodera T, Notkins AL. Isolation of a virus from the pancreas of a child with diabetic ketoacidosis. N Engl J Med. 1979;300(21):1173–9.

    Article  CAS  PubMed  Google Scholar 

  105. Petzold A, Solimena M, Knoch KP. Mechanisms of beta cell dysfunction associated with viral infection. Curr Diab Rep. 2015;15(10):73.

    Article  PubMed  PubMed Central  Google Scholar 

  106. Op de Beeck A, Eizirik DL. Viral infections in type 1 diabetes mellitus—why the beta cells? Nat Rev Endocrinol. 2016;12(5):263–73.

    Article  PubMed Central  Google Scholar 

  107. Green J, Casabonne D, Newton R. Coxsackie B virus serology and type 1 diabetes mellitus: a systematic review of published case-control studies. Diabet Med. 2004;21(6):507–14.

    Article  CAS  PubMed  Google Scholar 

  108. Stene LC, Rewers M. Immunology in the clinic review series; focus on type 1 diabetes and viruses: the enterovirus link to type 1 diabetes: critical review of human studies. Clin Exp Immunol. 2012;168(1):12–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Cinek O, Stene LC, Kramna L, Tapia G, Oikarinen S, Witsø E, et al. Enterovirus RNA in longitudinal blood samples and risk of islet autoimmunity in children with a high genetic risk of type 1 diabetes: the MIDIA study. Diabetologia. 2014;57(10):2193–200.

    Article  CAS  PubMed  Google Scholar 

  110. Vehik K, Lynch KF, Wong MC, Tian X, Ross MC, Gibbs RA, et al. Prospective virome analyses in young children at increased genetic risk for type 1 diabetes. Nat Med. 2019;25(12):1865–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Oikarinen S, Martiskainen M, Tauriainen S, Huhtala H, Ilonen J, Veijola R, et al. Enterovirus RNA in blood is linked to the development of type 1 diabetes. Diabetes. 2011;60(1):276–9.

    Article  CAS  PubMed  Google Scholar 

  112. Cardwell CR, Stene LC, Joner G, Cinek O, Svensson J, Goldacre MJ, et al. Caesarean section is associated with an increased risk of childhood onset type 1 diabetes: a meta-analysis of observational studies. Diabetologia. 2008;51(5):726–35.

    Article  CAS  PubMed  Google Scholar 

  113. Waernbaum I, Dahlquist G, Lind T. Perinatal risk factors for type 1 diabetes revisited: a population-based register study. Diabetologia. 2019;62(7):1173–84.

    Article  PubMed  PubMed Central  Google Scholar 

  114. Clausen TD, Bergholt T, Eriksson F, Rasmussen S, Keiding N, Lokkegaard EC. Prelabor cesarean section and risk of childhood type 1 diabetes: a nationwide register-based cohort study. Epidemiology. 2016;27(4):547–55.

    Article  PubMed  Google Scholar 

  115. Khashan AS, Kenny LC, Lundholm C, Kearney PM, Gong T, Almqvist C. Mode of obstetrical delivery and type 1 diabetes: a sibling design study. Pediatrics. 2014;134(3):e806–e13.

    Article  PubMed  Google Scholar 

  116. Stene LC, Magnus P, Lie RT, Søvik O, Joner G, The Norwegian Childhood Diabetes Study Group. Maternal and paternal age at delivery, birth order, and risk of childhood onset type 1 diabetes: population based cohort study. BMJ. 2001;323(7309):369–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Cardwell CR, Stene LC, Joner G, Bulsara MK, Cinek O, Rosenbauer J, et al. Maternal age at birth and childhood type 1 diabetes: a pooled analysis of 30 observational studies. Diabetes. 2010;59(2):486–94.

    Article  CAS  PubMed  Google Scholar 

  118. D’Angeli MA, Merzon E, Valbuena LF, Tirschwell D, Paris CA, Mueller BA. Environmental factors associated with childhood-onset type 1 diabetes mellitus: an exploration of the hygiene and overload hypotheses. Arch Pediatr Adolesc Med. 2010;164(8):732–8.

    Article  PubMed  PubMed Central  Google Scholar 

  119. Magnus MC, Olsen SF, Granstrom C, Lund-Blix NA, Svensson J, Johannesen J, et al. Paternal and maternal obesity but not gestational weight gain is associated with type 1 diabetes. Int J Epidemiol. 2018;47(2):417–26.

    Article  PubMed  PubMed Central  Google Scholar 

  120. Stene LC, Magnus P, Lie RT, Søvik O, Joner G, The Norwegian Childhood Diabetes Study Group. Birth weight and childhood onset type 1 diabetes: population based cohort study. BMJ. 2001;322(7291):889–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Cardwell CR, Stene LC, Joner G, Davis EA, Cinek O, Rosenbauer J, et al. Birthweight and the risk of childhood-onset type 1 diabetes: a meta-analysis of observational studies using individual patient data. Diabetologia. 2010;53(4):641–51.

    Article  CAS  PubMed  Google Scholar 

  122. Svensson J, Carstensen B, Mortensen HB, Borch-Johnsen K. Growth in the first year of life and the risk of type 1 diabetes in a Danish population. Paediatr Perinat Epidemiol. 2007;21(1):44–8.

    Article  PubMed  Google Scholar 

  123. Magnus MC, Olsen SF, Granström C, Joner G, Skrivarhaug T, Svensson J, et al. Infant growth and risk of childhood-onset type 1 diabetes in children from 2 Scandinavian birth cohorts. JAMA Pediatr. 2015;169(12):e153759.

    Article  PubMed  Google Scholar 

  124. Larsson HE, Vehik K, Haller MJ, Liu X, Akolkar B, Hagopian W, et al. Growth and risk for islet autoimmunity and progression to type 1 diabetes in early childhood: the environmental determinants of diabetes in the young study. Diabetes. 2016;65(7):1988–95.

    Article  CAS  Google Scholar 

  125. EURODIAB Substudy 2 Study Group. Rapid early growth is associated with increased risk of childhood type 1 diabetes in various European populations. Diabetes Care. 2002;25(10):1755–60.

    Article  Google Scholar 

  126. Verbeeten KC, Elks CE, Daneman D, Ong KK. Association between childhood obesity and subsequent type 1 diabetes: a systematic review and meta-analysis. Diabet Med. 2011;28(1):10–8.

    Article  CAS  PubMed  Google Scholar 

  127. Antvorskov JC, Aunsholt L, Buschard K, Gamborg M, Kristensen K, Johannesen J, et al. Childhood body mass index in relation to subsequent risk of type 1 diabetes-a Danish cohort study. Pediatr Diabetes. 2018;19(2):265–70.

    Article  PubMed  Google Scholar 

  128. Yassouridis C, Leisch F, Winkler C, Ziegler AG, Beyerlein A. Associations of growth patterns and islet autoimmunity in children with increased risk for type 1 diabetes: a functional analysis approach. Pediatr Diabetes. 2017;18(2):103–10.

