Skip to main content

Multiscale Experimental Characterization and Computational Modeling of the Human Aorta

  • Chapter
  • First Online:
Solid (Bio)mechanics: Challenges of the Next Decade

Abstract

Advanced imaging techniques, novel experimental approaches and sophisticated computational modeling frameworks to characterize and simulate the mechanical behavior of soft biological tissues have dramatically improved in the past decades. Particularly, the advancing of multiphoton microscopy and other imaging techniques has enabled a detailed three-dimensional visualization of the underlying microscopic structure of various biological tissues including arterial walls. In addition, mechanical testing combined with sophisticated microscopy techniques allowed us to quantify the tissue microstructural reorganization and the mechanical response under large deformation simultaneously. Multiscale constitutive models incorporating detailed microstructural information such as the 3D dispersion of collagen fibers in the extracellular matrix and experimentally-derived tissue material properties have been developed and employed in the computational simulations of human aortic tissues under various (patho)physiological conditions. Thus, in this chapter, we review some of the most critical advances and developments in experimental approaches and computational modeling strategies to characterize the mechanical behavior of human aortic tissue. In addition, we discuss future challenges to improve our understanding of the aortic tissue and its related pathologies.

We came to know Professor Gerhard A. Holzapfel at different times from different parts of the world. But we all came to Graz with the same purpose: to learn from the master of biomechanics and to study and work in this thrilling field. Along the way, we have met new colleagues, friends, and also encountered new problems in a completely different cultural environment. Professor Holzapfel himself is aware of such cultural differences and provided us with extraordinary help and guidance beyond the professional level, especially for some of us from afar. We express our profound gratitude to Professor Holzapfel for the wonderful opportunity to be part of his team and his tremendous help both at the personal and professional levels during our times in Graz and beyond. His generous encouragement, helpful guidance, and, most importantly, persistent faith in us, were and are of invaluable help for our scientific careers now and in the future. He will be remembered not only as a master of biomechanics but also as a fine individual, always delightful to be around.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agianniotis, A., Rachev, A., Stergiopulos, N.: Active axial stress in mouse aorta. J. Biomech. 45, 1924–1927 (2012)

    Article  Google Scholar 

  • Ahmadzadeh, H., Rausch, M.K., Humphrey, J.D.: Particle-based computational modelling of arterial disease. J. R. Soc. Interface 15, 20180616 (2018)

    Article  Google Scholar 

  • Ahmadzadeh, H., Rausch, M., Humphrey, J.D.: Modeling lamellar disruption within the aortic wall using a particle-based approach. Sci. Rep. 9, 15320 (2019)

    Article  Google Scholar 

  • Alastrué, V., Martinez, M.A., Doblaré, M., Menzel, A.: Anisotropic micro-sphere-based finite elasticity applied to blood vessel modelling. J. Mech. Phys. Solids 57, 178–203 (2009)

    Article  MATH  Google Scholar 

  • Amabili, M., Balasubramanian, P., Bozzo, I., Breslavsky, I.D., Ferrari, G.: Layer-specific hyperelastic and viscoelastic characterization of human descending thoracic aortas. J. Mech. Behav. Biomed. Mater. 99, 27–46 (2019a)

    Google Scholar 

  • Amabili, M., Balasubramanian, P., Breslavsky, I.: Anisotropic fractional viscoelastic constitutive models for human descending thoracic aortas. J. Mech. Behav. Biomed. Mater. 99, 186–197 (2019b)

    Google Scholar 

  • Angouras, D.C., Kritharis, E.P., Sokolis, D.P.: Regional distribution of delamination strength in ascending thoracic aortic aneurysms. J. Mech. Behav. Biomed. Mater. 98, 58–70 (2019)

    Article  Google Scholar 

  • Arheden, H., Arner, A., Hellstrand, P.: Force-velocity relation and rate of ATP hydrolysis in osmotically compressed skinned smooth muscle of the guinea pig. J. Muscle Res. Cell Motil. 8, 151–160 (1987)

    Article  Google Scholar 

  • Aslanidou, L., Ferraro, M., Lovric, G., Bersi, M.R., Humphrey, J.D., Segers, P., Trachet, B., Stergiopulos, N.: Co-localization of microstructural damage and excessive mechanical strain at aortic branches in angiotensin-II-infused mice. Biomech. Model. Mechanobiol. 19, 81–97 (2020)

    Article  Google Scholar 

  • Ã…strand, H., StÃ¥lhand, J., Karlsson, J., Karlsson, M., Sonesson, B., Länne, T.: In vivo estimation of the contribution of elastin and collagen to the mechanical properties in the human abdominal aorta: effect of age and sex. J. Appl. Physiol. 110, 176–187 (2011)

    Article  Google Scholar 

  • Avdic, T., Franzén, S., Zarrouk, M., Acosta, S., Nilsson, P., Gottsäter, A., Svensson, A., Gudbjörnsdottir, S., Eliasson, B.: Reduced long-term risk of aortic aneurysm and aortic dissection among individuals with type 2 diabetes mellitus: a nationwide observational study. J. Am. Heart Assoc. 7, e007618 (2018)

    Google Scholar 

  • Baek, S., Gleason, R.L., Rajagopal, K.R., Humphrey, J.D.: Theory of small on large: potential utility in computations of fluid-solid interactions in arteries. Comput. Meth. Appl. Mech. Eng. 196, 3070–3078 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  • Balzani, D., Schröder, J., Gross, D.: A simple model for anisotropic damage with applications to soft tissues. Proc. Appl. Math. Mech. 4, 236–237 (2004)

    Article  MATH  Google Scholar 

  • Balzani, D., Schröder, J., Gross, D.: Simulation of discontinuous damage incorporating residual stresses in circumferentially overstretched atherosclerotic arteries. Acta Biomater. 2, 609–618 (2006)

    Article  Google Scholar 

  • Balzani, D., Brinkhues, S., Holzapfel, G.A.: Constitutive framework for the modeling of damage in collagenous soft tissues with application to arterial walls. Comput. Meth. Appl. Mech. Eng. 213–216, 139–151 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  • Böl, M., Schmitz, A., Nowak, G., Siebert, T.: A three-dimensional chemo-mechanical continuum model for smooth muscle contraction. J. Mech. Behav. Biomed. Mater. 13, 215–229 (2012)

    Article  Google Scholar 

  • Brunet, J., Pierrat, B., Maire, E., Adrien, J., Badel, P.: A combined experimental-numerical lamellar-scale approach of tensile rupture in arterial medial tissue using X-ray tomography. J. Mech. Behav. Biomed. Mater. 95, 116–123 (2019)

    Article  Google Scholar 

  • Brunet, J., Pierrat, B., Adrien, J., Maire, E., Curt, N., Badel, P.: A novel method for in vitro 3D imaging of dissecting pressurized arterial segments using X-ray microtomography. Exp. Mech. 61, 147–157 (2021)

    Article  Google Scholar 

  • Carlson, B.E., Secomb, T.W.: A theoretical model for the myogenic response based on the length-tension characteristics of vascular smooth muscle. Microcirculation 12, 327–338 (2005)

    Article  Google Scholar 

  • Carmo, M., Colombo, L., Bruno, A., Corsi, F.R., Roncoroni, L., Cuttin, M.S., Radice, F., Mussini, E., Settembrini, P.G.: Alteration of elastin, collagen and their cross-links in abdominal aortic aneurysms. Eur. J. Vasc. Endovasc. Surg. 23, 543–549 (2002)

    Article  Google Scholar 

  • Caulk, A.W., Humphrey, J.D., Murtada, S.I.: Fundamental roles of axial stretch in isometric and isobaric evaluations of vascular contractility. J. Biomech. Eng. 141, 0310081–03100810 (2019)

    Article  Google Scholar 

  • Cavinato, C., Helfenstein-Didier, C., Olivier, T., du Roscoat, S.R., Laroche, N., Badel, P.: Biaxial loading of arterial tissues with 3D in situ observations of adventitia fibrous microstructure: a method coupling multi-photon confocal microscopy and bulge inflation test. J. Mech. Behav. Biomed. Mater. 74, 488–498 (2017)

    Article  Google Scholar 

  • Chen, H., Kassab, G.S.: Microstructure-based constitutive model of coronary artery with active smooth muscle contraction. Sci. Rep. 7, 1–15 (2017)

    Google Scholar 

  • Chow, M.J., Choi, M., Yun, S.H., Zhang, Y.: The effect of static stretch on elastin degradation in arteries. PLoS ONE 8, e81951 (2013)

    Google Scholar 

  • Chow, M.J., Turcotte, R., Lin, C.P., Zhang, Y.: Arterial extracellular matrix: a mechanobiological study of the contributions and interactions of elastin and collagen. Biophys. J. 106, 2684–2692 (2014)

    Article  Google Scholar 

  • Chun, Y., Seow, J.: Hill’s equation of muscle performance and its hidden insight on molecular mechanisms. J. Gen. Physiol. 142, 561–573 (2013)

    Article  Google Scholar 

  • Coccarelli, A., Edwards, D.H., Aggarwal, A., Nithiarasu, P., Parthimos, D.: A multiscale active structural model of the arterial wall accounting for smooth muscle dynamics. J. R. Soc. Interface 15, 20170732 (2018)

    Article  Google Scholar 

  • Converse, M.I., Walther, R.G., Ingram, J.T., Li, Y., Yu, S.M., Monson, K.L.: Detection and characterization of molecular-level collagen damage in overstretched cerebral arteries. Acta Biomater. 67, 307–318 (2018)

    Article  Google Scholar 

  • Cooke, P.H., Fay, F.S., Craig, R.: Myosin filaments isolated from skinned amphibian smooth muscle cells are side-polar. J. Muscle Res. Cell Motil. 10, 206–220 (1989)

    Article  Google Scholar 

  • Couchman, J.R., Pataki, C.A.: An introduction to proteoglycans and their localization. J. Histochem. Cytochem. 60, 885–897 (2012)

    Article  Google Scholar 

  • Cox, R.H.: Arterial wall mechanics and composition and the effects of smooth muscle activation. Am. J. Physiol. 229, 807–812 (1975)

    Article  Google Scholar 

  • Craig, R., Megerman, J.: Assembly of smooth muscle myosin into side-polar filaments. J. Cell Biol. 75, 990–996 (1977)

    Article  Google Scholar 

  • Cranford, S., Buehler, M.J.: Materiomics: biological protein materials, from nano to macro. Nanotechnol. Sci. Appl. 3, 127–148 (2010)

    Google Scholar 

  • Dalbosco, M., Carniel, T.A., Fancello, E.A., Holzapfel, G.A.: Multiscale numerical analyses of arterial tissue with embedded elements in the finite strain regime. Comput. Methods Appl. Mech. Eng. 381, 113844 (2021)

    Google Scholar 

  • Devine, C.E., Somlyo, A.P.: Thick filaments in vascular smooth muscle. J. Cell Biol. 49, 636–649 (1971)

    Article  Google Scholar 

  • Dingemans, K.P., Teeling, P., Lagendijk, J.H., Becker, A.E.: Extracellular matrix of the human aortic media: an ultrastructural histochemical and immunohistochemical study of the adult aortic media. Anat. Rec. 258, 1–14 (2000)

    Article  Google Scholar 

  • Dobrin, P.B.: Influence of initial length on length-tension relationship of vascular smooth muscle. Am. J. Physiol. 225, 664–670 (1973a)

    Google Scholar 

  • Dobrin, P.B.: Isometric and isobaric contraction of carotid arterial smooth muscle. Am. J. Physiol. 225, 659–663 (1973b)

    Google Scholar 

  • Dutov, P., Antipova, O., Varma, S., Orgel, J.P.R.O., Schieber, J.D.: Measurement of elastic modulus of collagen type I single fiber. PLoS ONE 11, e0145711 (2016)

    Google Scholar 

  • Edman, K.A.: Mechanical deactivation induced by active shortening in isolated muscle fibres of the frog. J. Physiol. 246, 255–275 (1975)

    Article  Google Scholar 

  • Edman, K.A.: The velocity of unloaded shortening and its relation to sarcomere length and isometric force in vertebrate muscle fibres. J. Physiol. 291, 143–159 (1979)

    Article  Google Scholar 

  • Edman, K.A.: The force bearing capacity of frog muscle fibres during stretch: its relation to sarcomere length and fibre width. J. Physiol. 519, 515–526 (1999)

    Article  Google Scholar 

  • Ettema, G.J., Meijer, K.: Muscle contraction history: modified Hill versus an exponential decay model. Biol. Cell. 83, 491–500 (2000)

    Google Scholar 

  • Famaey, N., Sloten, J.V., Kuhl, E.: A three-constituent damage model for arterial clamping in computer-assisted surgery. Biomech. Model. Mechanobiol. 12, 123–136 (2013)

    Article  Google Scholar 

  • Fereidoonnezhad, B., Naghdabadi, R., Holzapfel, G.A.: Stress softening and permanent deformation in human aortas: continuum and computational modeling with application to arterial clamping. J. Mech. Behav. Biomed. Mater. 61, 600–616 (2016)

    Article  Google Scholar 

  • Ferrara, A., Pandolfi, A.: Numerical modelling of fracture in human arteries. Comput. Methods Biomech. Biomed. Eng. 11, 553–567 (2008)

    Article  Google Scholar 

  • Ferrara, A., Pandolfi, A.: A numerical study of arterial media dissection processes. Int. J. Fract. 166, 21–33 (2010)

    Article  MATH  Google Scholar 

  • Ferruzzi, J., Bersi, M.R., Humphrey, J.D.: Biomechanical phenotyping of central arteries in health and disease: advantages of and methods for murine models. Ann. Biomed. Eng. 41, 1311–1330 (2013)

    Article  Google Scholar 

  • Flory, P.J.: Thermodynamic relations for highly elastic materials. Trans. Faraday Soc. 57, 829–838 (1961)

    Article  MathSciNet  Google Scholar 

  • Fung, Y.C.: Biomechanics. Mechanical Properties of Living Tissues, 2nd edn. Springer, New York (1993)

    Google Scholar 

  • Gasser, T.C., Holzapfel, G.A.: A rate-independent elastoplastic constitutive model for (biological) fiber-reinforced composites at finite strains: continuum basis, algorithmic formulation and finite element implementation. Comput. Mech. 29, 340–360 (2002)

    Article  MATH  Google Scholar 

  • Gasser, T.C., Holzapfel, G.A.: Modeling the propagation of arterial dissection. Eur. J. Mech. A-Solid 25, 617–633 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  • Gasser, T.C., Holzapfel, G.A.: Finite element modeling of balloon angioplasty by considering overstretch of remnant non-diseased tissues in lesions. Comput. Mech. 40, 47–60 (2007)

    Article  MATH  Google Scholar 

  • Gasser, T.C., Ogden, R.W., Holzapfel, G.A.: Hyperelastic modelling of arterial layers with distributed collagen fibre orientations. J. R. Soc. Interface 3, 15–35 (2006)

    Article  Google Scholar 

  • Gaul, R., Nolan, D., Lally, C.: The use of small angle light scattering in assessing strain induced collagen degradation in arterial tissue ex vivo. J. Biomech. 81, 155–160 (2018a)

    Google Scholar 

  • Gaul, R., Nolan, D., Ristori, T., Bouten, C., Loerakker, S., Lally, C.: Strain mediated enzymatic degradation of arterial tissue: insights into the role of the non-collagenous tissue matrix and collagen crimp. Acta Biomater. 77, 301–310 (2018b)

    Google Scholar 

  • Gaul, R.T., Nolan, D.R., Ristori, T., Bouten, C.V.C., Loerakker, S., Lally, C.: Pressure-induced collagen degradation in arterial tissue as a potential mechanism for degenerative arterial disease progression. J. Mech. Behav. Biomed. Mater. 109, 103771 (2020)

