Skip to main content
Log in

Multi-scale Structural Modeling of Soft Tissues Mechanics and Mechanobiology

  • Published:
Journal of Elasticity Aims and scope Submit manuscript

Abstract

Soft tissues account for a major fraction of the body volume and mass. They are present in all non-skeletal organs, being responsible for protecting the body, maintaining internal homeostasis, and allowing for mobility. Their function in different organs is highly diverse, as are their properties which are optimally suited for their specific tasks. From a mechanical perspective, specificity of structure and properties is acquired via evolutionary adaptation of the tissue composition and multi-scale structure. In modeling tissue mechanics and mechano-biology, it is thus natural to seek the structural determinants of tissues and their evolution (the “structural approach”). Earlier models were exclusively phenomenological, based either on the general principles of non-linear continuum mechanics or alternatively, on empirical mathematical expressions that fit specific response patterns. In the late 1970’s, structural models were introduced to tissue mechanics (Lanir in J. Biomechanics 12(6): 423–436, 1979; Lanir in J. Biomechanics 16(1): 1–12, 1983). Ever since, a gradually increasing number of structural models have been developed for different types of tissues, and today, it is the method of choice (Cowin and Humphrey in J. Elasticity 61: ix–xii, 2000). The structural approach was recently extended to incorporate a mechanistic formulation of mechano-biological pathways by which tissue structures remodel during growth (Lanir in Biomech Model Mechanobiol, 14(2): 245–266, 2015). Here, the characteristic features of soft tissue structures and their constitutive modeling are reviewed. The presentation starts with a brief survey of the multi-scale and multi-phasic soft tissues structure. The global mechanical characteristics of soft tissues and of their constituents are then briefly reviewed. These two aspects form the basis for structural constitutive formulation via the multi-scale structure-function link. Based on established criteria for model validity, predictions of the formulated theory are contrasted against measured response characteristics. Using this structure-function relationship, the evolutionary pathway by which tissue structure and mechanics remodel during growth to adapt to their physiological function, is laid down. The review concludes with an account of the state of the art, the big picture, and future research challenges in tissue mechanobiological modeling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Notes

  1. The integration limits must account for the orientation symmetry since each fiber has two opposite orientations. One possibility for limits is \(0 \le \varPhi \le \pi\), \(0 \le \varTheta \le \pi\), another one is \(0 \le \varPhi \le \pi /2\), \(0 \le \varTheta \le 2\pi\).

  2. For example, in an isotropic network \(\mathbb{R}(\varPhi,\varTheta ) = \sin\varPhi /2\pi\).

  3. The Prony series in Eq. (3.5) is not related to the underlying mechanisms which give rise to the fiber’s viscoelasticity. These mechanisms are insufficiently known. In common with other phenomenological VE models, this Prony representation is not unique.

  4. The beta function was preferred over the normal one since it is physically more realistic and more general: it is bounded, can be symmetric and non-symmetric, and can assume different shapes.

  5. \(D(q,t)\) has the same physical meaning at a given growth time \(t\) as the function \(D(q,\mathbf{N})\) in Eq. (2.5) in a uniaxial fiber network (no dependence on \(\mathbf{N}\)).

Abbreviations

CSK:

Cytoskeleton

CVS:

Cardiovascular system

ECM:

Extra-cellular matrix

G&R:

Growth and remodeling

GAG:

Glycosaminoglycans

LM:

Light microscopy

LVE:

Linear viscoelasticity

LV:

Left ventricle

OA:

Opening angle

PC:

Preconditioning

PG:

Proteoglycans

QLV:

Quasilinear viscoelasticity

REV:

Representative elementary volume

RPC:

Recruitment preconditioning

RS:

Residual stress

RVE:

Recruitment viscoelasticity

SEM:

Scanning electron microscopy

VE:

Viscoelasticity

1D, 2D, 3D:

One-, two-, and three-dimensional

References

  1. Fung, Y.C.: Elasticity of soft tissues in simple elongation. Physiol. Entomol. 213(6), 1532–1544 (1967)

    Google Scholar 

  2. Lanir, Y.: Autobiographical postscript. In: Kassab, G.S., Sacks, M.S. (eds.) Structure-Based Mechanics of Tissues and Organs. Springer, New York (2016). pp. v–xxi

    Google Scholar 

  3. Humphrey, J.D.: From stress-strain relations to growth and remodeling theories: a historical reflection on microstructurally motivated constitutive relations. In: Kassab, G.S., Sacks, M.S. (eds.) Structure-Based Mechanics of Tissues and Organs, pp. 123–133. Springer, New York (2016)

    Chapter  Google Scholar 

  4. Fratzl, P. (ed.) Collagen Structure and Mechanics, p. 508. Springer, New York (2008)

  5. Ross, R., Fialkov, P.J., Altman, L.K.: The Moorphogenesis of Elasic Fibers. In: Sandberg, L.B., Gray, W.R., Franzblau, C. (eds.) Elastin and Elastic Tissue, pp. 7–17. Plenum Press, New York (1977)

    Chapter  Google Scholar 

  6. Borg, T.K., Caulfield, J.B.: Collagen in the heart. Tex. Rep. Biol. Med. 39, 321–333 (1979)

    Google Scholar 

  7. Borg, T.K., Caulfield, J.B.: Association of collagen struts with cardiac myocytes. J. Cell Biol. 87(2), A126–A126 (1980)

    Google Scholar 

  8. Maroudas, A.: Balance between swelling pressure and collagen tension in normal and degenerate cartilage. Nature 260(5554), 808–809 (1976)

    Article  ADS  Google Scholar 

  9. Eckert, C.E., Fan, R., Mikulis, B., Barron, M., Carruthers, C.A., Friebe, V.M., Vyavahare, N.R., Sacks, M.S.: On the biomechanical role of glycosaminoglycans in the aortic heart valve leaflet. Acta Biomater. 9(1), 4653–4660 (2013)

    Article  Google Scholar 

  10. Emery, J.L., Omens, J.H., McCulloch, A.D.: Strain softening in rat left ventricular myocardium. J. Biomech. Eng. 119(1), 6–12 (1997)

    Article  Google Scholar 

  11. Fung, Y.C.: Stree-strain-history relations of soft tissues in simple elongation. In: Fung, Y.C., Perrone, N., Anliker, M. (eds.) Biomechanic—Its Foundations and Objectives, pp. 181–208. Prentice-Hall, Englewood Cliffs (1972)

    Google Scholar 

  12. Gregersen, H., Emery, J.L., McCulloch, A.D.: History-dependent mechanical behavior of Guinea-pig small intestine. Ann. Biomed. Eng. 26(5), 850–858 (1998)

    Article  Google Scholar 

  13. Lanir, Y., Fung, Y.C.: 2-dimensional mechanical-properties of rabbit skin. 2. Experimental results. J. Biomech. 7(2), 171 (1974)

    Article  Google Scholar 

  14. Lokshin, O., Lanir, Y.: Micro and macro rheology of planar tissues. Biomaterials 30(17), 3118–3127 (2009)

    Article  Google Scholar 

  15. Sverdlik, A., Lanir, Y.: Time-dependent mechanical behavior of sheep digital tendons, including the effects of preconditioning. J. Biomech. Eng. 124(1), 78–84 (2002)

    Article  Google Scholar 

  16. Chuong, C.J., Fung, Y.C.: On residual stresses in arteries. J. Biomech. Eng. 108(2), 189–192 (1986)

    Article  Google Scholar 

  17. Vaishnav, R.N., Vossoughi, J.: Estimation of residual strains in aortic segments. In: Hall, C.W. (ed.) Biomedical Engineering II: Recent Developments, pp. 330–333. Pergamon, New York (1983)

    Chapter  Google Scholar 

  18. Lanir, Y., Hayam, G., Abovsky, M., Zlotnick, A.Y., Uretzky, G., Nevo, E., BenHaim, S.A.: Effect of myocardial swelling on residual strain in the left ventricle of the rat. Am. J. Physiol., Heart Circ. Physiol. 270(5), H1736–H1743 (1996)

    Google Scholar 

  19. Omens, J.H., Fung, Y.C.: Residual strain in rat left ventricle. Circ. Res. 66(1), 37–45 (1990)

    Article  Google Scholar 

  20. Lanir, Y.: Mechanisms of residual stress in soft tissues. J. Biomech. Eng. 131(4) (2009)

  21. Lanir, Y.: Osmotic swelling and residual stress in cardiovascular tissues. J. Biomech. 45(5), 780–789 (2012)

    Article  Google Scholar 

  22. Fung, Y.C.: What are the residual stresses doing in our blood vessels? Ann. Biomed. Eng. 19(3), 237–249 (1991)

    Article  Google Scholar 

  23. Fung, Y.C., Liu, S.Q.: Strain distribution in small blood vessels with zero-stress state taken into consideration. Physiol. Entomol. 262 (2 Pt 2), H544–H552 (1992)

    Google Scholar 

  24. Brown, I.A.: A scanning electron microscope study of the effects of uniaxial tension on human skin. Br. J. Dermatol. 89(4), 383–393 (1973)

    Article  Google Scholar 

  25. Chu, B.M., Frasher, W.G., Wayland, H.: Hysteretic behavior of soft living animal tissue. Ann. Biomed. Eng. 1(2), 182–203 (1972)

    Article  Google Scholar 

  26. Viidik, A., Ekholm, R.: Light and electron microscopic studies of collagen fibers under strain. Z. Anat. Entwickl. Gesch. 127, 154–164 (1968)

    Article  Google Scholar 

  27. Butler, D.L., Grood, E.S., Noyes, F.R., Zernicke, R.F., Brackett, K.: Effects of structure and strain measurement technique on the material properties of young human tendons and fascia. J. Biomech. 17(8), 579–596 (1984)

    Article  Google Scholar 

  28. Aaron, B.B., Gosline, J.M.: Elastin as a random-network elastomer—a mechanical and optical analysis of single elastin fibers. Biopolymers 20(6), 1247–1260 (1981)

    Article  Google Scholar 

  29. Grinnell, F.: Fibroblasts, myofibroblasts, and wound contraction. J. Cell Biol. 124(4), 401–404 (1994)

    Article  Google Scholar 

  30. Eastwood, M., Porter, R., Khan, U., McGrouther, G., Brown, R.: Quantitative analysis of collagen gel contractile forces generated by dermal fibroblasts and the relationship to cell morphology. J. Cell. Physiol. 166(1), 33–42 (1996)

    Article  Google Scholar 

  31. Harris, A.K., Stopak, D., Wild, P.: Fibroblast traction as a mechanism for collagen morphogenesis. Nature 290(5803), 249–251 (1981)

    Article  ADS  Google Scholar 

  32. Pourati, J., Maniotis, A., Spiegel, D., Schaffer, J.L., Butler, J.P., Fredberg, J.J., Ingber, D.E., Stamenovic, D., Wang, N.: Is cytoskeletal tension a major determinant of cell deformability in adherent endothelial cells? Physiol. Entomol. 274(5 Pt 1), C1283–C1289 (1998)

    Google Scholar 

  33. Kumar, S., Maxwell, I.Z., Heisterkamp, A., Polte, T.R., Lele, T.P., Salanga, M., Mazur, E., Ingber, D.E.: Viscoelastic retraction of single living stress fibers and its impact on cell shape, cytoskeletal organization, and extracellular matrix mechanics. Biophys. J. 90(10), 3762–3773 (2006)

    Article  ADS  Google Scholar 

  34. Fung, Y.C.: Biomechanics: Mechanical Properties of Living Tissues, 2nd edn. Springer, New York (1993). xviii, 568 p.

    Book  Google Scholar 

  35. Murphy, R.A.: Mechanics of smooth muscle. In: Bohr, D.F., Somlyo, A.P., Sparks, A.V.J. (eds.) Handbook of Physiology, Sect. 2: The Cardiovascular System, pp. 325–351. American Physiological Society Bathesda (1980)

    Google Scholar 

  36. Bosse, Y., Solomon, D., Chin, L.Y., Lian, K., Pare, P.D., Seow, C.Y.: Increase in passive stiffness at reduced airway smooth muscle length: potential impact on airway responsiveness. Am. J. Physiol., Lung Cell. Mol. Physiol. 298(3), L277–L287 (2010)

    Article  Google Scholar 

  37. Herrera, A.M., McParland, B.E., Bienkowska, A., Tait, R., Pare, P.D., Seow, C.Y.: ‘Sarcomeres’ of smooth muscle: functional characteristics and ultrastructural evidence. J. Cell Sci. 118(Pt 113), 2381–2392 (2005)

    Article  Google Scholar 

  38. Seow, C.Y., Pratusevich, V.R., Ford, L.E.: Series-to-parallel transition in the filament lattice of airway smooth muscle. J. Appl. Physiol. 89(3), 869–876 (1985). 2000

    Google Scholar 

  39. Speich, J.E., Almasri, A.M., Bhatia, H., Klausner, A.P., Ratz, P.H.: Adaptation of the length-active tension relationship in rabbit detrusor. Am. J. Physiol., Ren. Fluid Electrolyte Physiol. 297(4), F1119–F1128 (2009)

    Article  Google Scholar 

  40. Wang, L., Pare, P.D., Seow, C.Y.: Selected contribution: effect of chronic passive length change on airway smooth muscle length-tension relationship. J. Appl. Physiol. 90(2), 734–740 (1985). 2001

    Google Scholar 

  41. Sacks, M.D.: In: Kassab, G.S., Sacks, M.S. (eds.) Finite Element Implementation of Structural Constitutive Models in Structure-Based Mechanics of Tissues and Organs, pp. 347–363. Springer, New York (2016)

    Chapter  Google Scholar 

  42. Nguyen, T.D.: Biomechanics of the cornea and sclera. In: Kassab, G.S., Sacks, M.S. (eds.) Structure-Based Mechanics of Tissues and Organs, pp. 285–315. Springer, New York (2016)

    Chapter  Google Scholar 

  43. Lee, L.C., Wenk, J., Klepach, D., Kassab, G.S., Guccione, J.M.: Structure-based models of ventricular myocardium. In: Kassab, G.S., Sacks, M.S. (eds.) Structure-Based Mechanics of Tissues and Organs, pp. 249–263. Springer, New York (2016)

    Chapter  Google Scholar 

  44. Krishnamurthy, A., Coppola, B., Tangney, J., Kerckhoffs, R.C.P., McCulloch, A.D.: A microstructurally based multi-scale constitutive model of active myocardial mechanics. In: Kassab, G.S., Sacks, M.S. (eds.) Structure-Based Mechanics of Tissues and Organs, pp. 439–460. Springer, New York (2016)

    Chapter  Google Scholar 

  45. Jor, J.W.Y., Babarenda Gamage, T.P., Nielsen, P.M.F., Nash, M.P., Hunter, P.J.: Relationship between structure and mechanics for membranous tissues. In: Kassab, G.S., Sacks, M.S. (eds.) Structure-Based Mechanics of Tissues and Organs, pp. 135–173. Springer, New York (2016)

    Chapter  Google Scholar 

  46. Grytz, R., Meschke, G., Jonas, J.B., Downs, C.: Glaucoma and structure-based mechanics of the lamina cribrosa at multiple scales. In: Kassab, G.S., Sacks, M.S. (eds.) Structure-Based Mechanics of Tissues and Organs, pp. 93–122. Springer, New York (2016)

    Chapter  Google Scholar 

  47. Gasser, T.C.: Histomechanical modeling of the wall of abdominal aortic aneurysm. In: Kassab, G.S., Sacks, M.S. (eds.) Structure-Based Mechanics of Tissues and Organs, pp. 57–78. Springer, New York (2016)

    Chapter  Google Scholar 

  48. Cortes, D.H., Elliott, D.M.: Modeling of collageneous tissues using distributed fiber orientation. In: Kassab, G.S., Sacks, M.S. (eds.) Structure-Based Mechanics of Tissues and Organs, pp. 15–39. Springer, New York (2016)

    Chapter  Google Scholar 

  49. Chen, H., Zhao, X., Lu, X., Kassab, G.S.: Microstructure-based constitutive models for coronary artery adventitia. In: Kassab, G.S., Sacks, M.S. (eds.) Structure-Based Mechanics of Tissues and Organs, pp. 225–248. Springer, New York (2016)

    Chapter  Google Scholar 

  50. Bilston, L.E.: The influence of microstructure on neural tissue mechanics. In: Kassab, G.S., Sacks, M.S. (eds.) Structure-Based Mechanics of Tissues and Organs, pp. 1–14. Springer, New York (2016)

    Google Scholar 

  51. Lanir, Y., Namani, R.: Reliability of structure tensors in representing soft tissues structure. J. Mech. Behav. Biomed. Mater. 46, 222–228 (2015)

    Article  Google Scholar 

  52. Fan, R., Sacks, M.S.: Simulation of planar soft tissues using a structural constitutive model: finite element implementation and validation. J. Biomech. 47(9), 2043–2054 (2014)

    Article  Google Scholar 

  53. Rezakhaniha, R., Agianniotis, A., Schrauwen, J.T., Griffa, A., Sage, D., Bouten, C.V., van de Vosse, F.N., Unser, M., Stergiopulos, N.: Experimental investigation of collagen waviness and orientation in the arterial adventitia using confocal laser scanning microscopy. Biomech. Model. Mechanobiol. 11(3–4), 461–473 (2012)

    Article  Google Scholar 

  54. Viidik, A.: Simultaneous mechanical and light microscopic studies of collagen fibers. Z. Anat. Entwicklungsgesch. 136(2), 204–212 (1972)

    Article  Google Scholar 

  55. Evans, J.H., Barbenel, J.C., Steel, T.R., Ashby, A.M.: Structure and mechanics of tendon. Symp. Soc. Exp. Biol. 34, 465–469 (1980)

    Google Scholar 

  56. Lanir, Y.: A structural theory for the homogeneous biaxial stress-strain relationships in flat collagenous tissues. J. Biomech. 12(6), 423–436 (1979)

    Article  Google Scholar 

  57. Lanir, Y.: Constitutive equations for fibrous connective tissues. J. Biomech. 16(1), 1–12 (1983)

    Article  Google Scholar 

  58. Lee, C.H., Zhang, W., Liao, J., Carruthers, C.A., Sacks, J.I., Sacks, M.S.: On the presence of affine fibril and fiber kinematics in the mitral valve anterior leaflet. Biophys. J. 108(8), 2074–2087 (2015)

    Article  ADS  Google Scholar 

  59. Holzapfel, G.A., Gasser, T.C., Ogden, R.W.: A new constitutive framework for arterial wall mechanics and a comparative study of material models. J. Elasticity 61(1–3), 1–48 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  60. Humphrey, J.D.: An evaluation of pseudoelastic descriptors used in arterial mechanics. J. Biomech. Eng. 121(2), 259–262 (1999)

    Article  Google Scholar 

  61. Lanir, Y.: Plausibility of structural constitutive equations for swelling tissues—implications of the C-N and S-E conditions. J. Biomech. Eng. 118(1), 10–16 (1996)

    Article  Google Scholar 

  62. Hollander, Y., Durban, D., Lu, X.A., Kassab, G.S., Lanir, Y.: Experimentally validated microstructural 3D constitutive model of coronary arterial media. J. Biomech. Eng. 133(3) (2011)

  63. Lu, X., Yang, J., Zhao, J.B., Gregersen, H., Kassab, G.S.: Shear modulus of porcine coronary artery: contributions of media and adventitia. Am. J. Physiol., Heart Circ. Physiol. 285(5), H1966–H1975 (2003)

    Article  Google Scholar 

  64. Wang, C., Garcia, M., Lu, X., Lanir, Y., Kassab, G.S.: Three-dimensional mechanical properties of porcine coronary arteries: a validated two-layer model. Am. J. Physiol., Heart Circ. Physiol. 291(3), H1200–H1209 (2006)

    Article  Google Scholar 

  65. Hollander, Y., Durban, D., Lu, X., Kassab, G.S., Lanir, Y.: Constitutive modeling of coronary arterial media-comparison of three model classes. J. Biomech. Eng. 133(6) (2011)

  66. Katchalsky, A.C., Peter, F.: Nonequilibrium Thermodynamics in Biophysics. Cambridge University Press, Cambridge (1967)

    Google Scholar 

  67. Richards, E.G.: An Introduction to the Physical Properties of Large Molecules in Solution. Cambridge University Press, Cambridge, U.K. (1980)

    Google Scholar 

  68. Truesdell, C.: Mechanical basis of diffusion. J. Chem. Phys. 37, 2336–2344 (1962)

    Article  ADS  Google Scholar 

  69. Lanir, Y.: Biorheology and fluid flux in swelling tissues. 1. Bicomponent theory for small deformations, including concentration effects. Biorheology 24(2), 173–187 (1987)

    Google Scholar 

  70. Rodriguez, E.K., Hoger, A., McCulloch, A.D.: Stress-dependent finite growth in soft elastic tissues. J. Biomech. 27(4), 455–467 (1994)

    Article  Google Scholar 

  71. Skalak, R., Zargaryan, S., Jain, R.K., Netti, P.A., Hoger, A.: Compatibility and the genesis of residual stress by volumetric growth. J. Math. Biol. 34(8), 889–914 (1996)

    Article  MATH  Google Scholar 

  72. Taber, L.A., Humphrey, J.D.: Stress-modulated growth, residual stress, and vascular heterogeneity. J. Biomech. Eng. 123(6), 528–535 (2001)

    Article  Google Scholar 

  73. Azeloglu, E.U., Albro, M.B., Thimmappa, V.A., Ateshian, G.A., Costa, K.D.: Heterogeneous transmural proteoglycan distribution provides a mechanism for regulating residual stresses in the aorta. Am. J. Physiol., Heart Circ. Physiol. 294(3), H1197–H1205 (2008)

    Article  Google Scholar 

  74. Greenwald, S.E., Moore, J.E. Jr., Rachev, A., Kane, T.P., Meister, J.J.: Experimental investigation of the distribution of residual strains in the artery wall. J. Biomech. Eng. 119(4), 438–444 (1997)

    Article  Google Scholar 

  75. Stergiopulos, N., Vulliemoz, S., Rachev, A., Meister, J.J., Greenwald, S.E.: Assessing the homogeneity of the elastic properties and composition of the pig aortic media. J. Vasc. Res. 38(3), 237–246 (2001)

    Article  Google Scholar 

  76. Guo, X.M., Lanir, Y., Kassab, G.S.: Effect of osmolarity on the zero-stress state and mechanical properties of aorta. Am. J. Physiol., Heart Circ. Physiol. 293(4), H2328–H2334 (2007)

    Article  Google Scholar 

  77. Thornton, G.M., Oliynyk, A., Frank, C.B., Shrive, N.G.: Ligament creep cannot be predicted from stress relaxation at low stress: a biomechanical study of the rabbit medial collateral ligament. J. Orthop. Res. 15(5), 652–656 (1997)

    Article  Google Scholar 

  78. Raz, E., Lanir, Y.: Recruitment viscoelasticity of the tendon. J. Biomech. Eng. 131(11), 111008 (2009)

    Article  Google Scholar 

  79. Eshel, H., Lanir, Y.: Effects of strain level and proteoglycan depletion on preconditioning and viscoelastic responses of rat dorsal skin. Ann. Biomed. Eng. 29(2), 164–172 (2001)

    Article  Google Scholar 

  80. Mullins, L.: Softening of rubber by deformation. Rubber Chem. Technol. 42, 339–362 (1969)

    Article  Google Scholar 

  81. Tong, P., Fung, Y.C.: The stress-strain relationship for the skin. J. Biomech. 9(10), 649–657 (1976)

    Article  Google Scholar 

  82. Chuong, C.J., Fung, Y.C.: Compressibility and constitutive equation of arterial wall in radial compression experiments. J. Biomech. 17(1), 35–40 (1984)

    Article  Google Scholar 

  83. Fung, Y.C., Fronek, K., Patitucci, P.: Pseudoelasticity of arteries and the choice of its mathematical expression. Physiol. Entomol. 237(5), H620–H631 (1979)

    Google Scholar 

  84. Lanir, Y.: Biaxial stress-strain relationship in the skin. Isr. J. Technol. 17(2), 78–85 (1979)

    MATH  Google Scholar 

  85. Vawter, D.L., Fung, Y.C., West, J.B.: Constitutive equation of lung-tissue elasticity. J. Biomech. Eng. 101(1), 38–45 (1979)

    Article  Google Scholar 

  86. Humphrey, J.D., Vawter, D.L., Vito, R.P.: Pseudoelasticity of excised visceral pleura. J. Biomech. Eng. 109(2), 115–120 (1987)

    Article  Google Scholar 

  87. Yin, F.C.: Ventricular wall stress. Circ. Res. 49(4), 829–842 (1981)

    Article  Google Scholar 

  88. Glass, L., Hunter, P.J., McCulloch, A.D. (eds.): Theory of Heart. Springer, New York (1991)

    Google Scholar 

  89. Schnid, H., Hunter, P.J.: Multi-scale modeling of the heart. In: Holzapfel, G.A., Ogden, R.W. (eds.) Biomechanical Modeling at the Molecular, Cellular and Tissue Levels, pp. 83–107. Springer, Wien (2009)

    Chapter  Google Scholar 

  90. Frank, J.S., Langer, G.A.: The myocardial interstitium: its structure and its role in ionic exchange. J. Cell Biol. 60(3), 586–601 (1974)

    Article  Google Scholar 

  91. Caspari, P.G., Newcomb, M., Gibson, K., Harris, P.: Collagen in the normal and hypertrophied human ventricle. Cardiovasc. Res. 11(6), 554–558 (1977)

    Article  Google Scholar 

  92. Weber, K.T.: Cardiac interstitium in health and disease: the fibrillar collagen network. J. Am. Coll. Cardiol. 13(7), 1637–1652 (1989)

    Article  Google Scholar 

  93. Streeter, D.D. Jr., Spotnitz, H.M., Patel, D.P., Ross, J. Jr., Sonnenblick, E.H.: Fiber orientation in the canine left ventricle during diastole and systole. Circ. Res. 24(3), 339–347 (1969)

    Article  Google Scholar 

  94. Borg, T.K., Caulfield, J.B.: The collagen matrix of the heart. Fed. Proc. 40(7), 2037–2041 (1981)

    Google Scholar 

  95. Caulfield, J.B., Borg, T.K.: The collagen network of the heart. Labor Invest. 40(3), 364–372 (1979)

    Google Scholar 

  96. Robinson, T.F., Cohen-Gould, L., Factor, S.M.: Skeletal framework of mammalian heart muscle: arrangement of inter- and pericellular connective tissue structures. Labor Invest. 49(4), 482–498 (1983)

    Google Scholar 

  97. Robinson, T.F., Factor, S.M., Capasso, J.M., Wittenberg, B.A., Blumenfeld, O.O., Seifter, S.: Morphology, composition, and function of struts between cardiac myocytes of rat and hamster. Cell Tissue Res. 249(2), 247–255 (1987)

    Article  Google Scholar 

  98. Caulfield, J.B., Borg, T.K.: Collagen network of the heart. Lab. Invest. 40(3), 364–372 (1979)

    Google Scholar 

  99. Horowitz, A., Lanir, Y., Yin, F.C.P., Perl, M., Sheinman, I., Strumpf, R.K.: Structural 3-dimensional constitutive law for the passive myocardium. J. Biomech. Eng. 110(3), 200–207 (1988)

    Article  Google Scholar 

  100. Nevo, E., Lanir, Y.: Structural finite deformation model of the left-ventricle during diastole and systole. J. Biomech. Eng. 111(4), 342–349 (1989)

    Article  Google Scholar 

  101. Labeit, S., Kolmerer, B.: Titins: giant proteins in charge of muscle ultrastructure and elasticity. Science 270(5234), 293–296 (1995)

    Article  ADS  Google Scholar 

  102. Hill, A.V.: The heat of shortening and the dynamic constants of muscle. Proc. R. Soc. Edinb. Sect. B. Biol. 126, 136–195 (1938)

    Article  ADS  Google Scholar 

  103. Jockenhoevel, S., Zund, G., Hoerstrup, S.P., Schnell, A., Turina, M.: Cardiovascular tissue engineering: a new laminar flow chamber for in vitro improvement of mechanical tissue properties. ASAIO J. 48(1), 8–11 (2002)

    Article  Google Scholar 

  104. Nerem, R.M., Seliktar, D.: Vascular tissue engineering. Annu. Rev. Biomed. Eng. 3, 225–243 (2001)

    Article  Google Scholar 

  105. Niklason, L.E., Yeh, A.T., Calle, E.A., Bai, Y., Valentin, A., Humphrey, J.D.: Enabling tools for engineering collagenous tissues integrating bioreactors, intravital imaging, and biomechanical modeling. Proc. Natl. Acad. Sci. USA 107(8), 3335–3339 (2010)

    Article  ADS  Google Scholar 

  106. Jackson, Z.S., Gotlieb, A.I., Langille, B.L.: Wall tissue remodeling regulates longitudinal tension in arteries. Circ. Res. 90(8), 918–925 (2002)

    Article  Google Scholar 

  107. Kamiya, A., Togawa, T.: Adaptive regulation of wall shear stress to flow change in the canine carotid artery. Am. J. Physiol. 239(1), H14–H21 (1980)

    Google Scholar 

  108. Langille, B.L., Bendeck, M.P., Keeley, F.W.: Adaptations of carotid arteries of young and mature rabbits to reduced carotid blood flow. Am. J. Physiol. 256(4 Pt 2), H931–H939 (1989)

    Google Scholar 

  109. Wayman, B.H., Taylor, W.R., Rachev, A., Vito, R.P.: Arteries respond to independent control of circumferential and shear stress in organ culture. Ann. Biomed. Eng. 36(5), 673–684 (2008)

    Article  Google Scholar 

  110. Humphrey, J.D., Rajagopal, K.R.: A constrained mixture model for growth and remodeling of soft tissues. Math. Models Methods Appl. Sci. 12(3), 407–430 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  111. Cowin, S.C.: Tissue growth and remodeling. Annu. Rev. Biomed. Eng. 6, 77–107 (2004)

    Article  Google Scholar 

  112. Lanir, Y.: Mechanistic micro-structural theory of soft tissues growth and remodeling: tissues with unidirectional fibers. Biomech. Model. Mechanobiol. 14(2), 245–266 (2015)

    Article  Google Scholar 

  113. Gleason, R.L., Jr., Humphrey, J.D.: A 2D constrained mixture model for arterial adaptations to large changes in flow, pressure and axial stretch. Math. Med. Biol. 22(4), 347–369 (2005)

    Article  MATH  Google Scholar 

  114. Cowin, S.C.: Continuum kinematical modeling of mass increasing biological growth. Int. J. Eng. Sci. 48(11), 1137–1145 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  115. Chen, H., Liu, Y., Slipchenko, M.N., Zhao, X., Cheng, J.X., Kassab, G.S.: The layered structure of coronary adventitia under mechanical load. Biophys. J. 101(11), 2555–2562 (2011)

    Article  ADS  Google Scholar 

  116. Hill, M.R., Duan, X., Gibson, G.A., Watkins, S., Robertson, A.M.: A theoretical and non-destructive experimental approach for direct inclusion of measured collagen orientation and recruitment into mechanical models of the artery wall. J. Biomech. 45(5), 762–771 (2012)

    Article  Google Scholar 

  117. Horny, L., Chlup, H., Zitny, R.: Collagen orientation and waviness within the vein wall. In: XI International Conference on Computational Plasticity: Fundamentals and Applications, Spain. International Center for Numerical Methods in Engineering (CIMNE), Barcelona (2011)

    Google Scholar 

  118. Zeinali-Davarani, S., Chow, M.J., Turcotte, R., Zhang, Y.: Characterization of biaxial mechanical behavior of porcine aorta under gradual elastin degradation. Ann. Biomed. Eng. 41(7), 1528–1538 (2013)

    Article  Google Scholar 

  119. Chen, H., Liu, Y., Zhao, X.F., Lanir, Y., Kassab, G.S.: A micromechanics finite-strain constitutive model of fibrous tissue. J. Mech. Phys. Solids 59(9), 1823–1837 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  120. Imanuel, O.: Stress analysis in the left ventricle of the heart. PhD thesis, Faculty of Biomedical Engineering, Technion–I.I.T.: Haifa (1996)

  121. Chen, H., Liu, Y., Slipchenko, M., Zhao, X., Cheng, J.-X., Kassab, G.: The layered structure of coronary adventitia under mechanical load. Biophys. J. 101, 2555–2562 (2011). doi:10.1016/j.bpj.2011.10.043

    Article  ADS  Google Scholar 

  122. Zoumi, A., Lu, X., Kassab, G.S., Tromberg, B.J.: Imaging coronary artery microstructure using second-harmonic and two-photon fluorescence microscopy. Biophys. J. 87(4), 2778–2786 (2004)

    Article  ADS  Google Scholar 

  123. Freed, A.D., Einstein, D.R., Vesely, I.: Invariant formulation for dispersed transverse isotropy in aortic heart valves: an efficient means for modeling fiber splay. Biomech. Model. Mechanobiol. 4(2–3), 100–117 (2005)

    Article  Google Scholar 

  124. Gasser, T.C., Ogden, R.W., Holzapfel, G.A.: Hyperelastic modelling of arterial layers with distributed collagen fibre orientations. J. Roy. Soc. Interface 3, 15–35 (2006)

    Article  Google Scholar 

  125. Cortes, D.H., Lake, S.P., Kadlowec, J.A., Soslowsky, L.J., Elliott, D.M.: Characterizing the mechanical contribution of fiber angular distribution in connective tissue: comparison of two modeling approaches. Biomech. Model. Mechanobiol. 9(5), 651–658 (2010)

    Article  Google Scholar 

  126. Federico, S., Herzog, W.: Towards an analytical model of soft biological tissues. J. Biomech. 41(16), 3309–3313 (2008)

    Article  Google Scholar 

  127. Bischoff, J.E., Arruda, E.A., Grosh, K.: A microstructurally based orthotropic hyperelastic constitutive law. J. Appl. Mech. 69, 570–579 (2002)

    Article  ADS  MATH  Google Scholar 

  128. Elata, D., Rubin, M.: Isotropy of strain energy functions which depend only on a finite number of directional strain measures. J. Appl. Mech. 61(2), 284–289 (1994)

    Article  ADS  MATH  Google Scholar 

  129. Bazant, Z.P.: Efficient numerical integration on the surface of a sphere. ZAMM Z. Angew. Math. Mech. 66(1), 37–49 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  130. Ehret, A.E., Itskov, M., Schmid, H.: Numerical integration on the sphere and its effect on the material symmetry of constitutive equations—a comparative study. Internat. J. Numer. Methods Engrg. 81(2), 189–206 (2010)

    MATH  Google Scholar 

  131. Delsarte, P., Goethals, J.M., Seidel, J.J.: Spherical codes and designs. Geom. Dedicata 6, 363–388 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  132. Hardin, R.H., Sloane, N.J.A.: McLaren’s improved snub cube and other new spherical designs in three dimensions. Discrete Comput. Geom. 15, 429–441 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  133. Federico, S., Gasser, T.C.: Nonlinear elasticity of biological tissues with statistical fiber orientation. J. Roy. Soc. Interface 7(47), 955–966 (2010)

    Article  Google Scholar 

  134. Martufi, G., Gasser, T.C.: A constitutive model for vascular tissue that integrates fibril, fiber and continuum levels with application to the isotropic and passive properties of the infrarenal aorta. J. Biomech. 44(14), 2544–2550 (2011)

    Article  Google Scholar 

  135. Gray, M.L., Pizzanelli, A.M., Grodzinsky, A.J., Lee, R.C.: Mechanical and physiochemical determinants of the chondrocyte biosynthetic response. J. Orthop. Res. 6(6), 777–792 (1988)

    Article  Google Scholar 

  136. Palmoski, M.J., Brandt, K.D.: Effects of static and cyclic compressive loading on articular cartilage plugs in vitro. Arthritis Rheum. 27(6), 675–681 (1984)

    Article  Google Scholar 

  137. Sah, R.L., Kim, Y.J., Doong, J.Y., Grodzinsky, A.J., Plaas, A.H., Sandy, J.D.: Biosynthetic response of cartilage explants to dynamic compression. J. Orthop. Res. 7(5), 619–636 (1989)

    Article  Google Scholar 

  138. Torzilli, P.A., Grigiene, R., Huang, C., Friedman, S.M., Doty, S.B., Boskey, A.L., Lust, G.: Characterization of cartilage metabolic response to static and dynamic stress using a mechanical explant test system. J. Biomech. 30(1), 1–9 (1997)

    Article  Google Scholar 

  139. Lee, D.A., Bader, D.L.: Compressive strains at physiological frequencies influence the metabolism of chondrocytes seeded in agarose. J. Orthop. Res. 15(2), 181–188 (1997)

    Article  Google Scholar 

  140. Davies, P.F.: Flow-mediated endothelial mechanotransduction. Physiol. Rev. 75(3), 519–560 (1995)

    Google Scholar 

  141. Akhyari, P., Fedak, P.W., Weisel, R.D., Lee, T.Y., Verma, S., Mickle, D.A., Li, R.K.: Mechanical stretch regimen enhances the formation of bioengineered autologous cardiac muscle grafts. Circulation 106(12 Suppl 1), I137–I142 (2002)

    Google Scholar 

  142. Kim, B.S., Nikolovski, J., Bonadio, J., Mooney, D.J.: Cyclic mechanical strain regulates the development of engineered smooth muscle tissue. Nat. Biotechnol. 17(10), 979–983 (1999)

    Article  Google Scholar 

  143. Langer, R., Vacanti, J.P.: Tissue engineering. Science 260(5110), 920–926 (1993)

    Article  ADS  Google Scholar 

  144. Fung, Y.C.: Biorheology of soft tissues. Biorheology 10(2), 139–155 (1973)

    Google Scholar 

Download references

Acknowledgement

The comments and advice of Prof. David Durban are gratefully acknowledged. This research was supported by the National Institutes of Health (grant NIH R01 HL117990).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoram Lanir.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lanir, Y. Multi-scale Structural Modeling of Soft Tissues Mechanics and Mechanobiology. J Elast 129, 7–48 (2017). https://doi.org/10.1007/s10659-016-9607-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10659-016-9607-0

Keywords

Mathematics Subject Classification

Navigation