    Article  CAS  PubMed  Google Scholar 

  129. Liu X, Vehik K, Huang Y, Elding Larsson H, Toppari J, Ziegler AG, et al. Distinct growth phases in early life associated with the risk of type 1 diabetes: the TEDDY study. Diabetes Care. 2020;43(3):556–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Lamb MM, Yin X, Zerbe GO, Klingensmith GJ, Dabelea D, Fingerlin TE, et al. Height growth velocity, islet autoimmunity and type 1 diabetes development: the diabetes autoimmunity study in the young. Diabetologia. 2009;52(10):2064–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Censin JC, Nowak C, Cooper N, Bergsten P, Todd JA, Fall T. Childhood adiposity and risk of type 1 diabetes: a Mendelian randomization study. PLoS Med. 2017;14(8):e1002362.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Sims EK, Evans-Molina C, Tersey SA, Eizirik DL, Mirmira RG. Biomarkers of islet beta cell stress and death in type 1 diabetes. Diabetologia. 2018;61(11):2259–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Corbin KD, Driscoll KA, Pratley RE, Smith SR, Maahs DM, Mayer-Davis EJ, et al. Obesity in type 1 diabetes: pathophysiology, clinical impact, and mechanisms. Endocr Rev. 2018;39(5):629–63.

    Article  PubMed  Google Scholar 

  134. Borch-Johnsen K, Joner G, Mandrup-Poulsen T, Christy M, Zachau-Christiansen B, Kastrup K, et al. Relation between breast-feeding and incidence rates of insulin-dependent diabetes mellitus. A hypothesis. Lancet. 1984;2(8411):1083–6.

    Article  CAS  PubMed  Google Scholar 

  135. Chmiel R, Beyerlein A, Knopff A, Hummel S, Ziegler AG, Winkler C. Early infant feeding and risk of developing islet autoimmunity and type 1 diabetes. Acta Diabetol. 2015;52(3):621–4.

    Article  CAS  PubMed  Google Scholar 

  136. Frederiksen B, Kroehl M, Lamb MM, Seifert J, Barriga K, Eisenbarth GS, et al. Infant exposures and development of type 1 diabetes mellitus: the diabetes autoimmunity study in the young (DAISY). JAMA Pediatr. 2013;167(9):808–15.

    Article  PubMed  PubMed Central  Google Scholar 

  137. Lund-Blix NA, Dydensborg Sander S, Størdal K, Nybo Andersen AM, Rønningen KS, Joner G, et al. Infant feeding and risk of type 1 diabetes in two large Scandinavian birth cohorts. Diabetes Care. 2017;40(7):920–7.

    Article  PubMed  PubMed Central  Google Scholar 

  138. Hakola L, Takkinen HM, Niinistö S, Ahonen S, Nevalainen J, Veijola R, et al. Infant feeding in relation to the risk of advanced islet autoimmunity and type 1 diabetes in children with increased genetic susceptibility: a cohort study. Am J Epidemiol. 2018;187(1):34–44.

    Article  PubMed  Google Scholar 

  139. Knip M, Åkerblom HK, Al Taji E, Becker D, Bruining J, Castano L, et al. Effect of hydrolyzed infant formula vs conventional formula on risk of type 1 diabetes: the TRIGR randomized clinical trial. JAMA. 2018;319(1):38–48.

    Article  PubMed  PubMed Central  Google Scholar 

  140. Sørensen IM, Joner G, Jenum PA, Eskild A, Torjesen PA, Stene LC. Maternal serum levels of 25-hydroxy-vitamin D during pregnancy and risk of type 1 diabetes in the offspring. Diabetes. 2012;61(1):175–8.

    Article  PubMed  Google Scholar 

  141. Miettinen ME, Reinert L, Kinnunen L, Harjutsalo V, Koskela P, Surcel HM, et al. Serum 25-hydroxyvitamin D level during early pregnancy and type 1 diabetes risk in the offspring. Diabetologia. 2012;55(5):1291–4.

    Article  CAS  PubMed  Google Scholar 

  142. Thorsen SU, Mårild K, Olsen SF, Holst KK, Tapia G, Granström C, et al. Lack of association between maternal or neonatal vitamin D status and risk of childhood type 1 diabetes: a Scandinavian case-cohort study. Am J Epidemiol. 2018;187(6):1174–81.

    Article  PubMed  Google Scholar 

  143. Jacobsen R, Thorsen SU, Cohen AS, Lundqvist M, Frederiksen P, Pipper CB, et al. Neonatal vitamin D status is not associated with later risk of type 1 diabetes: results from two large Danish population-based studies. Diabetologia. 2016;59(9):1871–81.

    Article  CAS  PubMed  Google Scholar 

  144. Mäkinen M, Löyttyniemi E, Koskinen M, Vähä-Mäkilä M, Siljander H, Nurmio M, et al. Serum 25-hydroxyvitamin D concentrations at birth in children screened for HLA-DQB1 conferred risk for type 1 diabetes. J Clin Endocrinol Metab. 2019;104(6):2277–85.

    Article  PubMed  PubMed Central  Google Scholar 

  145. Simpson M, Brady H, Yin X, Seifert J, Barriga K, Hoffman M, et al. No association of vitamin D intake or 25-hydroxyvitamin D levels in childhood with risk of islet autoimmunity and type 1 diabetes: the diabetes autoimmunity study in the young (DAISY). Diabetologia. 2011;54(11):2779–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Mäkinen M, Mykkänen J, Koskinen M, Simell V, Veijola R, Hyöty H, et al. Serum 25-hydroxyvitamin D concentrations in children progressing to autoimmunity and clinical type 1 diabetes. J Clin Endocrinol Metab. 2016;101(2):723–9.

    Article  PubMed  Google Scholar 

  147. Norris JM, Lee HS, Frederiksen B, Erlund I, Uusitalo U, Yang J, et al. Plasma 25-hydroxyvitamin D concentration and risk of islet autoimmunity. Diabetes. 2018;67(1):146–54.

    Article  CAS  PubMed  Google Scholar 

  148. Miettinen ME, Niinistö S, Erlund I, Cuthbertson D, Nucci AM, Honkanen J, et al. Serum 25-hydroxyvitamin D concentration in childhood and risk of islet autoimmunity and type 1 diabetes: the TRIGR nested case-control ancillary study. Diabetologia. 2020;63(4):780–7.

    Article  PubMed  PubMed Central  Google Scholar 

  149. Autier P, Boniol M, Pizot C, Mullie P. Vitamin D status and ill health: a systematic review. Lancet Diabetes Endocrinol. 2014;2(1):76–89.

    Article  CAS  PubMed  Google Scholar 

  150. Wen L, Ley RE, Volchkov PY, Stranges PB, Avanesyan L, Stonebraker AC, et al. Innate immunity and intestinal microbiota in the development of type 1 diabetes. Nature. 2008;455(7216):1109–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Vatanen T, Franzosa EA, Schwager R, Tripathi S, Arthur TD, Vehik K, et al. The human gut microbiome in early-onset type 1 diabetes from the TEDDY study. Nature. 2018;562(7728):589–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Kilkkinen A, Virtanen SM, Klaukka T, Kenward MG, Salkinoja-Salonen M, Gissler M, et al. Use of antimicrobials and risk of type 1 diabetes in a population-based mother-child cohort. Diabetologia. 2006;49(1):66–70.

    Article  CAS  PubMed  Google Scholar 

  153. Hviid A, Svanstrom H. Antibiotic use and type 1 diabetes in childhood. Am J Epidemiol. 2009;169(9):1079–84.

    Article  PubMed  Google Scholar 

  154. Clausen TD, Bergholt T, Bouaziz O, Arpi M, Eriksson F, Rasmussen S, et al. Broad-spectrum antibiotic treatment and subsequent childhood type 1 diabetes: a nationwide danish cohort study. PLoS One. 2016;11(8):e0161654.

    Article  PubMed  PubMed Central  Google Scholar 

  155. Mikkelsen KH, Knop FK, Vilsboll T, Frost M, Hallas J, Pottegard A. Use of antibiotics in childhood and risk of type 1 diabetes: a population-based case-control study. Diabet Med. 2017;34(2):272–7.

    Article  CAS  PubMed  Google Scholar 

  156. Tapia G, Størdal K, Mårild K, Kahrs CR, Skrivarhaug T, Njølstad PR, et al. Antibiotics, acetaminophen and infections during prenatal and early life in relation to type 1 diabetes. Int J Epidemiol. 2018;47(5):1538–48.

    Article  PubMed  PubMed Central  Google Scholar 

  157. Oresic M, Simell S, Sysi-Aho M, Näntö-Salonen K, Seppänen-Laakso T, Parikka V, et al. Dysregulation of lipid and amino acid metabolism precedes islet autoimmunity in children who later progress to type 1 diabetes. J Exp Med. 2008;205(13):2975–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Suvitaival T. Lipidomic abnormalities during the pathogenesis of type 1 diabetes: a quantitative review. Curr Diab Rep. 2020;20(9):46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Li Q, Parikh H, Butterworth MD, Lernmark Å, Hagopian W, Rewers M, et al. Longitudinal metabolome-wide signals prior to the appearance of a first islet autoantibody in children participating in the TEDDY study. Diabetes. 2020;69(3):465–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Li Q, Liu X, Yang J, Erlund I, Lernmark Å, Hagopian W, et al. Plasma metabolome and circulating vitamins stratified onset age of an initial islet autoantibody and progression to type 1 diabetes: the TEDDY study. Diabetes. 2021;70(1):282–92.

    Article  CAS  PubMed  Google Scholar 

  161. Webb-Robertson BM, Bramer LM, Stanfill BA, Reehl SM, Nakayasu ES, Metz TO, et al. Prediction of the development of islet autoantibodies through integration of environmental, genetic, and metabolic markers. J Diabetes. 2021;13(2):143–53.

    Article  CAS  PubMed  Google Scholar 

  162. Stone VM, Hankaniemi MM, Laitinen OH, Sioofy-Khojine AB, Lin A, Diaz Lozano IM, et al. A hexavalent Coxsackievirus B vaccine is highly immunogenic and has a strong protective capacity in mice and nonhuman primates. Sci Adv. 2020;6(19):eaaz2433.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Gepts W. Pathologic anatomy of the pancreas in juvenile diabetes mellitus. Diabetes. 1965;14(10):619–33.

    Article  CAS  PubMed  Google Scholar 

  164. Williams AJ, Thrower SL, Sequeiros IM, Ward A, Bickerton AS, Triay JM, et al. Pancreatic volume is reduced in adult patients with recently diagnosed type 1 diabetes. J Clin Endocrinol Metab. 2012;97(11):E2109–E13.

    Article  CAS  PubMed  Google Scholar 

  165. Campbell-Thompson M, Wasserfall C, Montgomery EL, Atkinson MA, Kaddis JS. Pancreas organ weight in individuals with disease-associated autoantibodies at risk for type 1 diabetes. JAMA. 2012;308(22):2337–9.

    Article  CAS  PubMed  Google Scholar 

  166. Virostko J, Williams J, Hilmes M, Bowman C, Wright JJ, Du L, et al. Pancreas volume declines during the first year after diagnosis of type 1 diabetes and exhibits altered diffusion at disease onset. Diabetes Care. 2019;42(2):248–57.

    Article  CAS  PubMed  Google Scholar 

  167. Augustine P, Gent R, Louise J, Taranto M, Penno M, Linke R, et al. Pancreas size and exocrine function is decreased in young children with recent-onset type 1 diabetes. Diabet Med. 2020;37(8):1340–3.

    Article  CAS  PubMed  Google Scholar 

  168. Regnell SE, Peterson P, Trinh L, Broberg P, Leander P, Lernmark Å, et al. Pancreas volume and fat fraction in children with type 1 diabetes. Diabet Med. 2016;33(10):1374–9.

    Article  CAS  PubMed  Google Scholar 

  169. Gaglia JL, Guimaraes AR, Harisinghani M, Turvey SE, Jackson R, Benoist C, et al. Noninvasive imaging of pancreatic islet inflammation in type 1A diabetes patients. J Clin Invest. 2011;121(1):442–5.

    Article  CAS  PubMed  Google Scholar 

  170. Campbell-Thompson ML, Kaddis JS, Wasserfall C, Haller MJ, Pugliese A, Schatz DA, et al. The influence of type 1 diabetes on pancreatic weight. Diabetologia. 2016;59(1):217–21.

    Article  PubMed  Google Scholar 

  171. Foulis AK, Stewart JA. The pancreas in recent-onset type 1 (insulin-dependent) diabetes mellitus: insulin content of islets, insulitis and associated changes in the exocrine acinar tissue. Diabetologia. 1984;26(6):456–61.

    Article  CAS  PubMed  Google Scholar 

  172. Rodriguez-Calvo T, Ekwall O, Amirian N, Zapardiel-Gonzalo J, von Herrath MG. Increased immune cell infiltration of the exocrine pancreas: a possible contribution to the pathogenesis of type 1 diabetes. Diabetes. 2014;63(11):3880–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Ludvigsson J. No acute pancreatitis but reduced exocrine pancreatic function at diagnosis of type 1 diabetes in children. Pediatr Diabetes. 2019;20(7):915–9.

    Article  CAS  PubMed  Google Scholar 

  174. Li X, Campbell-Thompson M, Wasserfall CH, McGrail K, Posgai A, Schultz AR, et al. Serum trypsinogen levels in type 1 diabetes. Diabetes Care. 2017;40(4):577–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Larger E, Philippe MF, Barbot-Trystram L, Radu A, Rotariu M, Nobecourt E, et al. Pancreatic exocrine function in patients with diabetes. Diabet Med. 2012;29(8):1047–54.

    Article  CAS  PubMed  Google Scholar 

  176. Kondrashova A, Nurminen N, Lehtonen J, Hyöty M, Toppari J, Ilonen J, et al. Exocrine pancreas function decreases during the progression of the beta-cell damaging process in young prediabetic children. Pediatr Diabetes. 2018;19(3):398–402.

    Article  CAS  PubMed  Google Scholar 

  177. Penno MAS, Oakey H, Augustine P, Taranto M, Barry SC, Colman PG, et al. Changes in pancreatic exocrine function in young at-risk children followed to islet autoimmunity and type 1 diabetes in the ENDIA study. Pediatr Diabetes. 2020;21(6):945–9.

    Article  CAS  PubMed  Google Scholar 

  178. Skog O, Korsgren O. Aetiology of type 1 diabetes: physiological growth in children affects disease progression. Diabetes Obes Metab. 2018;20(4):775–85.

    Article  CAS  PubMed  Google Scholar 

  179. Stene LC, Barriga K, Hoffman M, Kean J, Klingensmith G, Norris JM, et al. Normal but increasing hemoglobin A1c levels predict progression from islet autoimmunity to overt type 1 diabetes: diabetes autoimmunity study in the young (DAISY). Pediatr Diabetes. 2006;7(5):247–53.

    Article  PubMed  Google Scholar 

  180. Evans-Molina C, Sims EK, DiMeglio LA, Ismail HM, Steck AK, Palmer JP, et al. Beta cell dysfunction exists more than 5 years before type 1 diabetes diagnosis. JCI Insight. 2018;3(15):e120877.

    Article  PubMed  PubMed Central  Google Scholar 

  181. Oram RA, McDonald TJ, Shields BM, Hudson MM, Shepherd MH, Hammersley S, et al. Most people with long-duration type 1 diabetes in a large population-based study are insulin microsecretors. Diabetes Care. 2015;38(2):323–8.

    Article  CAS  PubMed  Google Scholar 

  182. In’t VP. Insulitis in human type 1 diabetes: the quest for an elusive lesion. Islets. 2011;3(4):131–8.

    Article  Google Scholar 

  183. Lernmark Å, Klöppel G, Stenger D, Vathanaprida C, Fält K, Landin-Olsson M, et al. Heterogeneity of islet pathology in two infants with recent onset diabetes mellitus. Virchows Arch. 1995;425(6):631–40.

    Article  CAS  PubMed  Google Scholar 

  184. Foulis AK, Liddle CN, Farquharson MA, Richmond JA, Weir RS. The histopathology of the pancreas in type 1 (insulin-dependent) diabetes mellitus: a 25-year review of deaths in patients under 20 years of age in the United Kingdom. Diabetologia. 1986;29(5):267–74.

    Article  CAS  PubMed  Google Scholar 

  185. Gianani R, Campbell-Thompson M, Sarkar SA, Wasserfall C, Pugliese A, Solis JM, et al. Dimorphic histopathology of long-standing childhood-onset diabetes. Diabetologia. 2010;53(4):690–8.

    Article  CAS  PubMed  Google Scholar 

  186. Rodriguez-Calvo T, Suwandi JS, Amirian N, Zapardiel-Gonzalo J, Anquetil F, Sabouri S, et al. Heterogeneity and lobularity of pancreatic pathology in type 1 diabetes during the prediabetic phase. J Histochem Cytochem. 2015;63(8):626–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Campbell-Thompson M, Fu A, Kaddis JS, Wasserfall C, Schatz DA, Pugliese A, et al. Insulitis and b-cell mass in the natural history of type 1 diabetes. Diabetes. 2016;65(3):719–31.

    Article  CAS  PubMed  Google Scholar 

  188. Krogvold L, Wiberg A, Edwin B, Buanes T, Jahnsen FL, Hanssen KF, et al. Insulitis and characterisation of infiltrating T cells in surgical pancreatic tail resections from patients at onset of type 1 diabetes. Diabetologia. 2016;59(3):492–501.

    Article  CAS  PubMed  Google Scholar 

  189. Willcox A, Richardson SJ, Bone AJ, Foulis AK, Morgan NG. Analysis of islet inflammation in human type 1 diabetes. Clin Exp Immunol. 2009;155(2):173–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Coppieters KT, Dotta F, Amirian N, Campbell PD, Kay TW, Atkinson MA, et al. Demonstration of islet-autoreactive CD8 T cells in insulitic lesions from recent onset and long-term type 1 diabetes patients. J Exp Med. 2012;209(1):51–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Seay HR, Yusko E, Rothweiler SJ, Zhang L, Posgai AL, Campbell-Thompson M, et al. Tissue distribution and clonal diversity of the T and B cell repertoire in type 1 diabetes. JCI Insight. 2016;1(20):e88242.

    Article  PubMed  PubMed Central  Google Scholar 

  192. Babon JA, DeNicola ME, Blodgett DM, Crevecoeur I, Buttrick TS, Maehr R, et al. Analysis of self-antigen specificity of islet-infiltrating T cells from human donors with type 1 diabetes. Nat Med. 2016;22(12):1482–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Bender C, Rodriguez-Calvo T, Amirian N, Coppieters KT, von Herrath MG. The healthy exocrine pancreas contains preproinsulin-specific CD8 T cells that attack islets in type 1 diabetes. Sci Adv. 2020;6(42):eabc5586.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Leete P, Willcox A, Krogvold L, Dahl-Jørgensen K, Foulis AK, Richardson SJ, et al. Differential insulitic profiles determine the extent of beta-cell destruction and the age at onset of type 1 diabetes. Diabetes. 2016;65(5):1362–9.

    Article  CAS  PubMed  Google Scholar 

  195. Vecchio F, Lo Buono N, Stabilini A, Nigi L, Dufort MJ, Geyer S, et al. Abnormal neutrophil signature in the blood and pancreas of presymptomatic and symptomatic type 1 diabetes. JCI Insight. 2018;3(18):e122146.

    Article  PubMed  PubMed Central  Google Scholar 

  196. Richardson SJ, Rodriguez-Calvo T, Gerling IC, Mathews CE, Kaddis JS, Russell MA, et al. Islet cell hyperexpression of HLA class I antigens: a defining feature in type 1 diabetes. Diabetologia. 2016;59(11):2448–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Foulis AK, Farquharson MA, Meager A. Immunoreactive a-interferon in insulin-secreting b cells in type 1 diabetes mellitus. Lancet. 1987;2(8573):1423–7.

    Article  CAS  PubMed  Google Scholar 

  198. Russell MA, Redick SD, Blodgett DM, Richardson SJ, Leete P, Krogvold L, et al. HLA class II antigen processing and presentation pathway components demonstrated by transcriptome and protein analyses of islet b-cells from donors with type 1 diabetes. Diabetes. 2019;68(5):988–1001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Lundberg M, Lindqvist A, Wierup N, Krogvold L, Dahl-Jorgensen K, Skog O. The density of parasympathetic axons is reduced in the exocrine pancreas of individuals recently diagnosed with type 1 diabetes. PLoS One. 2017;12(6):e0179911.

    Article  PubMed  PubMed Central  Google Scholar 

  200. Holm LJ, Krogvold L, Hasselby JP, Kaur S, Claessens LA, Russell MA, et al. Abnormal islet sphingolipid metabolism in type 1 diabetes. Diabetologia. 2018;61(7):1650–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Kent SC, Mannering SI, Michels AW, Babon JAB. Deciphering the pathogenesis of human type 1 diabetes (T1D) by interrogating T cells from the “scene of the crime”. Curr Diab Rep. 2017;17(10):95.

    Article  PubMed  PubMed Central  Google Scholar 

  202. Rodriguez-Calvo T, Richardson SJ, Pugliese A. Pancreas pathology during the natural history of type 1 diabetes. Curr Diab Rep. 2018;18(11):124.

    Article  PubMed  Google Scholar 

  203. Wasserfall C, Montgomery E, Yu L, Michels A, Gianani R, Pugliese A, et al. Validation of a rapid type 1 diabetes autoantibody screening assay for community-based screening of organ donors to identify subjects at increased risk for the disease. Clin Exp Immunol. 2016;185(1):33–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Bottazzo GF, Florin-Christensen A, Doniach D. Islet-cell antibodies in diabetes mellitus with autoimmune polyendocrine deficiencies. Lancet. 1974;2(7892):1279–83.

    Article  CAS  PubMed  Google Scholar 

  205. Gorsuch AN, Spencer KM, Lister J, McNally JM, Dean BM, Bottazzo GF, et al. Evidence for a long prediabetic period in type I (insulin-dependent) diabetes mellitus. Lancet. 1981;2(8260–61):1363–5.

    Article  CAS  PubMed  Google Scholar 

  206. Fineberg SE, Kawabata TT, Finco-Kent D, Fountaine RJ, Finch GL, Krasner AS. Immunological responses to exogenous insulin. Endocr Rev. 2007;28(6):625–52.

    Article  CAS  PubMed  Google Scholar 

  207. Palmer JP, Asplin CM, Clemons P, Lyen K, Tatpati O, Raghu PK, et al. Insulin antibodies in insulin-dependent diabetics before insulin treatment. Science. 1983;222:1337–9.

    Article  CAS  PubMed  Google Scholar 

  208. Williams AJ, Bingley PJ, Bonifacio E, Palmer JP, Gale EA. A novel micro-assay for insulin autoantibodies. J Autoimmun. 1997;10(5):473–8.

    Article  CAS  PubMed  Google Scholar 

  209. Yu L, Robles DT, Abiru N, Kaur P, Rewers M, Kelemen K, et al. Early expression of antiinsulin autoantibodies of humans and the NOD mouse: evidence for early determination of subsequent diabetes. Proc Natl Acad Sci U S A. 2000;97:1701–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Baekkeskov S, Aanstoot HJ, Christgau S, Reetz A, Solimena M, Cascalho M, et al. Identification of the 64K autoantigen in insulin-dependent diabetes as the GABA-synthesizing enzyme glutamic acid decarboxylase. Nature. 1990;347(6289):151–6.

    Article  CAS  PubMed  Google Scholar 

  211. Karlsen AE, Hagopian WA, Grubin CE, Dube S, Disteche CM, Adler DA, et al. Cloning and primary structure of a human islet isoform of glutamic acid decarboxylase from chromosome 10. Proc Natl Acad Sci U S A. 1991;88(19):8337–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Rabin DU, Pleasic SM, Palmer-Crocker R, Shapiro JA. Cloning and expression of IDDM-specific human autoantigens. Diabetes. 1992;41(2):183–6.

    Article  CAS  PubMed  Google Scholar 

  213. McLaughlin KA, Richardson CC, Ravishankar A, Brigatti C, Liberati D, Lampasona V, et al. Identification of Tetraspanin-7 as a target of autoantibodies in type 1 diabetes. Diabetes. 2016;65(6):1690–8.

    Article  CAS  PubMed  Google Scholar 

  214. Wenzlau JM, Juhl K, Yu L, Moua O, Sarkar SA, Gottlieb P, et al. The cation efflux transporter ZnT8 (Slc30A8) is a major autoantigen in human type 1 diabetes. Proc Natl Acad Sci U S A. 2007;104(43):17040–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Vaziri-Sani F, Delli AJ, Elding-Larsson H, Lindblad B, Carlsson A, Forsander G, et al. A novel triple mix radiobinding assay for the three ZnT8 (ZnT8-RWQ) autoantibody variants in children with newly diagnosed diabetes. J Immunol Methods. 2011;371(1–2):25–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Bingley PJ, Bonifacio E, Mueller PW. Diabetes antibody standardization program: first assay proficiency evaluation. Diabetes. 2003;52(5):1128–36.

    Article  CAS  PubMed  Google Scholar 

  217. Petersen JS, Hejnæs KR, Moody A, Karlsen AE, Marshall MO, Høier-Madsen M, et al. Detection of GAD65 antibodies in diabetes and other autoimmune diseases using a simple radioligand assay. Diabetes. 1994;43(3):459–67.

    Article  CAS  PubMed  Google Scholar 

  218. Schlosser M, Mueller PW, Törn C, Bonifacio E, Bingley PJ. Diabetes antibody standardization program: evaluation of assays for insulin autoantibodies. Diabetologia. 2010;53(12):2611–20.

    Article  CAS  PubMed  Google Scholar 

  219. Törn C, Mueller PW, Schlosser M, Bonifacio E, Bingley PJ, Participating Laboratories. Diabetes antibody standardization program: evaluation of assays for autoantibodies to glutamic acid decarboxylase and islet antigen-2. Diabetologia. 2008;51(5):846–52.

    Article  PubMed  Google Scholar 

  220. Lampasona V, Schlosser M, Mueller PW, Williams AJ, Wenzlau JM, Hutton JC, et al. Diabetes antibody standardization program: first proficiency evaluation of assays for autoantibodies to zinc transporter 8. Clin Chem. 2011;57(12):1693–702.

    Article  CAS  PubMed  Google Scholar 

  221. Krischer JP, Lynch KF, Schatz DA, Ilonen J, Lernmark Å, Hagopian WA, et al. The 6 year incidence of diabetes-associated autoantibodies in genetically at-risk children: the TEDDY study. Diabetologia. 2015;58(5):980–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Pöllänen PM, Ryhänen SJ, Toppari J, Ilonen J, Vähäsalo P, Veijola R, et al. Dynamics of islet autoantibodies during prospective follow-up from birth up to 15 years of age. J Clin Endocrinol Metab. 2020;105(12):e4638–51.

    Article  PubMed  PubMed Central  Google Scholar 

  223. Vehik K, Bonifacio E, Lernmark Å, Yu L, Williams A, Schatz D, et al. Hierarchical order of distinct autoantibody spreading and progression to type 1 diabetes in the TEDDY study. Diabetes Care. 2020;43(9):2066–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Chmiel R, Giannopoulou EZ, Winkler C, Achenbach P, Ziegler AG, Bonifacio E. Progression from single to multiple islet autoantibodies often occurs soon after seroconversion: implications for early screening. Diabetologia. 2014;58(2):411–3.

    Article  PubMed  Google Scholar 

  225. Bauer W, Veijola R, Lempainen J, Kiviniemi M, Harkonen T, Toppari J, et al. Age at seroconversion, HLA genotype, and specificity of autoantibodies in progression of islet autoimmunity in childhood. J Clin Endocrinol Metab. 2019;104(10):4521–30.

    Article  PubMed  Google Scholar 

  226. Ziegler AG, Rewers M, Simell O, Simell T, Lempainen J, Steck A, et al. Seroconversion to multiple islet autoantibodies and risk of progression to diabetes in children. JAMA. 2013;309(23):2473–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. Eisenbarth GS. Type I diabetes mellitus. A chronic autoimmune disease. N Engl J Med. 1986;314(21):1360–8.

    Article  CAS  PubMed  Google Scholar 

  228. Insel RA, Dunne JL, Atkinson MA, Chiang JL, Dabelea D, Gottlieb PA, et al. Staging presymptomatic type 1 diabetes: a scientific statement of JDRF, the endocrine society, and the American Diabetes Association. Diabetes Care. 2015;38(10):1964–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Atkinson MA, Eisenbarth GS, Michels AW. Type 1 diabetes. Lancet. 2014;383(9911):69–82.

    Article  PubMed  Google Scholar 

  230. Krischer JP, Liu X, Lernmark Å, Hagopian WA, Rewers MJ, She JX, et al. The influence of type 1 diabetes genetic susceptibility regions, age, sex, and family history on the progression from multiple autoantibodies to type 1 diabetes: a TEDDY study report. Diabetes. 2017;66(12):3122–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. Knip M, Selvenius J, Siljander H, Veijola R. Reclassification of asymptomatic beta cell autoimmunity: a critical perspective. Diabetologia. 2017;60(1):39–42.

    Article  CAS  PubMed  Google Scholar 

  232. Vehik K, Cuthbertson D, Boulware D, Beam CA, Rodriguez H, Legault L, et al. Performance of HbA1c as an early diagnostic indicator of type 1 diabetes in children and youth. Diabetes Care. 2012;35(9):1821–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  233. Elding Larsson H, Vehik K, Gesualdo P, Akolkar B, Hagopian W, Krischer J, et al. Children followed in the TEDDY study are diagnosed with type 1 diabetes at an early stage of disease. Pediatr Diabetes. 2014;15(2):118–26.

    Article  PubMed  Google Scholar 

  234. Helminen O, Aspholm S, Pokka T, Hautakangas MR, Haatanen N, Lempainen J, et al. HbA1c predicts time to diagnosis of type 1 diabetes in children at risk. Diabetes. 2015;64(5):1719–27.

    Article  CAS  PubMed  Google Scholar 

  235. Bogun MM, Bundy BN, Goland RS, Greenbaum CJ. C-peptide levels in subjects followed longitudinally before and after type 1 diabetes diagnosis in TrialNet. Diabetes Care. 2020;43(8):1836–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  236. Steck AK, Liu X, Krischer JP, Haller MJ, Veijola R, Lundgren M, et al. Factors associated with decline of C-peptide in a cohort of young children diagnosed with type 1 diabetes. J Clin Endocrinol Metab. 2020;106(3):e1380–8.

    Article  PubMed Central  Google Scholar 

  237. Nerup J, Bendixen G, Binder C. Autoimmunity in diabetes mellitus. Lancet. 1970;2(7673):610–1.

    Article  CAS  PubMed  Google Scholar 

  238. Carre A, Richardson SJ, Larger E, Mallone R. Presumption of guilt for T cells in type 1 diabetes: lead culprits or partners in crime depending on age of onset? Diabetologia. 2020;64(1):15–25.

    Article  PubMed  PubMed Central  Google Scholar 

  239. Graham KL, Sutherland RM, Mannering SI, Zhao Y, Chee J, Krishnamurthy B, et al. Pathogenic mechanisms in type 1 diabetes: the islet is both target and driver of disease. Rev Diabet Stud. 2012;9(4):148–68.

    Article  PubMed  Google Scholar 

  240. Tai N, Wong FS, Wen L. The role of the innate immune system in destruction of pancreatic beta cells in NOD mice and humans with type I diabetes. J Autoimmun. 2016;71:26–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  241. Heninger AK, Eugster A, Kuehn D, Buettner F, Kuhn M, Lindner A, et al. A divergent population of autoantigen-responsive CD4+ T cells in infants prior to b cell autoimmunity. Sci Transl Med. 2017;9(378):eaaf8848.

    Article  PubMed  Google Scholar 

  242. Dendrou CA, Petersen J, Rossjohn J, Fugger L. HLA variation and disease. Nat Rev Immunol. 2018;18(5):325–39.

    Article  CAS  PubMed  Google Scholar 

  243. Mannering SI, Di Carluccio AR, Elso CM. Neoepitopes: a new take on beta cell autoimmunity in type 1 diabetes. Diabetologia. 2018;62(3):351–6.

    Article  PubMed  Google Scholar 

  244. Delong T, Wiles TA, Baker RL, Bradley B, Barbour G, Reisdorph R, et al. Pathogenic CD4 T cells in type 1 diabetes recognize epitopes formed by peptide fusion. Science. 2016;351(6274):711–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  245. Diez J, Park Y, Zeller M, Brown D, Garza D, Ricordi C, et al. Differential splicing of the IA-2 mRNA in pancreas and lymphoid organs as a permissive genetic mechanism for autoimmunity against the IA-2 type 1 diabetes autoantigen. Diabetes. 2001;50(4):895–900.

    Article  CAS  PubMed  Google Scholar 

  246. Kracht MJ, van Lummel M, Nikolic T, Joosten AM, Laban S, van der Slik AR, et al. Autoimmunity against a defective ribosomal insulin gene product in type 1 diabetes. Nat Med. 2017;23(4):501–7.

    Article  CAS  PubMed  Google Scholar 

  247. Cole DK, Bulek AM, Dolton G, Schauenberg AJ, Szomolay B, Rittase W, et al. Hotspot autoimmune T cell receptor binding underlies pathogen and insulin peptide cross-reactivity. J Clin Invest. 2016;126(6):2191–204.

    Article  PubMed  PubMed Central  Google Scholar 

  248. Velthuis JH, Unger WW, Abreu JRF, Duinkerken G, Franken K, Peakman M, et al. Simultaneous detection of circulating autoreactive CD8+ T-cells specific for different islet cell-associated epitopes using combinatorial MHC multimers. Diabetes. 2010;59(7):1721–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  249. Davis MM. Not-so-negative selection. Immunity. 2015;43(5):833–5.

    Article  CAS  PubMed  Google Scholar 

  250. WHO. Definition, diagnosis and classification of diabetes mellitus and its complications: report of a WHO consultation. Part 1: diagnosis and classification of diabetes mellitus. Geneva: World Health Organization; 1999.

    Google Scholar 

  251. WHO. Classification of diabetes mellitus. Geneva: World Health Organization; 2019.

    Google Scholar 

  252. Tuomi T, Santoro N, Caprio S, Cai M, Weng J, Groop L. The many faces of diabetes: a disease with increasing heterogeneity. Lancet. 2014;383(9922):1084–94.

    Article  PubMed  Google Scholar 

  253. Ilonen J, Lempainen J, Veijola R. The heterogeneous pathogenesis of type 1 diabetes mellitus. Nat Rev Endocrinol. 2019;15(11):635–50.

    Article  CAS  PubMed  Google Scholar 

  254. Leslie RD, Palmer J, Schloot NC, Lernmark Å. Diabetes at the crossroads: relevance of disease classification to pathophysiology and treatment. Diabetologia. 2016;59(1):13–20.

    Article  CAS  PubMed  Google Scholar 

  255. Imagawa A, Hanafusa T, Miyagawa J, Matsuzawa Y. A novel subtype of type 1 diabetes mellitus characterized by a rapid onset and an absence of diabetes-related antibodies. Osaka IDDM study group. N Engl J Med. 2000;342(5):301–7.

    Article  CAS  PubMed  Google Scholar 

  256. Hanafusa T, Imagawa A. Fulminant type 1 diabetes: a novel clinical entity requiring special attention by all medical practitioners. Nat Clin Pract Endocrinol Metab. 2007;3(1):36–45.

    Article  CAS  PubMed  Google Scholar 

  257. Teupe B, Bergis K. Epidemiological evidence for “double diabetes” (letter). Lancet. 1991;337(8737):361–2.

    Article  CAS  PubMed  Google Scholar 

  258. Cleland SJ, Fisher BM, Colhoun HM, Sattar N, Petrie JR. Insulin resistance in type 1 diabetes: what is ‘double diabetes’ and what are the risks? Diabetologia. 2013;56(7):1462–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  259. Virgin HW, Todd JA. Metagenomics and personalized medicine. Cell. 2011;147(1):44–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  260. Battaglia M, Ahmed S, Anderson MS, Atkinson MA, Becker D, Bingley PJ, et al. Introducing the endotype concept to address the challenge of disease heterogeneity in type 1 diabetes. Diabetes Care. 2019;43(1):5–12.

    Article  PubMed  PubMed Central  Google Scholar 

  261. Gagnum V, Stene LC, Sandvik L, Fagerland MW, Njølstad PR, Joner G, et al. All-cause mortality in a nationwide cohort of childhood-onset diabetes in Norway 1973-2013. Diabetologia. 2015;58(8):1779–86.

    Article  PubMed  Google Scholar 

  262. Morgan E, Cardwell CR, Black CJ, McCance DR, Patterson CC. Excess mortality in type 1 diabetes diagnosed in childhood and adolescence: a systematic review of population-based cohorts. Acta Diabetol. 2015;52(4):801–7.

    Article  CAS  PubMed  Google Scholar 

  263. Lind M, Svensson AM, Kosiborod M, Gudbjörnsdottir S, Pivodic A, Wedel H, et al. Glycemic control and excess mortality in type 1 diabetes. N Engl J Med. 2014;371(21):1972–82.

    Article  PubMed  Google Scholar 

  264. Wong TY, Cheung CM, Larsen M, Sharma S, Simo R. Diabetic retinopathy. Nat Rev Dis Primers. 2016;2:16012.

    Article  PubMed  Google Scholar 

  265. Hermann JM, Hammes HP, Rami-Merhar B, Rosenbauer J, Schutt M, Siegel E, et al. HbA1c variability as an independent risk factor for diabetic retinopathy in type 1 diabetes: a German/Austrian multicenter analysis on 35,891 patients. PLoS One. 2014;9(3):e91137.

    Article  PubMed  PubMed Central  Google Scholar 

  266. Skrivarhaug T, Fosmark DS, Stene LC, Bangstad HJ, Sandvik L, Hanssen KF, et al. Low cumulative incidence of proliferative retinopathy in childhood-onset type 1 diabetes: a 24-year follow-up study. Diabetologia. 2006;49(10):2281–90.

    Article  CAS  PubMed  Google Scholar 

  267. Klein R, Knudtson MD, Lee KE, Gangnon R, Klein BE. The Wisconsin epidemiologic study of diabetic retinopathy: XXII the twenty-five-year progression of retinopathy in persons with type 1 diabetes. Ophthalmology. 2008;115(11):1859–68.

    Article  PubMed  Google Scholar 

  268. Perkins BA, Bebu I, de Boer IH, Molitch M, Tamborlane W, Lorenzi G, et al. Risk factors for kidney disease in type 1 diabetes. Diabetes Care. 2019;42(5):883–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  269. Thomas MC, Brownlee M, Susztak K, Sharma K, Jandeleit-Dahm KA, Zoungas S, et al. Diabetic kidney disease. Nat Rev Dis Primers. 2015;1:15018.

    Article  PubMed  PubMed Central  Google Scholar 

  270. Pop-Busui R, Boulton AJ, Sosenko JM. Peripheral and autonomic neuropathy in diabetes. In: Cowie CC, Casagrande SS, Menke A, Cissell MA, Eberhardt MS, Meigs JB, et al., editors. Diabetes in America. Bethesda, MD: National Institutes of Health; 2018. p. 23.1. NIH Pub No. 17-1468.

    Google Scholar 

  271. Callaghan BC, Gallagher G, Fridman V, Feldman EL. Diabetic neuropathy: what does the future hold? Diabetologia. 2020;63(5):891–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  272. Albers JW, Herman WH, Pop-Busui R, Feldman EL, Martin CL, Cleary PA, et al. Effect of prior intensive insulin treatment during the diabetes control and complications trial (DCCT) on peripheral neuropathy in type 1 diabetes during the epidemiology of diabetes interventions and complications (EDIC) study. Diabetes Care. 2010;33(5):1090–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  273. Braffett BH, Gubitosi-Klug RA, Albers JW, Feldman EL, Martin CL, White NH, et al. Risk factors for diabetic peripheral neuropathy and cardiovascular autonomic neuropathy in the diabetes control and complications trial/epidemiology of diabetes interventions and complications (DCCT/EDIC) study. Diabetes. 2020;69(5):1000–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  274. Secrest AM, Marshall SL, Miller RG, Prince CT, Orchard TJ. Pulse wave analysis and cardiac autonomic neuropathy in type 1 diabetes: a report from the Pittsburgh epidemiology of diabetes complications study. Diabetes Technol Ther. 2011;13(12):1264–8.

    Article  PubMed  PubMed Central  Google Scholar 

  275. de Ferranti SD, de Boer IH, Fonseca V, Fox CS, Golden SH, Lavie CJ, et al. Type 1 diabetes mellitus and cardiovascular disease: a scientific statement from the American Heart Association and American Diabetes Association. Diabetes Care. 2014;37(10):2843–63.

    Article  PubMed  PubMed Central  Google Scholar 

  276. The diabetes control and complications trial. Epidemiology of diabetes interventions and complications (DCCT/EDIC) study research group. Intensive diabetes treatment and cardiovascular disease in patients with type 1 diabetes. N Engl J Med. 2005;353(25):2643–53.

    Article  Google Scholar 

  277. Vistisen D, Andersen GS, Hansen CS, Hulman A, Henriksen JE, Bech-Nielsen H, et al. Prediction of first cardiovascular disease event in type 1 diabetes mellitus: the steno type 1 risk engine. Circulation. 2016;133(11):1058–66.

    Article  PubMed  Google Scholar 

  278. Bebu I, Schade D, Braffett B, Kosiborod M, Lopes-Virella M, Soliman EZ, et al. Risk factors for first and subsequent CVD events in type 1 diabetes: the DCCT/EDIC study. Diabetes Care. 2020;43(4):867–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  279. Abadie V, Sollid LM, Barreiro LB, Jabri B. Integration of genetic and immunological insights into a model of celiac disease pathogenesis. Annu Rev Immunol. 2011;29:493–525.

    Article  CAS  PubMed  Google Scholar 

  280. Verdu EF, Danska JS. Common ground: shared risk factors for type 1 diabetes and celiac disease. Nat Immunol. 2018;19(7):685–95.

    Article  CAS  PubMed  Google Scholar 

  281. Rewers M, Liu E, Simmons J, Redondo MJ, Hoffenberg EJ. Celiac disease associated with type 1 diabetes mellitus. Endocrinol Metab Clin North Am. 2004;33(1):197–214, xi.

    Article  CAS  PubMed  Google Scholar 

  282. Størdal K, Bakken IJ, Surén P, Stene LC. Epidemiology of coeliac disease and comorbidity in Norwegian children. J Pediatr Gastroenterol Nutr. 2013;57(4):467–71.

    Article  PubMed  Google Scholar 

  283. Pham-Short A, Donaghue KC, Ambler G, Phelan H, Twigg S, Craig ME. Screening for celiac disease in type 1 diabetes: a systematic review. Pediatrics. 2015;136(1):e170–6.

    Article  PubMed  Google Scholar 

  284. Hagopian W, Lee HS, Liu E, Rewers M, She JX, Ziegler AG, et al. Co-occurrence of type 1 diabetes and celiac disease autoimmunity. Pediatrics. 2017;140(5):e20171305.

    Article  PubMed  Google Scholar 

  285. Alshiekh S, Maziarz M, Geraghty DE, Larsson HE, Agardh D. High-resolution genotyping indicates that children with type 1 diabetes and celiac disease share three HLA class II loci in DRB3, DRB4 and DRB5 genes. HLA. 2021;97(1):44–51.

    Article  CAS  PubMed  Google Scholar 

  286. Toniolo A, Cassani G, Puggioni A, Rossi A, Colombo A, Onodera T, et al. The diabetes pandemic and associated infections: suggestions for clinical microbiology. Rev Med Microbiol. 2019;30(1):1–17.

    Article  PubMed  Google Scholar 

  287. Edede LE, Hull BJ, Williams JS. Infections associated with diabetes. In: Cowie CC, Casagrande SS, Menke A, Cissell MA, Eberhardt MS, Meigs JB, et al., editors. Diabetes in America. 3rd ed. Bethesda, MD: National Institutes of Health; 2017. p. 30.1–30.25.

    Google Scholar 

  288. Abu-Ashour W, Twells L, Valcour J, Randell A, Donnan J, Howse P, et al. The association between diabetes mellitus and incident infections: a systematic review and meta-analysis of observational studies. BMJ Open Diabetes Res Care. 2017;5(1):e000336.

    Article  PubMed  PubMed Central  Google Scholar 

  289. Muller LM, Gorter KJ, Hak E, Goudzwaard WL, Schellevis FG, Hoepelman AI, et al. Increased risk of common infections in patients with type 1 and type 2 diabetes mellitus. Clin Infect Dis. 2005;41(3):281–8.

    Article  CAS  PubMed  Google Scholar 

  290. Pearson-Stuttard J, Blundell S, Harris T, Cook DG, Critchley J. Diabetes and infection: assessing the association with glycaemic control in population-based studies. Lancet Diabetes Endocrinol. 2016;4(2):148–58.

    Article  PubMed  Google Scholar 

  291. Goeijenbier M, van Sloten TT, Slobbe L, Mathieu C, van Genderen P, Beyer WE, et al. Benefits of flu vaccination for persons with diabetes mellitus: a review. Vaccine. 2017;35(38):5095–101.

    Article  CAS  PubMed  Google Scholar 

  292. Remschmidt C, Wichmann O, Harder T. Vaccines for the prevention of seasonal influenza in patients with diabetes: systematic review and meta-analysis. BMC Med. 2015;13:53.

    Article  PubMed  PubMed Central  Google Scholar 

  293. Apicella M, Campopiano MC, Mantuano M, Mazoni L, Coppelli A, Del Prato S. COVID-19 in people with diabetes: understanding the reasons for worse outcomes. Lancet Diabetes Endocrinol. 2020;8(9):782–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  294. Barron E, Bakhai C, Kar P, Weaver A, Bradley D, Ismail H, et al. Associations of type 1 and type 2 diabetes with COVID-19-related mortality in England: a whole-population study. Lancet Diabetes Endocrinol. 2020;8(10):813–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  295. Holman N, Knighton P, Kar P, O’Keefe J, Curley M, Weaver A, et al. Risk factors for COVID-19-related mortality in people with type 1 and type 2 diabetes in England: a population-based cohort study. Lancet Diabetes Endocrinol. 2020;8(10):823–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  296. Skyler JS. Hope vs hype: where are we in type 1 diabetes? Diabetologia. 2018;61(3):509–16.

    Article  PubMed  Google Scholar 

  297. Atkinson MA, Roep BO, Posgai A, Wheeler DCS, Peakman M. The challenge of modulating b-cell autoimmunity in type 1 diabetes. Lancet Diabetes Endocrinol. 2019;7(1):52–64.

    Article  CAS  PubMed  Google Scholar 

  298. European Nicotinamide Diabetes Intervention Trial (ENDIT) Group. European nicotinamide diabetes intervention trial (ENDIT): a randomised controlled trial of intervention before the onset of type 1 diabetes. Lancet. 2004;363(9413):925–31.

    Article  Google Scholar 

  299. Diabetes Prevention Trial–Type 1 Diabetes Study Group. Effects of insulin in relatives of patients with type 1 diabetes mellitus. N Engl J Med. 2002;346(22):1685–91.

    Article  Google Scholar 

  300. The diabetes prevention trial-type 1 study group. Effects of oral insulin in relatives of patients with type 1 diabetes: the diabetes prevention trial–type 1. Diabetes Care. 2005;28(5):1068–76.

    Article  Google Scholar 

  301. Writing Committee for the Type 1 Diabetes TrialNet Oral Insulin Study Group, Krischer JP, Schatz DA, Bundy B, Skyler JS, Greenbaum CJ. Effect of oral insulin on prevention of diabetes in relatives of patients with type 1 diabetes: a randomized clinical trial. JAMA. 2017;318(19):1891–902.

    Article  PubMed Central  Google Scholar 

  302. Näntö-Salonen K, Kupila A, Simell S, Siljander H, Salonsaari T, Hekkala A, et al. Nasal insulin to prevent type 1 diabetes in children with HLA genotypes and autoantibodies conferring increased risk of disease: a double-blind, randomised controlled trial. Lancet. 2008;372(9651):1746–55.

    Article  PubMed  Google Scholar 

  303. Bonifacio E, Ziegler AG, Klingensmith G, Schober E, Bingley PJ, Rottenkolber M, et al. Effects of high-dose oral insulin on immune responses in children at high risk for type 1 diabetes: the pre-POINT randomized clinical trial. JAMA. 2015;313(15):1541–9.

    Article  CAS  PubMed  Google Scholar 

  304. Ziegler AG, Achenbach P, Berner R, Casteels K, Danne T, Gundert M, et al. Oral insulin therapy for primary prevention of type 1 diabetes in infants with high genetic risk: the GPPAD-POInT (global platform for the prevention of autoimmune diabetes primary oral insulin trial) study protocol. BMJ Open. 2019;9(6):e028578.

    Article  PubMed  PubMed Central  Google Scholar 

  305. Elding Larsson H, Lundgren M, Jonsdottir B, Cuthbertson D, Krischer J, DiAprevIT Study Group. Safety and efficacy of autoantigen-specific therapy with 2 doses of alum-formulated glutamate decarboxylase in children with multiple islet autoantibodies and risk for type 1 diabetes: a randomized clinical trial. Pediatr Diabetes. 2018;19(3):410–9.

    Article  CAS  PubMed  Google Scholar 

  306. Herold KC, Bundy BN, Long SA, Bluestone JA, DiMeglio LA, Dufort MJ, et al. An anti-CD3 antibody, Teplizumab, in relatives at risk for type 1 diabetes. N Engl J Med. 2019;381(7):603–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  307. Pescovitz MD, Greenbaum CJ, Krause-Steinrauf H, Becker DJ, Gitelman SE, Goland R, et al. Rituximab, B-lymphocyte depletion, and preservation of beta-cell function. N Engl J Med. 2009;361(22):2143–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  308. Orban T, Bundy B, Becker DJ, DiMeglio LA, Gitelman SE, Goland R, et al. Co-stimulation modulation with abatacept in patients with recent-onset type 1 diabetes: a randomised, double-blind, placebo-controlled trial. Lancet. 2011;378(9789):412–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lars C. Stene .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Stene, L.C., Lernmark, A. (2023). Epidemiology and Pathogenesis of Type 1 Diabetes. In: Gruessner, R.W.G., Gruessner, A.C. (eds) Transplantation of the Pancreas. Springer, Cham. https://doi.org/10.1007/978-3-031-20999-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-20999-4_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-20998-7

  • Online ISBN: 978-3-031-20999-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics