Skip to main content

Advertisement

Log in

Deciphering the Pathogenesis of Human Type 1 Diabetes (T1D) by Interrogating T Cells from the “Scene of the Crime”

  • Pathogenesis of Type 1 Diabetes (A Pugliese, Section Editor)
  • Published:
Current Diabetes Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Autoimmune-mediated destruction of insulin-producing β-cells within the pancreas results in type 1 diabetes (T1D), which is not yet preventable or curable. Previously, our understanding of the β-cell specific T cell repertoire was based on studies of autoreactive T cell responses in the peripheral blood of patients at risk for, or with, T1D; more recently, investigations have included immunohistochemical analysis of some T cell specificities in the pancreas from organ donors with T1D. Now, we are able to examine live, islet-infiltrating T cells from donors with T1D.

Recent Findings

Analysis of the T cell repertoire isolated directly from the pancreatic islets of donors with T1D revealed pro-inflammatory T cells with targets of known autoantigens, including proinsulin and glutamic acid decarboxylase, as well as modified autoantigens.

Summary

We have assayed the islet-infiltrating T cell repertoire for autoreactivity and function directly from the inflamed islets of T1D organ donors. Design of durable treatments for prevention of or therapy for T1D requires understanding this repertoire.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Atkinson MA, Eisenbarth GS, Michels AW. Type 1 diabetes. Lancet. 2014;383:69–82.

    Article  PubMed  Google Scholar 

  2. Mayer-Davis EJ, Lawrence JM, Dabelea D, Divers J, Isom S, Dolan L, et al. Incidence trends of type 1 and type 2 diabetes among youths, 2002-2012. N Engl J Med. 2017;376:1419–29.

    Article  PubMed  Google Scholar 

  3. Simmons KM, Gottlieb PA, Michels AW. Immune intervention and preservation of pancreatic beta cell function in type 1 diabetes. Curr Diab Rep. 2016;16:97.

    Article  PubMed  Google Scholar 

  4. Krogvold L, Edwin B, Buanes T, Ludvigsson J, Korsgren O, Hyoty H, et al. Pancreatic biopsy by minimal tail resection in live adult patients at the onset of type 1 diabetes: experiences from the DiViD study. Diabetologia. 2014;57:841–3.

    Article  PubMed  Google Scholar 

  5. Christoffersson G, von Herrath MG. A deeper look into type 1 diabetes—imaging immune responses during onset of disease. Front Immunol. 2016;7:313.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Signore A, Capriotti G, Chianelli M, Bonanno E, Galli F, Catalano C, et al. Detection of insulitis by pancreatic scintigraphy with 99mTc-labeled IL-2 and MRI in patients with LADA (Action LADA 10). Diabetes Care. 2015;38:652–8.

    CAS  PubMed  Google Scholar 

  7. Gaglia JL, Harisinghani M, Aganj I, Wojtkiewicz GR, Hedgire S, Benoist C, et al. Noninvasive mapping of pancreatic inflammation in recent-onset type-1 diabetes patients. Proc Natl Acad Sci U S A. 2015;112:2139–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Di Lorenzo TP, Peakman M, Roep BO. Translational mini-review series on type 1 diabetes: systematic analysis of T cell epitopes in autoimmune diabetes. Clin Exp Immunol. 2007;148:1–16.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Mallone R, Kochik SA, Laughlin EM, Gersuk VH, Reijonen H, Kwok WW, et al. Differential recognition and activation thresholds in human autoreactive GAD-specific T-cells. Diabetes. 2004;53:971–7.

    Article  CAS  PubMed  Google Scholar 

  10. Mallone R, Martinuzzi E, Blancou P, Novelli G, Afonso G, Dolz M, et al. CD8+ T-cell responses identify beta-cell autoimmunity in human type 1 diabetes. Diabetes. 2007;56:613–21.

    Article  CAS  PubMed  Google Scholar 

  11. Mannering SI, Dromey JA, Morris JS, Thearle DJ, Jensen KP, Harrison LC. An efficient method for cloning human autoantigen-specific T cells. J Immunol Methods. 2005;298:83–92.

    Article  CAS  PubMed  Google Scholar 

  12. Mannering SI, Harrison LC, Williamson NA, Morris JS, Thearle DJ, Jensen KP, et al. The insulin A-chain epitope recognized by human T cells is posttranslationally modified. J Exp Med. 2005;202:1191–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Mannering SI, Morris JS, Jensen KP, Purcell AW, Honeyman MC, van Endert PM, et al. A sensitive method for detecting proliferation of rare autoantigen-specific human T cells. J Immunol Methods. 2003;283:173–83.

    Article  CAS  PubMed  Google Scholar 

  14. Mannering SI, Morris JS, Stone NL, Jensen KP, van Endert PM, Harrison LC. CD4+ T cell proliferation in response to GAD and proinsulin in healthy, pre-diabetic, and diabetic donors. Ann N Y Acad Sci. 2004;1037:16–21.

    Article  CAS  PubMed  Google Scholar 

  15. Mannering SI, Pang SH, Williamson NA, Naselli G, Reynolds EC, O'Brien-Simpson NM, et al. The A-chain of insulin is a hot-spot for CD4+ T cell epitopes in human type 1 diabetes. Clin Exp Immunol. 2009;156:226–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Mannering SI, Wong FS, Durinovic-Bello I, Brooks-Worrell B, Tree TI, Cilio CM, et al. Current approaches to measuring human islet-antigen specific T cell function in type 1 diabetes. Clin Exp Immunol. 2010;162:197–209.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Chaparro RJ, Di Lorenzo TP. An update on the use of NOD mice to study autoimmune (type 1) diabetes. Expert Rev Clin Immunol. 2010;6:939–55.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Lennon GP, Bettini M, Burton AR, Vincent E, Arnold PY, Santamaria P, et al. T cell islet accumulation in type 1 diabetes is a tightly regulated, cell-autonomous event. Immunity. 2009;31:643–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Wang J, Tsai S, Shameli A, Yamanouchi J, Alkemade G, Santamaria P. In situ recognition of autoantigen as an essential gatekeeper in autoimmune CD8+ T cell inflammation. Proc Natl Acad Sci U S A. 2010;107:9317–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Baker RL, Bradley B, Wiles TA, Lindsay RS, Barbour G, Delong T, et al. Cutting edge: nonobese diabetic mice deficient in chromogranin A are protected from autoimmune diabetes. J Immunol. 2016;196:39–43.

    Article  CAS  PubMed  Google Scholar 

  21. Nakayama M, Abiru N, Moriyama H, Babaya N, Liu E, Miao D, et al. Prime role for an insulin epitope in the development of type 1 diabetes in NOD mice. Nature. 2005;435:220–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Nagata M, Santamaria P, Kawamura T, Utsugi T, Yoon JW. Evidence for the role of CD8+ cytotoxic T cells in the destruction of pancreatic beta-cells in nonobese diabetic mice. J Immunol. 1994;152:2042–50.

    CAS  PubMed  Google Scholar 

  23. Utsugi T, Yoon JW, Park BJ, Imamura M, Averill N, Kawazu S, et al. Major histocompatibility complex class I-restricted infiltration and destruction of pancreatic islets by NOD mouse-derived beta-cell cytotoxic CD8+ T-cell clones in vivo. Diabetes. 1996;45:1121–31.

    Article  CAS  PubMed  Google Scholar 

  24. Bortell R, Yang C. The BB rat as a model of human type 1 diabetes. Methods Mol Biol. 2012;933:31–44.

    CAS  PubMed  Google Scholar 

  25. Reed JC, Herold KC. Thinking bedside at the bench: the NOD mouse model of T1DM. Nat Rev Endocrinol. 2015;11:308–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. In't Veld P. Insulitis in human type 1 diabetes: the quest for an elusive lesion. Islets. 2011;3:131–8.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Gepts W. Pathologic anatomy of the pancreas in juvenile diabetes mellitus. Diabetes. 1965;14:619–33.

    Article  CAS  PubMed  Google Scholar 

  28. Gepts W, In't Veld PA. Islet morphologic changes. Diabetes Metab Rev. 1987;3:859–72.

    Article  CAS  PubMed  Google Scholar 

  29. Gepts W, Lecompte PM. The pancreatic islets in diabetes. Am J Med. 1981;70:105–15.

    Article  CAS  PubMed  Google Scholar 

  30. LeCompte PM, Legg MA. Insulitis (lymphocytic infiltration of pancreatic islets) in late-onset diabetes. Diabetes. 1972;21:762–9.

    Article  CAS  PubMed  Google Scholar 

  31. Foulis AK, Farquharson MA. Aberrant expression of HLA-DR antigens by insulin-containing beta-cells in recent-onset type I diabetes mellitus. Diabetes. 1986;35:1215–24.

    Article  CAS  PubMed  Google Scholar 

  32. Foulis AK, Farquharson MA, Hardman R. Aberrant expression of class II major histocompatibility complex molecules by B cells and hyperexpression of class I major histocompatibility complex molecules by insulin containing islets in type 1 (insulin-dependent) diabetes mellitus. Diabetologia. 1987;30:333–43.

    Article  CAS  PubMed  Google Scholar 

  33. Foulis AK, Farquharson MA, Meager A. Immunoreactive alpha-interferon in insulin-secreting beta cells in type 1 diabetes mellitus. Lancet. 1987;2:1423–7.

    Article  CAS  PubMed  Google Scholar 

  34. Foulis AK, Liddle CN, Farquharson MA, Richmond JA, Weir RS. The histopathology of the pancreas in type 1 (insulin-dependent) diabetes mellitus: a 25-year review of deaths in patients under 20 years of age in the United Kingdom. Diabetologia. 1986;29:267–74.

    Article  CAS  PubMed  Google Scholar 

  35. Foulis AK, McGill M, Farquharson MA. Insulitis in type 1 (insulin-dependent) diabetes mellitus in man—macrophages, lymphocytes, and interferon-gamma containing cells. J Pathol. 1991;165:97–103.

    Article  CAS  PubMed  Google Scholar 

  36. Foulis AK, Stewart JA. The pancreas in recent-onset type 1 (insulin-dependent) diabetes mellitus: insulin content of islets, insulitis and associated changes in the exocrine acinar tissue. Diabetologia. 1984;26:456–61.

    Article  CAS  PubMed  Google Scholar 

  37. Campbell-Thompson M. Organ donor specimens: what can they tell us about type 1 diabetes? Pediatr Diabetes. 2015;16:320–30.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Campbell-Thompson ML, Atkinson MA, Butler AE, Chapman NM, Frisk G, Gianani R, et al. The diagnosis of insulitis in human type 1 diabetes. Diabetologia. 2013;56:2541–3.

    Article  CAS  PubMed  Google Scholar 

  39. Coppieters KT, Dotta F, Amirian N, Campbell PD, Kay TW, Atkinson MA, et al. Demonstration of islet-autoreactive CD8 T cells in insulitic lesions from recent onset and long-term type 1 diabetes patients. J Exp Med. 2012;209:51–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Gianani R, Campbell-Thompson M, Sarkar SA, Wasserfall C, Pugliese A, Solis JM, et al. Dimorphic histopathology of long-standing childhood-onset diabetes. Diabetologia. 2010;53:690–8.

    Article  CAS  PubMed  Google Scholar 

  41. • Campbell-Thompson ML, Atkinson MA, Butler AE, Giepmans BN, von Herrath MG, Hyoty H, et al. Re-addressing the 2013 consensus guidelines for the diagnosis of insulitis in human type 1 diabetes: is change necessary? Diabetologia. 2017;60:753–5. This report is a continuing discussion of the definition of human insulitis.

    Article  PubMed  Google Scholar 

  42. Atkinson MA. Pancreatic biopsies in type 1 diabetes: revisiting the myth of Pandora’s box. Diabetologia. 2014;57:656–9.

    Article  CAS  PubMed  Google Scholar 

  43. Nakanishi K, Kobayashi T, Miyashita H, Okubo M, Sugimoto T, Murase T, et al. Relationships among residual beta cells, exocrine pancreas, and islet cell antibodies in insulin-dependent diabetes mellitus. Metabolism. 1993;42:196–203.

    Article  CAS  PubMed  Google Scholar 

  44. Waguri M, Hanafusa T, Itoh N, Miyagawa J, Imagawa A, Kuwajima M, et al. Histopathologic study of the pancreas shows a characteristic lymphocytic infiltration in Japanese patients with IDDM. Endocr J. 1997;44:23–33.

    Article  CAS  PubMed  Google Scholar 

  45. Imagawa A, Hanafusa T, Itoh N, Miyagawa J, Nakajima H, Namba M, et al. Islet-infiltrating T lymphocytes in insulin-dependent diabetic patients express CD80 (B7-1) and CD86 (B7-2). J Autoimmun. 1996;9:391–6.

    Article  CAS  PubMed  Google Scholar 

  46. Imagawa A, Hanafusa T, Tamura S, Moriwaki M, Itoh N, Yamamoto K, et al. Pancreatic biopsy as a procedure for detecting in situ autoimmune phenomena in type 1 diabetes: close correlation between serological markers and histological evidence of cellular autoimmunity. Diabetes. 2001;50:1269–73.

    Article  CAS  PubMed  Google Scholar 

  47. Itoh N, Hanafusa T, Miyazaki A, Miyagawa J, Yamagata K, Yamamoto K, et al. Mononuclear cell infiltration and its relation to the expression of major histocompatibility complex antigens and adhesion molecules in pancreas biopsy specimens from newly diagnosed insulin-dependent diabetes mellitus patients. J Clin Invest. 1993;92:2313–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Moriwaki M, Itoh N, Miyagawa J, Yamamoto K, Imagawa A, Yamagata K, et al. Fas and Fas ligand expression in inflamed islets in pancreas sections of patients with recent-onset type I diabetes mellitus. Diabetologia. 1999;42:1332–40.

    Article  CAS  PubMed  Google Scholar 

  49. Yamagata K, Nakajima H, Tomita K, Itoh N, Miyagawa J, Hamaguchi T, et al. Dominant TCR alpha-chain clonotypes and interferon-gamma are expressed in the pancreas of patients with recent-onset insulin-dependent diabetes mellitus. Diabetes Res Clin Pract. 1996;34:37–46.

    Article  CAS  PubMed  Google Scholar 

  50. Uno S, Imagawa A, Saisho K, Okita K, Iwahashi H, Hanafusa T, et al. Expression of chemokines, CXC chemokine ligand 10 (CXCL10) and CXCR3 in the inflamed islets of patients with recent-onset autoimmune type 1 diabetes. Endocr J. 2010;57:991–6.

    Article  CAS  PubMed  Google Scholar 

  51. Uno S, Imagawa A, Okita K, Sayama K, Moriwaki M, Iwahashi H, et al. Macrophages and dendritic cells infiltrating islets with or without beta cells produce tumour necrosis factor-alpha in patients with recent-onset type 1 diabetes. Diabetologia. 2007;50:596–601.

    Article  CAS  PubMed  Google Scholar 

  52. • Skog O, Korsgren S, Wiberg A, Danielsson A, Edwin B, Buanes T, et al. Expression of human leukocyte antigen class I in endocrine and exocrine pancreatic tissue at onset of type 1 diabetes. Am J Pathol. 2015;185:129–38. The detection of HLA class I hyperexpression from pancreatic biopsy samples from recent-onset T1D patients confirms old and new reports of immune-related dysregulation in the pancreas of individuals with T1D.

  53. • Krogvold L, Wiberg A, Edwin B, Buanes T, Jahnsen FL, Hanssen KF, et al. Insulitis and characterisation of infiltrating T cells in surgical pancreatic tail resections from patients at onset of type 1 diabetes. Diabetologia. 2016;59:492–501. This report shows detection of insulitis pancreatic biopsy samples from recent-onset T1D patients.

    Article  CAS  PubMed  Google Scholar 

  54. • Leete P, Willcox A, Krogvold L, Dahl-Jorgensen K, Foulis AK, Richardson SJ, et al. Differential insulitic profiles determine the extent of beta-cell destruction and the age at onset of type 1 diabetes. Diabetes. 2016;65:1362–9. This report shows that two different patterns can be seen in the pancreata of individuals with T1D based on their age at diagnosis.

  55. • Kuric E, Seiron P, Krogvold L, Edwin B, Buanes T, Hanssen KF, et al. Demonstration of tissue resident memory CD8 T cells in insulitic lesions in adult patients with recent-onset type 1 diabetes. Am J Pathol. 2017;187:581–8. From laser microcapture studies and gene expression anaylses from pancreatic biopsy donors, this report showed CD8 + T cells derived from islets to express tissue resident markers with a lack of transcription of cytotoxic or acute inflammatory molecules.

    Article  CAS  PubMed  Google Scholar 

  56. • Lundberg M, Krogvold L, Kuric E, Dahl-Jorgensen K, Skog O. Expression of interferon-stimulated genes in insulitic pancreatic islets of patients recently diagnosed with type 1 diabetes. Diabetes. 2016;65:3104–10. From laser microcapture studies and gene expression anaylses from pancreatic biopsy donors, this report showed an over-expression of IFN-stimulated genes in islets with insulitis as compared to islets from control donors.

    Article  CAS  PubMed  Google Scholar 

  57. • Noble JA. Immunogenetics of type 1 diabetes: a comprehensive review. J Autoimmun. 2015;64:101–12. An essential review of T1D immunogenetics.

    Article  CAS  PubMed  Google Scholar 

  58. Todd JA, Bell JI, McDevitt HO. HLA-DQ beta gene contributes to susceptibility and resistance to insulin-dependent diabetes mellitus. Nature. 1987;329:599–604.

    Article  CAS  PubMed  Google Scholar 

  59. Sheehy MJ, Scharf SJ, Rowe JR, Neme de Gimenez MH, Meske LM, Erlich HA, et al. A diabetes-susceptible HLA haplotype is best defined by a combination of HLA-DR and -DQ alleles. J Clin Invest. 1989;83:830–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Nepom BS, Schwarz D, Palmer JP, Nepom GT. Transcomplementation of HLA genes in IDDM. HLA-DQ alpha- and beta-chains produce hybrid molecules in DR3/4 heterozygotes. Diabetes. 1987;36:114–7.

    Article  CAS  PubMed  Google Scholar 

  61. van Lummel M, van Veelen PA, Zaldumbide A, de Ru A, Janssen GM, Moustakas AK, et al. Type 1 diabetes-associated HLA-DQ8 transdimer accommodates a unique peptide repertoire. J Biol Chem. 2012;287:9514–24.

    Article  PubMed  Google Scholar 

  62. Krishnamurthy B, Dudek NL, McKenzie MD, Purcell AW, Brooks AG, Gellert S, et al. Responses against islet antigens in NOD mice are prevented by tolerance to proinsulin but not IGRP. J Clin Invest. 2006;116:3258–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Krishnamurthy B, Mariana L, Gellert SA, Colman PG, Harrison LC, Lew AM, et al. Autoimmunity to both proinsulin and IGRP is required for diabetes in nonobese diabetic 8.3 TCR transgenic mice. J Immunol. 2008;180:4458–64.

    Article  CAS  PubMed  Google Scholar 

  64. Mannering SI, Pathiraja V, Kay TW. The case for an autoimmune aetiology of type 1 diabetes. Clin Exp Immunol. 2016;183:8–15.

    Article  CAS  PubMed  Google Scholar 

  65. Bennett ST, Lucassen AM, Gough SC, Powell EE, Undlien DE, Pritchard LE, et al. Susceptibility to human type 1 diabetes at IDDM2 is determined by tandem repeat variation at the insulin gene minisatellite locus. Nat Genet. 1995;9:284–92.

    Article  CAS  PubMed  Google Scholar 

  66. Pugliese A, Zeller M, Fernandez A Jr, Zalcberg LJ, Bartlett RJ, Ricordi C, et al. The insulin gene is transcribed in the human thymus and transcription levels correlated with allelic variation at the INS VNTR-IDDM2 susceptibility locus for type 1 diabetes. Nat Genet. 1997;15:293–7.

    Article  CAS  PubMed  Google Scholar 

  67. Durinovic-Bello I, Wu RP, Gersuk VH, Sanda S, Shilling HG, Nepom GT. Insulin gene VNTR genotype associates with frequency and phenotype of the autoimmune response to proinsulin. Genes Immun. 2010;11:188–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Arif S, Tree TI, Astill TP, Tremble JM, Bishop AJ, Dayan CM, et al. Autoreactive T cell responses show proinflammatory polarization in diabetes but a regulatory phenotype in health. J Clin Invest. 2004;113:451–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Kent SC, Chen Y, Bregoli L, Clemmings SM, Kenyon NS, Ricordi C, et al. Expanded T cells from pancreatic lymph nodes of type 1 diabetic subjects recognize an insulin epitope. Nature. 2005;435:224–8.

    Article  CAS  PubMed  Google Scholar 

  70. Ott PA, Herzog BA, Quast S, Hofstetter HH, Boehm BO, Tary-Lehmann M, et al. Islet-cell antigen-reactive T cells show different expansion rates and Th1/Th2 differentiation in type 1 diabetic patients and healthy controls. Clin Immunol. 2005;115:102–14.

    Article  CAS  PubMed  Google Scholar 

  71. Roep BO. T-cell responses to autoantigens in IDDM. The search for the holy grail. Diabetes. 1996;45:1147–56.

    Article  CAS  PubMed  Google Scholar 

  72. • Radenkovic M, Uvebrant K, Skog O, Sarmiento L, Avartsson J, Storm P, et al. Characterization of resident lymphocytes in human pancreatic islets. Clin Exp Immunol. 2017;187:418–27. Both effector and central memory CD4 + and CD8 + (tissue resident marker + ) are in the islets of donors without T1D.

    Article  CAS  PubMed  Google Scholar 

  73. •• Rodriguez-Calvo T, Ekwall O, Amirian N, Zapardiel-Gonzalo J, von Herrath MG. Increased immune cell infiltration of the exocrine pancreas: a possible contribution to the pathogenesis of type 1 diabetes. Diabetes. 2014;63:3880–90. Immune cell infiltrate is readily seen in the acinar tissue of pancreata of donors with T1D.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. •• Pathiraja V, Kuehlich JP, Campbell PD, Krishnamurthy B, Loudovaris T, Coates PT, et al. Proinsulin-specific, HLA-DQ8, and HLA-DQ8-transdimer-restricted CD4+ T cells infiltrate islets in type 1 diabetes. Diabetes. 2015;64:172–82. The first report of isolation and analysis of live, islet-derived T cells from a donor with T1D. The islet-derived CD4 + T cell response targets proinsulin and were restricted by high-risk HLA alleles.

  75. •• Delong T, Wiles TA, Baker RL, Bradley B, Barbour G, Reisdorph R, et al. Pathogenic CD4 T cells in type 1 diabetes recognize epitopes formed by peptide fusion. Science. 2016;351:711–4. This report was the first to describe and characterize T cell autoreactivity to a new class of neoautoantigens, hybrid isulin peptides.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. •• Babon JA, DeNicola ME, Blodgett DM, Crevecoeur I, Buttrick TS, Maehr R, et al. Analysis of self-antigen specificity of islet-infiltrating T cells from human donors with type 1 diabetes. Nat Med. 2016;22:1482–7. This report examined the largest bank to date of islet-derived T cells from 9 donors with T1D and saw islet-derived T cells targeting known antigens, modified antigens, and hybrid insulin peptides with a pro-inflammatory profile.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. •• Michels AW, Landry LG, McDaniel KA, Yu L, Campbell-Thompson M, Kwok WW, et al. Islet-derived CD4 T cells targeting proinsulin in human autoimmune diabetes. Diabetes. 2017;66:722–34. This report was the first to generate TCR trandsuctants from single islet-infiltrating T cells from donors with T1D. They showed clonal expansion of both CD4 + and CD8 + islet-derived T cells and CD4 + autoreactivity targeting peptides of insulin and proinsulin.

    Article  CAS  PubMed  Google Scholar 

  78. Somoza N, Vargas F, Roura-Mir C, Vives-Pi M, Fernandez-Figueras MT, Ariza A, et al. Pancreas in recent onset insulin-dependent diabetes mellitus. Changes in HLA, adhesion molecules and autoantigens, restricted T cell receptor V beta usage, and cytokine profile. J Immunol. 1994;153:1360–77.

    CAS  PubMed  Google Scholar 

  79. Codina-Busqueta E, Scholz E, Munoz-Torres PM, Roura-Mir C, Costa M, Xufre C, et al. TCR bias of in vivo expanded T cells in pancreatic islets and spleen at the onset in human type 1 diabetes. J Immunol. 2011;186:3787–97.

    Article  CAS  PubMed  Google Scholar 

  80. •• Seay HR, Yusko E, Rothweiler SJ, Zhang L, Posgai AL, Campbell-Thompson M, et al. Tissue distribution and clonal diversity of the T and B cell repertoire in type 1 diabetes. JCI Insight. 2016;1:e88242. This is the first report to examine the TCR (and B cell receptor) repertoire across several tissues, including islets, from a large bank of donors with T1D.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Reijonen H, Mallone R, Heninger AK, Laughlin EM, Kochik SA, Falk B, et al. GAD65-specific CD4+ T-cells with high antigen avidity are prevalent in peripheral blood of patients with type 1 diabetes. Diabetes. 2004;53:1987–94.

    Article  CAS  PubMed  Google Scholar 

  82. Narendran P, Mannering SI, Harrison LC. Proinsulin-a pathogenic autoantigen in type 1 diabetes. Autoimmun Rev. 2003;2:204–10.

    Article  CAS  PubMed  Google Scholar 

  83. Zhang L, Nakayama M, Eisenbarth GS. Insulin as an autoantigen in NOD/human diabetes. Curr Opin Immunol. 2008;20:111–8.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Ziegler AG, Rewers M, Simell O, Simell T, Lempainen J, Steck A, et al. Seroconversion to multiple islet autoantibodies and risk of progression to diabetes in children. JAMA. 2013;309:2473–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Alleva DG, Crowe PD, Jin L, Kwok WW, Ling N, Gottschalk M, et al. A disease-associated cellular immune response in type 1 diabetics to an immunodominant epitope of insulin. J Clin Invest. 2001;107:173–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Nakayama M, McDaniel K, Fitzgerald-Miller L, Kiekhaefer C, Snell-Bergeon JK, Davidson HW, et al. Regulatory vs. inflammatory cytokine T-cell responses to mutated insulin peptides in healthy and type 1 diabetic subjects. Proc Natl Acad Sci U S A. 2015;112:4429–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Yang J, Chow IT, Sosinowski T, Torres-Chinn N, Greenbaum CJ, James EA, et al. Autoreactive T cells specific for insulin B:11-23 recognize a low-affinity peptide register in human subjects with autoimmune diabetes. Proc Natl Acad Sci U S A. 2014;111:14840–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Velthuis JH, Unger WW, Abreu JR, Duinkerken G, Franken K, Peakman M, et al. Simultaneous detection of circulating autoreactive CD8+ T-cells specific for different islet cell-associated epitopes using combinatorial MHC multimers. Diabetes. 2010;59:1721–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Mallone R, van Endert P. T cells in the pathogenesis of type 1 diabetes. Curr Diab Rep. 2008;8:101–6.

    Article  CAS  PubMed  Google Scholar 

  90. Zavala-Cerna MG, Martinez-Garcia EA, Torres-Bugarin O, Rubio-Jurado B, Riebeling C, Nava A. The clinical significance of posttranslational modification of autoantigens. Clin Rev Allergy Immunol. 2014;47:73–90.

    Article  CAS  PubMed  Google Scholar 

  91. McGinty JW, Marre ML, Bajzik V, Piganelli JD, James EA. T cell epitopes and post-translationally modified epitopes in type 1 diabetes. Curr Diab Rep. 2015;15:90.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Roep BO, Kracht MJ, van Lummel M, Zaldumbide A. A roadmap of the generation of neoantigens as targets of the immune system in type 1 diabetes. Curr Opin Immunol. 2016;43:67–73.

    Article  CAS  PubMed  Google Scholar 

  93. • van Lummel M, Duinkerken G, van Veelen PA, de Ru A, Cordfunke R, Zaldumbide A, et al. Posttranslational modification of HLA-DQ binding islet autoantigens in type 1 diabetes. Diabetes. 2014;63:237–47. This report defines the naturally processed epitopes with modifications of islet autoantigens in T1D.

    Article  PubMed  Google Scholar 

  94. Sibley RK, Sutherland DE, Goetz F, Michael AF. Recurrent diabetes mellitus in the pancreas iso- and allograft. A light and electron microscopic and immunohistochemical analysis of four cases. Lab Investig. 1985;53:132–44.

    CAS  PubMed  Google Scholar 

  95. Vendrame F, Hopfner YY, Diamantopoulos S, Virdi SK, Allende G, Snowhite IV, et al. Risk factors for type 1 diabetes recurrence in immunosuppressed recipients of simultaneous pancreas-kidney transplants. Am J Transplant. 2016;16:235–45.

    Article  CAS  PubMed  Google Scholar 

  96. Vendrame F, Pileggi A, Laughlin E, Allende G, Martin-Pagola A, Molano RD, et al. Recurrence of type 1 diabetes after simultaneous pancreas-kidney transplantation, despite immunosuppression, is associated with autoantibodies and pathogenic autoreactive CD4 T-cells. Diabetes. 2010;59:947–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Gianani R, Putnam A, Still T, Yu L, Miao D, Gill RG, et al. Initial results of screening of nondiabetic organ donors for expression of islet autoantibodies. J Clin Endocrinol Metab. 2006;91:1855–61.

    Article  CAS  PubMed  Google Scholar 

  98. In't Veld P, Lievens D, De Grijse J, Ling Z, Van der Auwera B, Pipeleers-Marichal M, et al. Screening for insulitis in adult autoantibody-positive organ donors. Diabetes. 2007;56:2400–4.

    Article  PubMed  Google Scholar 

  99. Wagner R, McNally JM, Bonifacio E, Genovese S, Foulis A, McGill M, et al. Lack of immunohistological changes in the islets of nondiabetic, autoimmune, polyendocrine patients with beta-selective GAD-specific islet cell antibodies. Diabetes. 1994;43:851–6.

    Article  CAS  PubMed  Google Scholar 

  100. Wiberg A, Granstam A, Ingvast S, Harkonen T, Knip M, Korsgren O, et al. Characterization of human organ donors testing positive for type 1 diabetes-associated autoantibodies. Clin Exp Immunol. 2015;182:278–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This research was performed with the support of the Network for Pancreatic Organ Donors with Diabetes (nPOD), a collaborative type 1 diabetes research project sponsored by the Juvenile Diabetes Research Foundation. Organ Procurement Organizations (OPO) partnering with nPOD to provide research resources are listed at http://www.jdrfnpod.org/for-partners/npod-partners/. We thank the families of the donors. We acknowledge the support of the Tom Mandel Islet Transplantation Program and the Australian Islet Transplantation Consortium. We thank Dr. Alvin C. Powers (Vanderbilt University) and Drs. Mark A. Atkinson and Clayton Mathews (University of Florida, Gainesville). We thank Dr. M. Nakayama (Barbara Davis Center for Childhood Diabetes, University of Colorado), Professor Tom Kay, and Associate Professor Helen Thomas (St. Vincent’s Institute of Medical Research, Melbourne, Australia).

The following funding sources supported this research: the Helmsley Charitable Trust 2015PG-T1D057 (SCK), National Institutes of Health/National Institute of Allergy and Infectious Diseases AI126189 (SCK), and the Human Islet Research Network (HIRN) Opportunity Pool Fund National Institutes of Health/National Institute of Diabetes and Digestive and Kidney Diseases U01 DK104162 (SCK), R01 DK108868 (AWM), DP3 DK110845 (AWM), and UC4 DK104223 (AWM), The Australian National Health and Medical Research Council (NHMRC) GNT1123586 (SIM), Diabetes Australia Research Program Y17M1-MANS (SIM) JDRF, America Diabetes Association, 1-15-ACE-14 (SIM) and JDRF 5-CDA-2014-210-A-N (SIM), and Juvenile Diabetes Research Foundation Postdoctoral Fellowship 3-PDF-201703740A-N (JABB).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sally C. Kent.

Ethics declarations

Conflicts of Interest

Sally C. Kent, Jenny Aurielle B. Babon, and Stuart I. Mannering declare that they have no conflict of interest.

Aaron W. Michels reports conflicts outside the submitted work, including a patent Compounds That Modulate Autoimmunity and Methods of Using the Same licensed to ImmunoMolecular Therapeutics, a patent Methods of Preventing and Treating Autoimmunity licensed to ImmunoMolecular Therapeutics, and a patent Insulin Mimotopes and Methods of Using the Same pending. He is the scientific founder and owns shares in ImmunoMolecular Therapeutics, LLC.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Ethical Approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of each institutional review board and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Additional information

This article is part of the Topical Collection on Pathogenesis of Type 1 Diabetes

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kent, S.C., Mannering, S.I., Michels, A.W. et al. Deciphering the Pathogenesis of Human Type 1 Diabetes (T1D) by Interrogating T Cells from the “Scene of the Crime”. Curr Diab Rep 17, 95 (2017). https://doi.org/10.1007/s11892-017-0915-y

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11892-017-0915-y

Keywords

Navigation