    Google Scholar 

  • Germain, P.: The method of virtual power in continuum mechanics. Part 2: microstructure. SIAM J. Appl. Math. 25, 556–574 (1973)

    Google Scholar 

  • Gestrelius, S., Borgström, P.: A dynamic model of smooth muscle contraction. Biophys. J. 50, 157–169 (1986)

    Article  Google Scholar 

  • Gilbert, R.R., Grafenhorst, M., Hartmann, S., Yosibash, Z.: Simulating the temporal change of the active response of arteries by finite elements with high-order time-integrators. Comput. Mech. 64, 1669–1684 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  • Giuseppe, M.D., Zingales, M., Pasta, S., Avril, S.: In vitro measurement of strain localization preceding dissection of the aortic wall subjected to radial tension. Exp. Mech. 61, 119–130 (2021)

    Article  Google Scholar 

  • Gleason, R.L., Dye, W.W., Wilson, E., Humphrey, J.D.: Quantification of the mechanical behavior of carotid arteries from wild-type, dystrophin-deficient, and sarcoglycan-\(\delta \) knockout mice. J. Biomech. 41, 3213–3218 (2008)

    Google Scholar 

  • Gomez, D., Owens, G.K.: Smooth muscle cell phenotypic switching in atherosclerosis. Cardiovasc. Res. 95, 156–164 (2012)

    Article  Google Scholar 

  • Gordon, A.M., Huxley, A.F., Julian, F.J.: Tension development in highly stretched vertebrate muscle fibres. J. Physiol. 184, 143–169 (1966)

    Article  Google Scholar 

  • Greenwald, S.E., Newman, D.L., Denyer, H.T.: Effect of smooth muscle activity on the static and dynamic elastic properties of the rabbit carotid artery. Cardiovasc. Res. 16, 86–94 (1982)

    Article  Google Scholar 

  • Gültekin, O., Dal, H., Holzapfel, G.A.: A phase-field approach to model fracture of arterial walls: theory and finite element analysis. Comput. Methods Appl. Mech. Eng. 312, 542–566 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  • Gültekin, O., Dal, H., Holzapfel, G.A.: Numerical aspects of anisotropic failure in soft biological tissues favor energy-based criteria: a rate-dependent anisotropic crack phase-field model. Comput. Methods. Appl. Mech. Eng. 331, 23–52 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  • Gültekin, O., Hager, S.P., Dal, H., Holzapfel, G.A.: Computational modeling of progressive damage and rupture in fibrous biological tissues: application to aortic dissection. Biomech. Model. Mechanobiol. 18, 1607–1628 (2019)

    Article  Google Scholar 

  • Hadi, M.F., Sander, E.A., Barocas, V.H.: Multiscale model predicts tissue-level failure from collagen fiber-level damage. J. Biomech. Eng. 134, 091005 (2012)

    Google Scholar 

  • Hai, C.M., Murphy, R.A.: Cross-bridge phosphorylation and regulation of latch state in smooth muscle. J. Appl. Physiol. 254, C99–C106 (1988)

    Google Scholar 

  • Haskett, D., Johnson, G., Zhou, A., Utzinger, U., Vande Geest, J.: Microstructural and biomechanical alterations of the human aorta as a function of age and location. Biomech. Model. Mechanobiol. 9, 725–736 (2010)

    Article  Google Scholar 

  • Haspinger, D.C., Murtada, S.I., Niestrawska, J.A., Holzapfel, G.A.: Numerical analyses of the interrelation between extracellular smooth muscle orientation and intracellular filament overlap in the human abdominal aorta. Z. Angew. Math. Mech. 98, 2198–2221 (2018)

    Article  MathSciNet  Google Scholar 

  • Hatze, H.: Myocybernetic control model of skeletal muscle. Biol. Cell. 20, 103–119 (1977)

    MATH  Google Scholar 

  • Haverkamp, R.G., Williams, M.A., Scott, J.E.: Stretching single molecules of connective tissue glycans to characterize their shape-maintaining elasticity. Biomacromolecules 6, 1816–1818 (2005)

    Article  Google Scholar 

  • Hayenga, H.N., Thorne, B.C., Peirce, S.M., Humphrey, J.D.: Ensuring congruency in multiscale modeling: towards linking agent based and continuum biomechanical models of arterial adaptation. Ann. Biomed. Eng. 39, 2669 (2011)

    Article  Google Scholar 

  • Herod, T.W., Chambers, N.C., Veres, S.P.: Collagen fibrils in functionally distinct tendons have differing structural responses to tendon rupture and fatigue loading. Acta Biomater. 42, 296–307 (2016)

    Article  Google Scholar 

  • Hill, A.V.: The heat of shortening and the dynamic constants of muscle. Proc. R. Soc. Lond. B 126, 136–195 (1938)

    Article  Google Scholar 

  • Holzapfel, G.A.: Determination of material models for arterial walls from uniaxial extension tests and histological structure. J. Theor. Biol. 238, 290–302 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  • Holzapfel, G.A.: Collagen in arterial walls: biomechanical aspects. In: Fratzl, P. (ed.) Collagen. Structure and Mechanics, pp. 285–324. Springer, Heidelberg (2008)

    Google Scholar 

  • Holzapfel, G.A., Fereidoonnezhad, B.: Modeling of damage in soft biological tissues. In: Payan, Y., Ohayon, J. (eds.) Biomechanics of Living Organs. Hyperelastic Constitutive Laws for Finite Element Modeling, pp. 101–123. Academic, New York (2017)

    Google Scholar 

  • Holzapfel, G.A., Gasser, T.C.: A viscoelastic model for fiber-reinforced composites at finite strains: continuum basis, computational aspects and applications. Comput. Methods Appl. Mech. Eng. 190, 4379–4403 (2001)

    Article  Google Scholar 

  • Holzapfel, G.A., Ogden, R.W.: On the tension-compression switch in soft fibrous solids. Eur. J. Mech. A/Solids 49, 561–569 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  • Holzapfel, G.A., Ogden, R.W.: Biomechanical relevance of the microstructure in artery walls with a focus on passive and active components. Am. J. Physiol. Heart Circ. Physiol. 315, H540–H549 (2018)

    Article  Google Scholar 

  • Holzapfel, G.A., Ogden, R.W.: An arterial constitutive model accounting for collagen content and cross-linking. J. Mech. Phys. Solids 136, 103682 (2020a)

    Google Scholar 

  • Holzapfel, G.A., Ogden, R.W.: A damage model for collagen fibres with an application to collagenous soft tissues. Proc. R. Soc. Lond. A 476, 20190821 (2020b)

    Google Scholar 

  • Holzapfel, G.A., Gasser, T.C., Ogden, R.W.: A new constitutive framework for arterial wall mechanics and a comparative study of material models. J. Elast. 61, 1–48 (2000a)

    Google Scholar 

  • Holzapfel, G.A., Schulze-Bauer, C.A.J., Stadler, M.: Mechanics of angioplasty: wall, balloon and stent. In: Casey, J., Bao, G. (eds.) Mechanics in Biology, pp. 141–156. The American Society of Mechanical Engineers (ASME), New York (2000b). AMD-Vol. 242/BED-Vol. 46

    Google Scholar 

  • Holzapfel, G.A., Gasser, T.C., Stadler, M.: A structural model for the viscoelastic behavior of arterial walls: continuum formulation and finite element analysis. Eur. J. Mech. A/Solids 21, 441–463 (2002a)

    Google Scholar 

  • Holzapfel, G.A., Stadler, M., Schulze-Bauer, C.A.J.: A layer-specific three-dimensional model for the simulation of balloon angioplasty using magnetic resonance imaging and mechanical testing. Ann. Biomed. Eng. 30, 753–767 (2002b)

    Google Scholar 

  • Holzapfel, G.A., Sommer, G., Regitnig, P.: Anisotropic mechanical properties of tissue components in human atherosclerotic plaques. J. Biomech. Eng. 126, 657–665 (2004)

    Article  Google Scholar 

  • Holzapfel, G.A., Niestrawska, J.A., Ogden, R.W., Reinisch, A.J., Schriefl, A.J.: Modelling non-symmetric collagen fibre dispersion in arterial walls. J. R. Soc. Interface 12, 20150188 (2015)

    Article  Google Scholar 

  • Horný, L., Kronek, J., Chlup, H., Žitný, R., Veselý, J., Hulan, M.: Orientations of collagen fibers in aortic histological section. Bull. Appl. Mech. 6, 25–29 (2010)

    Google Scholar 

  • Horowitz, A., Menice, C.B., Laporte, R., Morgan, K.G.: Mechanisms of smooth muscle contraction. Physiol. Rev. 76, 967–1003 (1996)

    Article  Google Scholar 

  • Humphrey, J.D.: Cardiovascular Solid Mechanics. Cells, Tissues, and Organs. Springer, New York (2002)

    Google Scholar 

  • Humphrey, J.D.: Mechanisms of vascular remodeling in hypertension. Am. J. Hypertens. 34, 432–441 (2021a)

    Google Scholar 

  • Humphrey, J.D.: Constrained mixture models of soft tissue growth and remodeling - Twenty years after. J. Elast. (2021b). https://doi.org/10.1007/s10659-020-09809-1

  • Humphrey, J.D., Rajagopal, K.R.: A constrained mixture model for growth and remodeling of soft tissues. Math. Model. Methods Appl. Sci. 12, 407–430 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  • Huo, Y., Cheng, Y., Zhao, X., Lu, X., Kassab, G.S.: Biaxial vasoactivity of porcine coronary artery. Am. J. Physiol. Heart Circ. Physiol. 302, H2058–H2063 (2012)

    Article  Google Scholar 

  • Huxley, A.F., Niedergerke, R.: Structural changes in muscle during contraction; interference microscopy of living muscle fibers. Nature 173, 971–973 (1954)

    Google Scholar 

  • Joldes, G.R., Miller, K., Wittek, A., Doyle, B.: A simple, effective and clinically applicable method to compute abdominal aortic aneurysm wall stress. J. Mech. Behav. Biomed. Mater. 58, 139–148 (2016)

    Article  Google Scholar 

  • Jones, B., Tonniges, J.R., Debski, A., Albert, B., Yeung, D.A., Gadde, N., Mahajan, A., Sharma, N., Calomeni, E.P., Go, M.R., Hans, C.P., Agarwal, G.: Collagen fibril abnormalities in human and mice abdominal aortic aneurysm. Acta Biomater. 110, 129–140 (2020)

    Article  Google Scholar 

  • Katsuda, S., Okada, Y., Minamoto, T., Oda, Y., Matsui, Y., Nakanishi, I.: Collagens in human atherosclerosis. Immunohistochemical analysis using collagen type-specific antibodies. Arterioscler. Thromb. Vasc. Biol. 12, 494–502 (1992)

    Google Scholar 

  • Kelleher, C.M., McLean, S.E., Mecham, R.P.: Vascular extracellular matrix and aortic development. Curr. Top. Dev. Biol. 62, 153–188 (2004)

    Article  Google Scholar 

  • Kim, J., Staiculescu, M.C., Cocciolone, A.J., Yanagisawa, H., Mecham, R.P., Wagenseil, J.E.: Crosslinked elastic fibers are necessary for low energy loss in the ascending aorta. J. Biomech. 61, 199–207 (2017)

    Article  Google Scholar 

  • Koch, R.G., Tsamis, A., D’Amore, A., Wagner, W.R., Watkins, S.C., Gleason, T.G., Vorp, D.A.: A custom image-based analysis tool for quantifying elastin and collagen micro-architecture in the wall of the human aorta from multi-photon microscopy. J. Biomech. 47, 935–943 (2014)

    Article  Google Scholar 

  • Koenders, M.M.J.F., Yang, L., Wismans, R.G., van der Werf, K.O., Reinhardt, D.P., Daamen, W., Bennink, M.L., Dijkstra, P.J., van Kuppevelt, T.H., Feijen, J.: Microscale mechanical properties of single elastic fibers: the role of fibrillin-microfibrils. Biomaterials 30, 2425–2432 (2009)

    Article  Google Scholar 

  • Korenczuk, C.E., Dhume, R.Y., Liao, K.K., Barocas, V.H.: Ex vivo mechanical tests and multiscale computational modeling highlight the importance of intramural shear stress in ascending thoracic aortic aneurysms. J. Biomech. Eng. 141, 121010 (2019)

    Google Scholar 

  • Kratzberg, J.A., Walker, P.J., Rikkers, E., Raghavan, M.L.: The effect of proteolytic treatment on plastic deformation of porcine aortic tissue. J. Mech. Behav. Biomed. Mater. 2, 65–72 (2009)

    Article  Google Scholar 

  • Kronick, P.L., Sacks, M.S.: Matrix macromolecules that affect the viscoelasticity of calfskin. J. Biomech. Eng. 116, 140–145 (1994)

    Article  Google Scholar 

  • Lacolley, P., Regnault, V., Segers, P., Laurent, S.: Vascular smooth muscle cells and arterial stiffening: relevance in development, aging, and disease. Phys. Rev. 97, 1555–1617 (2017)

    Google Scholar 

  • Lake, S.P., Hadi, M.F., Lai, V.K., Barocas, V.H.: Mechanics of a fiber network within a non-fibrillar matrix: model and comparison with collagen-agarose co-gels. Ann. Biomed. Eng. 40, 2111–2121 (2012)

    Article  Google Scholar 

  • Lanir, Y.: Constitutive equations for fibrous connective tissues. J. Biomech. 16, 1–12 (1983)

    Article  Google Scholar 

  • Lanir, Y.: Multi-scale structural modeling of soft tissues: mechanics and mechanobiology. J. Elast. 129, 7–48 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  • Laubrie, J.D., Mousavi, J.S., Avril, S.: A new finite-element shell model for arterial growth and remodeling after stent implantation. Int. J. Numer. Method Biomed. Eng. 36, e3282 (2020)

    Google Scholar 

  • Lehoux, S., Castier, Y., Tedgui, A.: Molecular mechanisms of the vascular responses to haemodynamic forces. J. Intern. Med. 259, 381–392 (2006)

    Article  Google Scholar 

  • van de Lest, C.H., Versteeg, E.M., Veerkamp, J.H., van Kuppevelt, T.H.: Digestion of proteoglycans in porcine pancreatic elastase-induced emphysema in rats. Eur. Respir. J. 8, 238–245 (1995)

    Article  Google Scholar 

  • Li, C., Xu, Q.: Mechanical stress-initiated signal transductions in vascular smooth muscle cells. Cell. Signal. 12, 435–445 (2000)

    Article  Google Scholar 

  • Li, G., Wang, M., Caulk, A.W., Cilfone, N.A., Gujja, S., Qin, L., Chen, P.Y., Chen, Z., Yousef, S., Jiao, Y., He, C., Jiang, B., Korneva, A., Bersi, M.R., Wang, G., Liu, X., Mehta, S., Geirsson, A., Gulcher, J.R., Chittenden, T.W., Simons, M., Humphrey, J.D., Tellides, G.: Chronic mTOR activation induces a degradative smooth muscle cell phenotype. Clin. Investig. Med. 130, 1233–1251 (2020)

    Google Scholar 

  • Li, H., Mattson, J.M., Zhang, Y.: Integrating structural heterogeneity, fiber orientation, and recruitment in multiscale ECM mechanics. J. Mech. Behav. Biomed. Mater. 92, 1–10 (2019)

    Article  Google Scholar 

  • Li, K., Holzapfel, G.A.: Multiscale modeling of fiber recruitment and damage with a discrete fiber dispersion method. J. Mech. Phys. Solids 126, 226–244 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  • Li, K., Sun, W.: Simulated thin pericardial bioprosthetic valve leaflet deformation under static pressure-only loading conditions: implications for percutaneous valves. Ann. Biomed. Eng. 38, 2690–2701 (2010)

    Article  Google Scholar 

  • Li, K., Ogden, R.W., Holzapfel, G.A.: Computational method for excluding fibers under compression in modeling soft fibrous solids. Eur. J. Mech. A/Solids 57, 178–193 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  • Li, K., Ogden, R.W., Holzapfel, G.A.: A discrete fibre dispersion method for excluding fibres under compression in the modelling of fibrous tissues. J. R. Soc. Interface 15, 20170766 (2018)

    Article  Google Scholar 

  • Li, Q., Muragaki, Y., Hatamura, I., Ueno, H., Ooshima, A.: Stretch-induced collagen synthesis in cultured smooth muscle cells from rabbit aortic media and a possible involvement of angiotensin II and transforming growth factor-\(\beta \). J. Vasc. Res. 35, 93–103 (1998)

    Google Scholar 

  • Liang, L., Liu, M., Martin, C., Sun, W.: A deep learning approach to estimate stress distribution: a fast and accurate surrogate of finite-element analysis. J. R. Soc. Interface 15, 20170844 (2018)

    Article  Google Scholar 

  • Lichtwark, G.A., Wilson, A.M.: A modified Hill muscle model that predicts muscle power output and efficiency during sinusoidal length changes. J. Exp. Biol. 208, 2831–2843 (2005)

    Article  Google Scholar 

  • Lin, A.H., Allan, A.N., Zitnay, J.L., Kessler, J.L., Yu, S.M., Weiss, J.A.: Collagen denaturation is initiated upon tissue yield in both positional and energy-storing tendons. Acta Biomater. 118, 153–160 (2020)

    Article  Google Scholar 

  • Lindeman, J.H., Ashcroft, B.A., Beenakker, J.W., van Es, M., Koekkoek, N.B., Prins, F.A., Tielemans, J.F., Abdul-Hussien, H., Bank, R.A., Oosterkamp, T.H.: Distinct defects in collagen microarchitecture underlie vessel-wall failure in advanced abdominal aneurysms and aneurysms in Marfan syndrome. Proc. Natl. Acad. Sci. USA 107, 862–865 (2010)

    Article  Google Scholar 

  • Liu, M., Dong, H., Lou, X., Iannucci, G., Chen, E.P., Leshnower, B.G., Sun, W.: A novel anisotropic failure criterion with dispersed fiber orientations for aortic tissues. J. Biomech. Eng. 98, 111002 (2019)

    Google Scholar 

  • Lloyd, D.G., Besier, T.F.: An EMG-driven musculoskeletal model to estimate muscle forces and knee joint moments in vivo. J. Biomech. 36, 765–776 (2003)

    Article  Google Scholar 

  • Luo, T., Chen, H., Kassab, G.S.: 3D reconstruction of coronary artery vascular smooth muscle cells. PLoS ONE 11, e0147272 (2016)

    Google Scholar 

  • Maiti, S., Thunes, J.R., Fortunato, R.N., Gleason, T.G., Vorp, D.A.: Computational modeling of the strength of the ascending thoracic aortic media tissue under physiologic biaxial loading conditions. J. Biomech. 108, 109884 (2020)

    Google Scholar 

  • Mao, W., Li, K., Sun, W.: Fluid-structure interaction study of transcatheter aortic valve dynamics using smoothed particle hydrodynamics. Cardiovasc. Eng. Technol. 7, 374–388 (2016)

    Article  Google Scholar 

  • Marino, M., Converse, M.I., Monson, K.L., Wriggers, P.: Molecular-level collagen damage explains softening and failure of arterial tissues: a quantitative interpretation of CHP data with a novel elasto-damage model. J. Mech. Behav. Biomed. Mater. 97, 254–271 (2019)

    Article  Google Scholar 

  • Matsumoto, T., Tsuchida, M., Sato, M.: Change in intramural strain distribution in rat aorta due to smooth muscle contraction and relaxation. Am. J. Physiol. Heart Circ. Physiol. 271, H1711–H1716 (1996)

    Article  Google Scholar 

  • Mattson, J.M., Turcotte, R., Zhang, Y.: Glycosaminoglycans contribute to extracellular matrix fiber recruitment and arterial wall mechanics. Biomech. Model. Mechanobiol. 16, 213–225 (2017)

    Article  Google Scholar 

  • Maurel, E., Shuttleworth, C.A., Bouissou, H.: Interstitial collagens and ageing in human aorta. Virchows Arch. A 410, 383–390 (1987)

    Article  Google Scholar 

  • Menashi, S., Campa, J.S., Greenhalgh, R.M., Powell, J.T.: Collagen in abdominal aortic aneurysm: typing, content, and degradation. J. Vasc. Surg. 6, 578–582 (1987)

    Article  Google Scholar 

  • Milnor, W.R.: Cardiovascular Physiology. Oxford University Press, Oxford (1990)

    Google Scholar 

  • Mohan, D., Melvin, J.W.: Failure properties of passive human aortic tissue. I – uniaxial tension tests. J. Biomech. 15, 887–902 (1982)

    Google Scholar 

  • Mohan, D., Melvin, J.W.: Failure properties of passive human aortic tissue. II – biaxial tension tests. J. Biomech. 16, 31–44 (1983)

    Google Scholar 

  • Mulvany, M.J., Warshaw, D.M.: The active tension-length curve of vascular smooth muscle related to its cellular components. J. Gen. Physiol. 74, 85–104 (1979)

    Article  Google Scholar 

  • Murata, K., Motayama, T., Kotake, C.: Collagen types in various layers of the human aorta and their changes with the atherosclerotic process. Atherosclerosis 60, 251–262 (1986)

    Article  Google Scholar 

  • Murtada, S., Holzapfel, G.A.: Investigating the role of smooth muscle cells in large elastic arteries: a finite element analysis. J. Theor. Biol. 358, 1–10 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  • Murtada, S., Kroon, M., Holzapfel, G.A.: A calcium-driven mechanochemical model for prediction of force generation in smooth muscle. Biomech. Model. Mechanobiol. 9, 749–762 (2010a)

    Google Scholar 

  • Murtada, S., Kroon, M., Holzapfel, G.A.: Modeling the dispersion effects of contractile fibers in smooth muscles. J. Mech. Phys. Solids 58, 2065–2082 (2010b)

    Google Scholar 

  • Murtada, S.C., Arner, A., Holzapfel, G.A.: Experiments and mechanochemical modeling of smooth muscle contraction: significance of filament overlap. J. Theor. Biol. 297, 176–186 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  • Murtada, S.I., Humphrey, J.D.: Regional heterogeneity in the regulation of vasoconstriction in arteries and its role in vascular mechanics. Adv. Exp. Med. Biol. 1097, 105–128 (2018)

    Article  Google Scholar 

  • Murtada, S.I., Ferruzzi, J., Yanagisawa, H., Humphrey, J.D.: Reduced biaxial contractility in the descending thoracic aorta of fibulin-5 deficient mice. J. Biomech. Eng. 138, 051008 (2016a)

    Google Scholar 

  • Murtada, S.I., Lewin, S., Arner, A., Humphrey, J.D.: Adaptation of active tone in the mouse descending thoracic aorta under acute changes in loading. Biomech. Model. Mechanobiol. 15, 579–592 (2016b)

    Google Scholar 

  • Murtada, S.I., Humphrey, J.D., Holzapfel, G.A.: Multiscale and multiaxial mechanics of vascular smooth muscle. Biophys. J. 113, 714–727 (2017)

    Article  Google Scholar 

  • Myneni, M., Rao, A., Jiang, M., Moreno, M.R., Rajagopal, K.R., Benjamin, C.: Segmental variations in the peel characteristics of the porcine thoracic aorta. Ann. Biomed. Eng. 48, 1751–1767 (2020)

    Article  Google Scholar 

  • Nguyen, T.D., Jones, R.E., Boyce, B.L.: Modeling the anisotropic finite-deformation viscoelastic behavior of soft fiber-reinforced composites. Int. J. Solids Struct. 44, 8366–8389 (2007)

    Article  MATH  Google Scholar 

  • Niestrawska, J.A., Viertler, C., Regitnig, P., Cohnert, T.U., Sommer, G., Holzapfel, G.A.: Microstructure and mechanics of healthy and aneurysmatic abdominal aortas: experimental analysis and modeling. J. R. Soc. Interface 13, 20160620 (2016)

    Article  Google Scholar 

  • Niestrawska, J.A., Regitnig, P., Viertler, C., Cohnert, T.U., Babu, A.R., Holzapfel, G.A.: The role of tissue remodeling in mechanics and pathogenesis of abdominal aortic aneurysms. Acta Biomater. 88, 149–161 (2019)

    Article  Google Scholar 

  • Ogden, R.W.: Nearly isochoric elastic deformations: application to rubberlike solids. J. Mech. Phys. Solids 26, 37–57 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  • Ogden, R.W., Roxburgh, D.G.: A pseudo-elastic model for the Mullins effect in filled rubber. Proc. R. Soc. Lond. A 455, 2861–2877 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  • O’Connell, M.K., Murthy, S., Phan, S., Xu, C., Buchanan, J., Spilker, R., Dalman, R.L., Zarins, C.K., Denk, W., Taylor, C.A.: The three-dimensional micro- and nanostructure of the aortic medial lamellar unit measured using 3D confocal and electron microscopy imaging. Matrix Biol. 27, 171–181 (2008)

    Article  Google Scholar 

  • Pate, E., Cooke, R.: A model of crossbridge action: the effects of ATP, ADP and Pi. J. Muscle Res. Cell Motil. 10, 181–196 (1989)

    Article  Google Scholar 

  • Patel, K., Zafar, M.A., Ziganshin, B.A., Elefteriades, J.A.: Diabetes mellitus: is it protective against aneurysm? A narrative review. Cardiology 141, 107–122 (2018)

    Article  Google Scholar 

  • Peña, E., Doblaré, M.: An anisotropic pseudo-elastic approach for modelling Mullins effect in fibrous biological materials. Mech. Res. Commun. 36, 784–790 (2009)

    Article  MATH  Google Scholar 

  • Peña, E., Alastrue, V., Laborda, A., Martíne, M.A., Doblaré, M.: A constitutive formulation of vascular tissue mechanics including viscoelasticity and softening behaviour. J. Biomech. 43, 984–989 (2010)

    Article  Google Scholar 

  • Peña, J.A., Martínez, M.A., Peña, E.: A formulation to model the nonlinear viscoelastic properties of the vascular tissue. Acta Mech. 217, 63–74 (2011)

    Article  MATH  Google Scholar 

  • Peña, J.A., Marínez, M.A., Peña, E.: Failure damage mechanical properties of thoracic and abdominal porcine aorta layers and related constitutive modeling: phenomenological and microstructural approach. Biomech. Model. Mechanobiol. 18, 1709–1730 (2019)

    Article  Google Scholar 

  • Polzer, S., Man, V., Vlachovský, R., Kubícek, L., Kracík, J., Staffa, R., Novotnỳ, T., BurÅ¡a, J., Raghavan, M.: Failure properties of abdominal aortic aneurysm tissue are orientation dependent. J. Mech. Behav. Biomed. Mater. 114, 104181 (2020)

    Google Scholar 

  • Rabin, J., Siddiqui, A., Gipple, J., Taylor, B., Scalea, T.M., Haslach, H.W.: Minor aortic injury may be at risk of progression from uncontrolled shear stress: an in-vitro model demonstrates aortic lesion expansion. Trauma (2020). https://doi.org/10.1177/1460408620957426

  • Rachev, A., Hayashi, K.: Theoretical study of the effects of vascular smooth muscle contraction on strain and stress distributions in arteries. Ann. Biomed. Eng. 27, 459–468 (1999)

    Article  Google Scholar 

  • Rausch, M., Karniadakis, G., Humphrey, J.D.: Modeling soft tissue damage and failure using a combined particle/continuum approach. Biomech. Model. Mechanobiol. 16, 1–13 (2017)

    Article  Google Scholar 

  • Rezvani-Sharif, A., Tafazzoli-Shadpour, M., Avolio, A.: Mechanical characterization of the lamellar structure of human abdominal aorta in the development of atherosclerosis: an atomic force microscopy study. Cardiovasc. Eng. Technol. 10, 181–192 (2019)

    Article  Google Scholar 

  • Rizzo, R.J., McCarthy, W.J., Dixit, S.N., Lilly, M.P., Shively, V.P., Flinn, W.R., Yao, J.S.: Collagen types and matrix protein content in human abdominal aortic aneurysms. J. Vasc. Surg. 10, 365–373 (1989)

    Article  Google Scholar 

  • Roccabianca, S., Ateshian, G.A., Humphrey, J.D.: Biomechanical roles of medial pooling of glycosaminoglycans in thoracic aortic dissection. Biomech. Model. Mechanobiol. 13, 13–25 (2014a)

    Google Scholar 

  • Roccabianca, S., Bellini, C., Humphrey, J.D.: Computational modelling suggests good, bad and ugly roles of glycosaminoglycans in arterial wall mechanics and mechanobiology. J. R. Soc. Interface 11, 20140397 (2014b)

    Google Scholar 

  • Rocha, F.F., Blanco, P.J., Sánchez, P.J., Feijóo, R.A.: Multi-scale modelling of arterial tissue: linking networks of fibres to continua. Comput. Methods Appl. Mech. Eng. 341, 740–787 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  • Rodríguez, J.F., Cacho, F., Bea, J.A., Doblaré, M.: A stochastic-structurally based three dimensional finite-strain damage model for fibrous soft tissue. J. Mech. Phys. Solids 54, 864–886 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  • Rolf-Pissarczyk, M., Li, K., Fleischmann, D., Holzapfel, G.A.: A discrete approach for modeling degraded elastic fibers in aortic dissection. Comput. Methods Appl. Mech. Eng. 373, 113511 (2021)

    Google Scholar 

  • Schaefer, L., Schaefer, R.M.: Proteoglycans: from structural compounds to signaling molecules. Connect. Tissue Res. 339, 237–246 (2010)

    Article  Google Scholar 

  • Schlatmann, T.J.M., Becker, A.E.: Histologic changes in the normal aging aorta: implications for dissecting aortic aneurysm. Am. J. Cardiol. 39, 13–20 (1977)

    Article  Google Scholar 

  • Schmid, F., Sommer, G., Rappolt, M., Schulze-Bauer, C.A.J., Regitnig, P., Holzapfel, G.A., Laggner, P., Amenitsch, H.: In situ tensile testing of human aortas by time-resolved small angle X-ray scattering. Synchrotron Radiat. 12, 727–733 (2005)

    Article  Google Scholar 

  • Schmidt, T., Balzani, D., Holzapfel, G.A.: Statistical approach for a continuum description of damage evolution in soft collagenous tissues. Comput. Methods Appl. Mech. Eng. 278, 41–61 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  • Schmitz, A., Böl, M.: On a phenomenological model for active smooth muscle contraction. J. Biomech. 44, 2090–2095 (2011)

    Article  Google Scholar 

  • Schriefl, A.J., Zeindlinger, G., Pierce, D.M., Regitnig, P., Holzapfel, G.A.: Determination of the layer-specific distributed collagen fiber orientations in human thoracic and abdominal aortas and common iliac arteries. J. R. Soc. Interface 9, 1275–1286 (2012)

    Article  Google Scholar 

  • Schriefl, A.J., Wolinski, H., Regitnig, P., Kohlwein, S.D., Holzapfel, G.A.: An automated approach for three-dimensional quantification of fibrillar structures in optically cleared soft biological tissues. J. R. Soc. Interface 10, 20120760 (2013)

    Article  Google Scholar 

  • Schriefl, A.J., Schmidt, T., Balzani, D., Sommer, G., Holzapfel, G.A.: Selective enzymatic removal of elastin and collagen from human abdominal aortas: uniaxial mechanical response and constitutive modeling. Acta Biomater. 17, 125–136 (2015)

    Article  Google Scholar 

  • Schröder, J., Balzani, D., Gross, D.: Aspects of modeling and computer simulation of soft tissues: applications to arterial walls. Mat.-wiss. u. Werkstofftechn. 36, 795–801 (2005)

    Article  Google Scholar 

  • Sepahi, O., Radtke, L., Debus, S.E., Düster, A.: Anisotropic hierarchic solid finite elements for the simulation of passive-active arterial wall models. Comput. Math. Appl. 74, 3058–3079 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  • Shah, S.B., Witzenburg, C., Hadi, M.F., Wagner, H.P., Goodrich, J.M., Alford, P.W., Barocas, V.H.: Prefailure and failure mechanics of the porcine ascending thoracic aorta: experiments and a multiscale model. J. Biomech. Eng. 136, 021028 (2014)

    Google Scholar 

  • Shahmirzadi, D., Bruck, H.A., Hsieh, A.H.: Measurement of mechanical properties of soft tissues in vitro under controlled tissue hydration. Exp. Mech. 53, 405–414 (2013)

    Article  Google Scholar 

  • Sharifimajd, B., StÃ¥lhand, J.: A continuum model for excitation-contraction of smooth muscle under finite deformations. J. Theor. Biol. 355, 1–9 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  • Sherifova, S., Holzapfel, G.A.: Biomechanics of aortic wall failure with a focus on dissection and aneurysm: a review. Acta Biomater. 99, 1–17 (2019)

    Article  Google Scholar 

  • Sherifova, S., Holzapfel, G.A.: Biochemomechanics of the thoracic aorta in health and disease. Prog. Biomed. Eng. 2, 032002 (2020)

    Google Scholar 

  • Sherifova, S., Sommer, G., Viertler, C., Regitnig, P., Caranasos, T., Smith, M.A., Griffith, B.E., Ogden, R.W., Holzapfel, G.A.: Failure properties and microstructure of healthy and aneurysmatic human thoracic aortas subjected to uniaxial extension with a focus on the media. Acta Biomater. 99, 443–456 (2019)

    Article  Google Scholar 

  • Somlyo, A.P., Somlyo, A.V.: Signal transduction and regulation in smooth muscle. Nature 372, 231–236 (1994)

    Article  Google Scholar 

  • Sommer, G., Sherifova, S., Oberwalder, P.J., Dapunt, O.E., Ursomanno, P.A., DeAnda, A., Griffith, B.E., Holzapfel, G.A.: Mechanical strength of aneurysmatic and dissected human thoracic aortas at different shear loading modes. J. Biomech. 49, 2374–2382 (2016)

    Article  Google Scholar 

  • Spronck, B., Ferruzzi, J., Bellini, C., Caulk, A.W., Murtada, S.I., Humphrey, J.D.: Aortic remodeling is modest and sex-independent in mice when hypertension is superimposed on aging. Am. J. Hypertens. 38, 1312–1321 (2020)

    Article  Google Scholar 

  • StÃ¥lhand, J., Holzapfel, G.A.: Length adaptation of smooth muscle contractile filaments in response to sustained activation. J. Theor. Biol. 397, 13–21 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  • StÃ¥lhand, J., Klarbring, A., Holzapfel, G.A.: Smooth muscle contraction: mechanochemical formulation for homogeneous finite strains. Prog. Biophys. Mol. Biol. 96, 465–481 (2008)

    Article  MATH  Google Scholar 

  • StÃ¥lhand, J., Klarbring, A., Holzapfel, G.A.: A mechanochemical 3D continuum model for smooth muscle contraction under finite strains. J. Theor. Biol. 268, 120–130 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  • StÃ¥lhand, J., McMeeking, R.M., Holzapfel, G.A.: On the thermodynamics of smooth muscle contraction. J. Mech. Phys. Solids 94, 490–503 (2016)

    Article  MathSciNet  Google Scholar 

  • Stylianopoulos, T., Barocas, V.H.: Multiscale, structure-based modeling for the elastic mechanical behavior of arterial walls. J. Biomech. Eng. 129, 611–618 (2007a)

    Google Scholar 

  • Stylianopoulos, T., Barocas, V.H.: Volume-averaging theory for the study of the mechanics of collagen networks. Comput. Methods Appl. Mech. Eng. 196, 2981–2990 (2007b)

    Google Scholar 

  • Sugita, S., Matsumoto, T.: Multiphoton microscopy observations of 3D elastin and collagen fiber microstructure changes during pressurization in aortic media. Biomech. Model. Mechanobiol. 16, 763–773 (2017)

    Article  Google Scholar 

  • Sun, W., Li, K., Sirois, E.: Simulated elliptical bioprosthetic valve deformation: implications for asymmetric transcatheter valve deployment. J. Biomech. 43, 3085–3090 (2010)

    Article  Google Scholar 

  • Sun, Y.L., Luo, Z.P., Fertala, A., An, K.A.: Direct quantification of the flexibility of type I collagen monomer. Biochem. Biophys. Res. Commun. 295, 382–386 (2002)

    Article  Google Scholar 

  • Tanios, F., Gee, M.W., Pelisek, J., Kehl, S., Biehler, J., Grabher-Meier, V., Wall, W.A., Eckstein, H.H., Reeps, C.: Interaction of biomechanics with extracellular matrix components in abdominal aortic aneurysm wall. Eur. J. Vasc. Endovasc. Surg. 50, 167–174 (2015)

    Article  Google Scholar 

  • Taylor, R.L.: FEAP – A Finite Element Analysis Program, Version 8.4 User Manual. University of California at Berkeley, Berkeley, California (2013)

    Google Scholar 

  • Thunes, J.R., Pal, S., Fortunato, R.N., Phillippi, J.A., Gleason, T.G., Vorp, D.A., Maiti, S.: A structural finite element model for lamellar unit of aortic media indicates heterogeneous stress field after collagen recruitment. J. Biomech. 49, 1562–1569 (2016)

    Article  Google Scholar 

  • Thunes, J.R., Phillippi, J.A., Gleason, T.G., Vorp, D., Maiti, S.: Structural modeling reveals microstructure-strength relationship for human ascending thoracic aorta. J. Biomech. 71, 84–93 (2018)

    Article  Google Scholar 

  • Tong, J., Xin, Y.F., Xu, X., Yang, F., Zhang, Z.: Effect of diabetes mellitus on the dissection properties of the rabbit descending thoracic aortas. J. Biomech. 100, 109592 (2020)

    Google Scholar 

  • Tse, K.M., Chiu, P., Lee, H., Ho, P.: Investigation of hemodynamics in the development of dissecting aneurysm within patient-specific dissecting aneurismal aortas using computational fluid dynamics (CFD) simulations. J. Biomech. 44, 827–836 (2011)

    Article  Google Scholar 

  • Vande Geest, J.P., Sacks, M.S., Vorp, D.A.: Age dependency of the biaxial biomechanical behavior of human abdominal aorta. J. Biomech. Eng. 126, 815–822 (2004)

    Article  Google Scholar 

  • Vande Geest, J.P., Sacks, M.S., Vorp, D.A.: The effects of aneurysm on the biaxial mechanical behavior of human abdominal aorta. J. Biomech. 39, 1324–1334 (2006)

    Article  Google Scholar 

  • Wagenseil, J.E., Mecham, R.P.: Vascular extracellular matrix and arterial mechanics. Physiol. Rev. 89, 957–989 (2009)

    Article  Google Scholar 

  • Wagner, H.P., Humphrey, J.D.: Differential passive and active biaxial mechanical behaviors of muscular and elastic arteries: basilar versus common carotid. J. Biomech. Eng. 133, 051009 (2011)

    Google Scholar 

  • Wang, L., Roper, S.M., Luo, X.Y., Hill, N.A.: Modelling of tear propagation and arrest in fibre-reinforced soft tissue subject to internal pressure. J. Eng. Math. 95, 249–265 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  • Wang, L., Roper, S.M., Hill, N.A., Luo, X.: Propagation of dissection in a residually-stressed artery model. Biomech. Model. Mechanobiol. 16, 139–149 (2017)

    Article  Google Scholar 

  • Wang, L., Hill, N.A., Roper, S.M., Luo, X.: Modelling peeling- and pressure-driven propagation of arterial dissection. J. Eng. Math. 109, 227–238 (2018)

    Google Scholar 

  • Wang, N., Tytell, J.D., Ingber, D.E.: Mechanotransduction at a distance: mechanically coupling the extracellular matrix with the nucleus. Nat. Rev. Mol. Cell Biol. 10, 75–82 (2009)

    Article  Google Scholar 

  • Wang, R., Yu, X., Gkousioudi, A., Zhang, Y.: Effect of glycation on interlamellar bonding of arterial elastin. Exp. Mech. 61, 81–94 (2021a)

    Google Scholar 

  • Wang, R., Yu, X., Zhang, Y.: Mechanical and structural contributions of elastin and collagen fibers to interlamellar bonding in the arterial wall. Biomech. Model. Mechanobiol. 20, 93–106 (2021b)

    Google Scholar 

  • Wang, Y., Hahn, J., Zhang, Y.: Mechanical properties of arterial elastin with water loss. J. Biomech. Eng. 140, 041012 (2018a)

    Google Scholar 

  • Wang, Y., Li, H., Zhang, Y.: Understanding the viscoelastic behavior of arterial elastin in glucose via relaxation time distribution spectrum. J. Mech. Behav. Biomed. Mater. 77, 634–641 (2018b)

    Google Scholar 

  • Weisbecker, H., Pierce, D.M., Regitnig, P., Holzapfel, G.A.: Layer-specific damage experiments and modeling of human thoracic and abdominal aortas with non-atherosclerotic intimal thickening. J. Mech. Behav. Biomed. Mater. 12, 93–106 (2012)

    Article  Google Scholar 

  • Weisbecker, H., Viertler, C., Pierce, D.M., Holzapfel, G.A.: The role of elastin and collagen in the softening behavior of the human thoracic aortic media. J. Biomech. 46, 1859–1865 (2013)

    Article  Google Scholar 

  • Weisbecker, H., Unterberger, M.J., Holzapfel, G.A.: Constitutive modelling of arteries considering fibre recruitment and three-dimensional fibre distribution. J. R. Soc. Interface 12, 20150111 (2015)

    Article  Google Scholar 

  • Wexler, A.S., Ding, J., Binder-Macleod, S.A.: A mathematical model that predicts skeletal muscle force. IEEE Trans. Biomed. Eng. 44, 337–348 (1997)

    Article  Google Scholar 

  • Wight, T.N.: A role for proteoglycans in vascular disease. Matrix Biol. 71–72, 396–420 (2018)

    Article  Google Scholar 

  • Williams, C.D., Regnier, M., Daniel, T.L.: Axial and radial forces of cross-bridges depend on lattice spacing. PLoS Comput. Biol. 6, e1001018 (2010)

    Google Scholar 

  • Wittgenstein, A.: Ultrastructural investigation of biaxially loaded human aortic tissue. Master’s thesis, Graz University of Technology, Biomedical Engineering (2018)

    Google Scholar 

  • Witzenburg, C.M., Dhume, R.Y., Shah, S.B., Korenczuk, C.E., Wagner, H.P., Alford, P.W., Barocas, V.H.: Failure of the porcine ascending aorta: multidirectional experiments and a unifying microstructural model. J. Biomech. Eng. 139, 031005 (2017)

    Google Scholar 

  • Wolinsky, H., Glagov, S.: Comparison of abdominal and thoracic aortic medial structure in mammals. Deviation of man from the usual pattern. Circ. Res. 25, 677–686 (1969)

    Google Scholar 

  • Yang, J., Clark, J.W., Jr., Bryan, R.M., Robertson, C.: The myogenic response in isolated rat cerebrovascular arteries: smooth muscle cell model. Med. Eng. Phys. 25, 691–709 (2003a)

    Google Scholar 

  • Yang, J., Clark, J.W., Jr., Bryan, R.M., Robertson, C.S.: The myogenic response in isolated rat cerebrovascular arteries: vessel model. Med. Eng. Phys. 25, 711–717 (2003b)

    Google Scholar 

  • Ye, G.J.C., Nesmith, A.P., Parker, K.K.: The role of mechanotransduction on vascular smooth muscle myocytes cytoskeleton and contractile function. Anat. Rec. 297, 1758–1769 (2014)

    Article  Google Scholar 

  • Yosibash, Z., Priel, E.: Artery active mechanical response: high order finite element implementation and investigation. Comput. Methods Appl. Mech. Eng. 237, 51–66 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  • Yu, X., Suki, B., Zhang, Y.: Avalanches and power law behavior in aortic dissection propagation. Sci. Adv. 6, eaaz1173 (2020)

    Google Scholar 

  • Zeinali-Davarani, S., Wang, Y., Chow, M.J., Turcotte, R., Zhang, Y.: Contribution of collagen fiber undulation to regional biomechanical properties along porcine thoracic aorta. J. Biomech. Eng. 137, 051001 (2015)

    Google Scholar 

  • Zhu, Y., Kang, G., Kan, Q., Yu, C.: A finite viscoelastic-plastic model for describing the uniaxial ratchetting of soft biological tissues. J. Biomech. 47, 996–1003 (2014)

    Article  Google Scholar 

  • Zitnay, J.L., Li, Y., Qin, Z., San, B.H., Depalle, B., Reese, S.P., Buehler, M.J., Yu, S.M., Weiss, J.A.: Molecular level detection and localization of mechanical damage in collagen enabled by collagen hybridizing peptides. Nat. Commun. 8, 14913 (2017)

    Article  Google Scholar 

  • Zitnay, J.L., Jung, G.S., Lin, A., Qin, Z., Li, Y., Yu, S.M., Buehler, M.J., Weiss, J.A.: Accumulation of collagen molecular unfolding is the mechanism of cyclic fatigue damage and failure in collagenous tissues. Sci. Adv. 6, eaba2795 (2020)

    Google Scholar 

  • Zou, Y., Zhang, Y.: The orthotropic viscoelastic behavior of aortic elastin. Biomech. Model. Mechanobiol. 10, 613–625 (2011)

    Article  Google Scholar 

  • Zulliger, M.A., Rachev, A., Stergiopulos, N.: A constitutive formulation of arterial mechanics including vascular smooth muscle tone. Am. J. Physiol. Heart Circ. Physiol. 287, H1335–H1343 (2004)

    Article  Google Scholar 

  • Zuo, K., Pham, T., Li, K., Martin, C., He, Z., Sun, W.: Characterization of biomechanical properties of aged human and ovine mitral valve chordae tendineae. J. Mech. Behav. Biomed. Mater. 62, 607–618 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the collaboration with Heimo Wolinski from the Institute of Molecular Biosciences at the University of Graz and the IMB-Graz Microscopy Core Facility for the multiphoton images in Sect. 2; and Dagmar Kolb and Gerd Leitinger from the Gottfried Schatz Research Center and the Center for Medical Research, Medical University of Graz, for the transmission electron microscopy images, which are presented in Sect. 2. This chapter was partially financially supported by the Lead Project on ‘Mechanics, Modeling and Simulation of Aortic Dissection’ granted by Graz University of Technology, Austria; the Project on ‘Multiscale Biomechanical Investigation of Human Aortas’ financed by Austrian Science Funds (FWF) with grant no. P30260; and the Project ‘Does time heal all wounds? Damage in blood vessels’ supported by the Austrian Science Funds (FWF) with grant no. I4545.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerhard Sommer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dalbosco, M. et al. (2022). Multiscale Experimental Characterization and Computational Modeling of the Human Aorta. In: Sommer, G., Li, K., Haspinger, D.C., Ogden, R.W. (eds) Solid (Bio)mechanics: Challenges of the Next Decade. Studies in Mechanobiology, Tissue Engineering and Biomaterials, vol 24. Springer, Cham. https://doi.org/10.1007/978-3-030-92339-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-92339-6_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-92338-9

  • Online ISBN: 978-3-030-92339-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics