Skip to main content

Nanocelluloses for Removal of Heavy Metals From Wastewater

  • Reference work entry
  • First Online:
Handbook of Nanocelluloses

Abstract

Nowadays, water pollution has become a major problem in the world. Heavy metals represent the major toxic hazardous pollutants affecting ecosystems as well as living systems and human health. They are well-known for their high persistence, bioaccumulation, and nonbiodegradable nature. Over the past years, many strategies have been evolved to solve this environmental concern by removing these metals from potable and polluted water. However, these techniques suffer from several drawbacks, such as low efficiency, sensitive operating conditions, and an increased cost. Recently, cellulose nanomaterials have received increasing interest and are implied in a broad field of applications, including medicine, energy, cosmetics, and environmental remediation. Most particularly, cellulose-based nanomaterials have emerged as an attractive alternative to deal with metallic pollutants in both water and industrial effluents due to their high potential biosorption, environmentally friendly, economic advantages, regeneration ability, and high removal efficiency. Herein, we attempt to highlight the performance of nanocelluloses in their various forms (cellulose nanocrystals, nanofibrils, bacterial, and chemically modified ones) in the removal of heavy metals from wastewater.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bankole, M.T., Abdulkareem, A.S., Mohammed, I.A., Ochigbo, S.S., Tijani, J.O., Abubakre, O.K., Roos, W.D.: Selected heavy metals removal from electroplating wastewater by purified and polyhydroxylbutyrate functionalized carbon nanotubes adsorbents. Sci. Rep. 9(1) (2019)

    Google Scholar 

  2. Nnaji, C.O., Jeevanandam, J., Chan, Y.S., Danquah, M.K., Pan, S., Barhoum, A.: Engineered nanomaterials for wastewater treatment: current and future trends. In: Fundamentals of Nanoparticles, pp. 129–168. Elsevier, Amsterdam (2018)

    Chapter  Google Scholar 

  3. Mansourri, G., Madani, M.: Examination of the level of heavy metals in wastewater of Bandar Abbas Wastewater Treatment Plant. Open J. Ecol. 6, 55–61 (2016)

    Article  Google Scholar 

  4. Kikuchi, T., Tanaka, S.: Biological removal and recovery of toxic heavy metals in water environment. Crit. Rev. Environ. Sci. Technol. 42, 1007–1057 (2012)

    Article  CAS  Google Scholar 

  5. Sun, Y., Zhou, S., Pan, S.-Y., Zhu, S., Yu, Y., Zheng, H.: Performance evaluation and optimization of flocculation process for removing heavy metal. Chem. Eng. J. 385, 123911 (2019)

    Article  CAS  Google Scholar 

  6. Hamimed, S., Barkaoui, T., Trabelsi, I., Landoulsi, A., Chatti, A.: High-performance biological treatment of tuna wash processing wastewater using Yarrowia lipolytica. Environ. Sci. Pollut. Res. 28, 1545–1554 (2021)

    Article  CAS  Google Scholar 

  7. Klemm, D., Heublein, B., Fink, H.-P., Bohn, A.: Cellulose: fascinating biopolymer and sustainable raw material. Angew. Chem. Int. Ed. 44, 3358–3393 (2005)

    Article  CAS  Google Scholar 

  8. Barhoum, A., Li, H., Chen, M., Cheng, L., Yang, W., Dufresne, A.: Emerging applications of cellulose nanofibers. In: Handbook of Nanofibers, pp. 1131–1156. Springer, Cham (2019)

    Chapter  Google Scholar 

  9. Phanthong, P., Reubroycharoen, P., Hao, X., Xu, G., Abudula, A., Guan, G.: Nanocellulose: extraction and application. Carbon Resour. Convers. 1, 32–43 (2018)

    Article  Google Scholar 

  10. Rafieian, F., Hosseini, M., Jonoobi, M., Yu, Q.: Development of hydrophobic nanocellulose-based aerogel via chemical vapor deposition for oil separation for water treatment. Cellulose. 25(8), 4695–4710 (2018)

    Article  CAS  Google Scholar 

  11. Voisin, H., Bergström, L., Liu, P., Mathew, A.: Nanocellulose-based materials for water purification. Nanomaterials. 7, 57 (2017)

    Article  PubMed Central  CAS  Google Scholar 

  12. Sehaqui, H., de Larraya, U.P., Liu, P., Pfenninger, N., Mathew, A.P., Zimmermann, T.: Enhancing adsorption of heavy metal ions onto biobased nanofibers from waste pulp residues for application in wastewater treatment. Cellulose. 21, 2831–2844 (2014)

    Article  CAS  Google Scholar 

  13. Yao, C., Wang, F., Cai, Z., Wang, X.: Aldehyde-functionalized porous nanocellulose for effective removal of heavy metal ions from aqueous solutions. RSC Adv. 6, 92648–92654 (2016)

    Article  CAS  Google Scholar 

  14. Liu, P., Borrell, P.F., Božič, M., Kokol, V., Oksman, K., Mathew, A.P.: Nanocelluloses and their phosphorylated derivatives for selective adsorption of Ag+, Cu2+ and Fe3+ from industrial effluents. J. Hazard. Mater. 294, 177–185 (2015)

    Article  CAS  PubMed  Google Scholar 

  15. Li, M., Ashagre Messele, S., Boluk, Y., El-Din, M.G.: Isolated cellulose nanofibers for Cu (II) and Zn (II) removal: performance and mechanisms. Carbohydr. Polym. 221, 231–241 (2019)

    Article  CAS  PubMed  Google Scholar 

  16. Ali, H., Khan, E.: “What are heavy metals?” Long-standing controversy over the scientific use of the term’ heavy metals’-proposal of a comprehensive definition. Toxicol. Environ. Chem. 100, 6–19 (2018)

    Article  CAS  Google Scholar 

  17. Ali, H., Khan, E., Ikram, I.: Environmental chemistry and ecotoxicology of hazardous heavy metals: environmental persistence, toxicity, and bioaccumulation. J. Chem. 2019, 6730305 (2019)

    Google Scholar 

  18. Salomons, W., Forstner, U., Mader, P.: Heavy Metals: Problems and Solutions, pp. 1–403. Springer, Berlin (1995)

    Google Scholar 

  19. Ratte, H.T.: Bioaccumulation and toxicity of silver compounds: a review. Environ. Toxicol. Chem. 18, 89–108 (1999)

    Article  CAS  Google Scholar 

  20. Kim, K.T., Eo, M.Y., Nguyen, T.T.H., Kim, S.M.: General review of titanium toxicity. Int. J. Implant. Dent. 5, 10 (2019)

    Article  PubMed  PubMed Central  Google Scholar 

  21. Nagajyoti, P.C., Lee, K.D., Sreekanth, T.V.M.: Heavy metals, occurrence and toxicity for plants: a review. Environ. Chem. Lett. 8, 199–216 (2010)

    Article  CAS  Google Scholar 

  22. Masindi, V., Muedi, K.L.: Environmental contamination by heavy metals. Heavy Metals. IntechOpen 76082, pp. 116-133 (2018)

    Google Scholar 

  23. Ahmed, M.K., Parvin, E., Islam, M.M., Akter, M.S., Khan, S., Al-Mamun, M.H.: Lead- and cadmium-induced histopathological changes in gill, kidney and liver tissue of freshwater climbing perch Anabas testudineus (Bloch, 1792). Chem. Ecol. 30, 532–540 (2014)

    Article  CAS  Google Scholar 

  24. Nayar, S., Goh, B.P.L., Chou, L.M.: Environmental impact of heavy metals from dredged and resuspended sediments on phytoplankton and bacteria assessed in in situ mesocosms. Ecotoxicol. Environ. Saf. 59, 349–369 (2004)

    Article  CAS  PubMed  Google Scholar 

  25. Rao, C.R.M., Sahuquillo, A., Lopez-Sanchez, J.F.: Comparison of single and sequential extraction procedures for the study of rare earth elements remobilisation in different types of soils. Anal. Chim. Acta. 662, 128–136 (2010)

    Article  CAS  PubMed  Google Scholar 

  26. Zhao, S., Shi, X., Li, C., Zhang, H., Wu, Y.: Seasonal variation of heavy metals in sediment of Lake Ulansuhai. China. Chem. Ecol. 30, 1–14 (2014)

    Article  CAS  Google Scholar 

  27. Ali Azadi, N., Mansouri, B., Spada, L., Sinkakarimi, M.H., Hamesadeghi, Y., Mansouri, A.: Contamination of lead (Pb) in the coastal sediments of north and south of Iran: a review study. Chem. Ecol. 34, 884–900 (2018)

    Article  CAS  Google Scholar 

  28. Qian, X., Wang, Z., Shen, G., Chen, X., Tang, Z., Guo, C., Gu, G., Fu, K.: Heavy metals accumulation in soil after 4 years of continuous land application of swine manure: a field-scale monitoring and modeling estimation. Chemosphere. 210, 1029–1034 (2018)

    Article  CAS  PubMed  Google Scholar 

  29. Ke, W., Xiong, Z.T., Chen, S., Chen, J.: Effects of copper and mineral nutrition on growth, copper accumulation and mineral element uptake in two Rumex japonicas populations from a copper mine and an uncontaminated field sites. Environ. Exp. Bot. 59, 59–67 (2007)

    Article  CAS  Google Scholar 

  30. Abdallah, B.B., Zhang, X., Andreu, I., Gates, B.D., El Mokni, R., Rubino, S., Landoulsi, A., Chatti, A.: Differentiation of nanoparticles isolated from distinct plant species naturally growing in a heavy metal polluted site. J. Hazard. Mater. 386, 121644 (2019)

    Article  PubMed  CAS  Google Scholar 

  31. Goyal, D., Yadav, A., Prasad, M., Bahadur Singh, T., Shrivastav, P., Ali, A., Dantu, K.P., Mishra, S.: Effect of heavy metals on plant growth: an overview. In: Naeem, M., Ansari, A.A., Gill, S.S. (eds.) Contaminants in Agriculture. Springer (2020)

    Google Scholar 

  32. Ali, H., Khan, E.: Trophic transfer, bioaccumulation, and biomagnification of non-essential hazardous heavy metals and metalloids in food chains/webs – Concepts and implications for wildlife and human health. Hum. Ecol Risk Assess. Int. J. 25, 1353–1376 (2019)

    Article  CAS  Google Scholar 

  33. Balkhair, K.S., Ashraf, M.A.: Field accumulation risks of heavy metals in soil and vegetable crop irrigated with sewage water in western region of Saudi Arabia. Saudi. J. Biol. Sci. 23, 32–44 (2016)

    Article  CAS  Google Scholar 

  34. Waseem, A., Arshad, J.: A review of Human Biomonitoring studies of trace elements in Pakistan. Chemosphere. 163, 153–176 (2016)

    Article  CAS  PubMed  Google Scholar 

  35. Mehana, E.-S.E., Khafaga, A.F., Elblehi, S.S., Abd El-Hack, M.E., Naiel, M.A.E., Bin-Jumah, M., Othman, S.I., Allam, A.A.: Biomonitoring of heavy metal pollution using acanthocephalans parasite in ecosystem: an updated overview. Animals. 10, 811 (2020)

    Article  PubMed Central  Google Scholar 

  36. Oucher, N., Kerbachi, R., Ghezloun, A., Merabet, H.: Magnitude of air pollution by heavy metals associated with aerosols particles in Algiers. Energy Procedia. 74, 51–58 (2015)

    Article  CAS  Google Scholar 

  37. Soleimani, M., Amini, N., Sadeghian, B., Wang, D., Fang, L.: Heavy metals and their source identification in particulate matter (PM 2.5) in Isfahan City. Iran. J. Environ. Sci. 72, 166–175 (2018)

    Article  CAS  Google Scholar 

  38. Sall, M.L., Diaw, A.K.D., Gningue-Sall, D., et al.: Toxic heavy metals: impact on the environment and human health, and treatment with conducting organic polymers, a review. Environ. Sci. Pollut. Res. 27, 29927–29942 (2020)

    Article  CAS  Google Scholar 

  39. Barhoum, A., Samyn, P., Öhlund, T., Dufresne, A.: Review of recent research on flexible multifunctional nanopapers. Nanoscale. 9, 15181–15205 (2017)

    Article  CAS  PubMed  Google Scholar 

  40. Mohmood, I., Lopes, C.B., Lopes, I., Ahmad, I., Duarte, A.C., Pereira, E.: Nanoscale materials and their use in water contaminants removal – a review. Environ. Sci. Pollut. Res. 20, 1239–1260 (2013)

    Google Scholar 

  41. Zhang, Y., Nypelö, T., Salas, C., Arboleda, J., Hoeger, I.C., Rojas, O.J.: Cellulose nanofibrils: from strong materials to bioactive surfaces. J. Renew. Mater. 3, 195–211 (2013)

    Article  Google Scholar 

  42. Salas, C., Nypelö, T., Rodriguez-Abreu, C., Carrillo, C., Rojas, O.J.: Nanocellulose properties and applications in colloids and interfaces. Curr. Opin. Colloid Interface Sci. 19, 383–396 (2014)

    Article  CAS  Google Scholar 

  43. Mahfoudhi, N., Boufi, S.: Nanocellulose, Cellulose- Reinforced Nanofibre Composites, pp. 277–304. Elsevier, Amsterdam (2017)

    Book  Google Scholar 

  44. Michelin, M., Gomes, D.G., Romaní, A., de Polizeli, M.L.T., Teixeira, J.A.: Nanocellulose production: exploring the enzymatic route and residues of pulp and paper industry. Molecules. 25(15), 3411 (2020)

    Article  CAS  PubMed Central  Google Scholar 

  45. Zhang, K., Barhoum, A., Xiaoqing, C., Haoyi, L., Samyn, P.: Cellulose nanofibers: fabrication and surface functionalization techniques. In: Handbook of Nanofibers, pp. 409–449 (2019)

    Chapter  Google Scholar 

  46. Ibrahim, H., Norazlianie, S.I.N., Mohd, S.S.: Nano-structured cellulose as green adsorbents for water purification: a mini review. J. Appl. Membr. Sci. Technol. 23, 45–56 (2019)

    Google Scholar 

  47. Barhoum, A., Jeevanandam, J., Rastogi, A., Samyn, P., Boluk, Y., Dufresne, A., Danquah, M.K., Bechelany, M.: Plant celluloses, hemicelluloses, lignins, and volatile oils for the synthesis of nanoparticles and nanostructured materials. Nanoscale. 12, 22845–22890 (2020)

    Article  CAS  PubMed  Google Scholar 

  48. Lin, N., Huang, J., Dufresne, A.: Preparation, properties and applications of polysaccharide nanocrystals in advanced functional nanomaterials: a review. Nanoscale. 4, 3274 (2012)

    Article  CAS  PubMed  Google Scholar 

  49. Eyley, S., Thielemans, W.: Surface modification of cellulose nanocrystals. Nanoscale. 6, 7764–7797 (2014)

    Article  CAS  PubMed  Google Scholar 

  50. Rusli, R., Eichhorn, S.J.: Determination of the stiffness of cellulose nanowhiskers and the fiber-matrix interface in a nanocomposite using Raman spectroscopy. Appl. Phys. Lett. 93, 033111–033113 (2008)

    Article  CAS  Google Scholar 

  51. Tanpichai, S., Quero, F., Nogi, M., Yano, H., Young, R.J., Lindström, T.: Effective Young’s modulus of bacterial and microfibrillated cellulose fibrils in fibrous networks. Biomacromolecules. 13, 1340–1349 (2012)

    Article  CAS  PubMed  Google Scholar 

  52. Habibi, Y., Lucia, L.A., Rojas, O.J.: Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem. Rev. 110, 3479–3500 (2010)

    Article  CAS  PubMed  Google Scholar 

  53. Nguyen, T., Roddick, F.A., Fan, L.: Biofouling of water treatment membranes: a review of the underlying causes, monitoring techniques and control measures. Membranes. 2, 804–840 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. El-Sayed, M.E.A.: Nanoadsorbents for water and wastewater remediation. Sci. Total Environ., 139903 (2020)

    Google Scholar 

  55. Trache, D., Thakur, V.K., Boukherroub, R.: Cellulose nanocrystals/graphene hybrids – a promising new class of materials for advanced applications. Nanomaterials. 10, 1523 (2010)

    Article  CAS  Google Scholar 

  56. Hong, H.-J., Lim, J.S., Hwang, J.Y., Kim, M., Jeong, H.S., Park, M.S.: Carboxymethlyated cellulose nanofibrils(CMCNFs) embedded in polyurethane foam as a modular adsorbent of heavy metal ions. Carbohydr. Polym. 195, 136–142 (2018)

    Article  CAS  PubMed  Google Scholar 

  57. Othmani, A., Kesraoui, A., Seffen, M.: Removal of phenol from aqueous solution by coupling alternating current with biosorption. Environ. Sci. Pollut. Res., 1–16 (2020)

    Google Scholar 

  58. Hu, X.F., Jiang, Y., Shu, Y., Hu, X., Liu, L., Luo, F.: Effects of mining wastewater discharges on heavy metal pollution and soil enzyme activity of the paddy fields. J. Geochem. Explor. 147, 139–150 (2014)

    Article  CAS  Google Scholar 

  59. Li, Z., Ma, Z., van der Kuijp, T.J., Yuan, Z., Huang, L.: A review of soil heavy metal pollution from mines in China: pollution and health risk assessment. Sci. Total Environ. 468–469, 843–853 (2014)

    Article  PubMed  CAS  Google Scholar 

  60. Pacyna, E.G., Pacyna, J.M., Fudala, J., Strzelecka-Jastrzab, E., Hlawiczka, S., Panasiuk, D., Nitter, S., Pregger, T., Pfeiffer, H., Friedrich, R.: Current and future emission of selected heavy metals to the atmosphere from anthropogenic sources in Europe. Atmos. Environ. 41, 8557 (2007)

    Article  CAS  Google Scholar 

  61. Sudilovskiy, P.S., Kagramanov, G.G., Trushin, A.M., Kolesnikov, V.A.: Use of membranes for heavy metal cationic wastewater treatment: flotation and membrane filtration. Clean Techn. Environ. Policy. 9, 189–198 (2007)

    Article  CAS  Google Scholar 

  62. Hargreaves, A.J., Vale, P., Whelan, J., Alibardi, L., Constantino, C., Dotro, G., Cartmell, E., Campo, P.: Coagulation–flocculation process with metal salts, synthetic polymers and biopolymers for the removal of trace metals (Cu, Pb, Ni, Zn) from municipal wastewater. Clean Technol. Environ. Policy. 20, 393–402 (2018)

    Article  CAS  Google Scholar 

  63. González-Muñoz, M.J., Rodríguez, M.A., Luque, S., Álvarez, J.R.: Recovery of heavy metals from metal industry waste waters by chemical precipitation and nanofiltration. Desalination. 200, 742–744 (2006)

    Article  CAS  Google Scholar 

  64. Verbych, S., Hilal, N., Sorokin, G., Leaper, M.: Ion exchange extraction of heavy metal ions from wastewater. Sep. Sci. Technol. 39, 2031–2040 (2004)

    Article  CAS  Google Scholar 

  65. Tran, T.K., Leu, H.J., Chiu, K.F., Lin, C.Y.: Electrochemical treatment of heavy metal-containing wastewater with the removal of COD and heavy metal ions. J. Chin. Chem. Soc. 64, 493–502 (2017)

    Article  CAS  Google Scholar 

  66. Namasivayam, C., Sangeetha, D.: Recycling of agricultural solid waste, coir pith: removal of anions, heavy metals, organics and dyes from water by adsorption onto ZnCl2 activated coir pith carbon. J. Hazard. Mater. 135, 449–452 (2006)

    Article  CAS  PubMed  Google Scholar 

  67. Farooq, U., Kozinski, J.A., Khan, M.A., Athar, M.: Biosorption of heavy metal ions using wheat based biosorbents – a review of the recent literature. Bioresour. Technol. 101(14), 5043–5053 (2010)

    Article  CAS  PubMed  Google Scholar 

  68. Rezakazemi, M., Mosavi, A., Shirazian, S.: ANFIS pattern for molecular membranes separation optimization. J. Mol. Liq. 274, 470–476 (2019)

    Article  CAS  Google Scholar 

  69. Favre, E.: Comprehensive Membrane Science and Engineering. ISBN: 9780444637758 (2010)

    Google Scholar 

  70. Abdullah, N., Tajuddin, M.H., Yusof, N.: Forward osmosis (FO) for removal of heavy metals. In: Nanotechnology in Water and Wastewater Treatment, pp. 177–204. Elsevier (2019)

    Chapter  Google Scholar 

  71. Drioli, E., Romano, M.: Progress and new perspectives on integrated membrane operations for sustainable industrial growth. Ind. Eng. Chem. Res. 40, 1277–1300 (2001)

    Article  CAS  Google Scholar 

  72. Hajilary, N., Rezakazemi, M., Shirazian, S.: Biofuel types and membrane separation. Environ. Chem. Lett. 17, 1–18 (2018)

    Article  CAS  Google Scholar 

  73. Rezakazemi, M.: CFD simulation of seawater purification using direct contact membrane desalination (DCMD) system. Desalination. 443, 323–332 (2018)

    Article  CAS  Google Scholar 

  74. Rafique, R.F., Lee, S.: Micellar enhanced ultrafiltration (MEUF) and activated carbon fiber (ACF) hybrid processes for the removal of cadmium from an aqueous solution. Korean Chem. Eng. Res. 52, 775–780 (2014)

    Article  CAS  Google Scholar 

  75. Muhammad, Y., Seung, H.L.: Heavy metals removal from aqueous solution through micellar enhanced ultrafiltration. Environ. Eng. Res. 24, 363–375 (2019)

    Google Scholar 

  76. Nguyen, L.A.T., Schwarze, M., Schomäcker, R.: Adsorption of non-ionic surfactant from aqueous solution onto various ultrafiltration membranes. J. Membr. Sci. 493, 120–133 (2015)

    Article  CAS  Google Scholar 

  77. Rezakazemi, M., Shahidi, K., Mohammadi, T.: Sorption properties of hydrogen-selective PDMS/zeolite 4 A mixed matrix membrane. Int. J. Hydrog. Energy. 37, 17275–17284 (2012)

    Article  CAS  Google Scholar 

  78. Hamimed, S., Gamraoui, A., Landoulsi, A., Chatti, A.: Bio-nanocrystallization of NaCl using saline wastewaters through biological treatment by Yarrowia lipolytica. Environ. Technol. Innov. 26, 102338 (2022)

    Google Scholar 

  79. Rostamizadeh, M., Rezakazemi, M., Shahidi, K., Mohammadi, T.: Gas permeation through H2-selective mixed matrix membranes: experimental and neural network modeling. Int. J. Hydrog. Energy. 38, 1128–1135 (2013)

    Article  CAS  Google Scholar 

  80. Ajmani, G.S., Goodwin, D., Marsh, K., Fairbrother, D.H., Schwab, K.J., Jacangelo, J.G., Huang, H.: Modification of low pressure membranes with carbon nanotube layers for fouling control. Water Res. 46, 5645–5654 (2012)

    Article  CAS  PubMed  Google Scholar 

  81. Gallagher, M.J., Huang, H., Schwab, K.J., Fairbrother, D.H., Teychene, B.: Generating backwashable carbon nanotube mats on the inner surface of polymeric hollow fiber membranes. J. Membr. Sci. 446, 59–67 (2013)

    Article  CAS  Google Scholar 

  82. Tzanetakis, N., Taama, W.M., Scott, K., Jachuck, R.J.J., Slade, R.S., Varcoe, J.: Comparative performance of ion exchange membranes for electrodialysis of nickel and cobalt. Sep. Purif. Technol. 30, 113–127 (2003)

    Article  CAS  Google Scholar 

  83. Lalia, B.S., Guillen, E., Arafat, H.A., Hashaikeh, R.: Nanocrystalline cellulose reinforced PVDF-HFP membranes for membrane distillation application. Desalination. 332, 134–141 (2014)

    Article  CAS  Google Scholar 

  84. Cao, X., Huang, M., Ding, B., Yu, J., Sun, G.: Robust polyacrylonitrile nanofibrous membrane reinforced with jute cellulose nanowhiskers for water purification. Desalination. 316, 120–126 (2013)

    Article  CAS  Google Scholar 

  85. Karim, Z., Mathew, A.P., Kokol, V., Wei, J., Grahn, M.: High-flux affinity membranes based on cellulose nanocomposites for removal of heavy metal ions from industrial effluents. RSC Adv. 6, 20644–20653 (2016)

    Article  CAS  Google Scholar 

  86. Pei, X., Gan, L., Tong, Z., Gao, H., Meng, S., Zhang, W., Wang, P., Chen, Y.: Robust cellulose-based composite adsorption membrane for heavy metal removal. J. Hazard. Mater. 406, 124746 (2021)

    Article  CAS  PubMed  Google Scholar 

  87. Teh, C.Y., Wu, T.Y.: The potential use of natural coagulants and focculants in the treatment of urban waters. Chem. Eng. Trans. 39, 1603–1608 (2014)

    Google Scholar 

  88. Beltrán, H.J., Sánchez, M.J.: Removing heavy metals from polluted surface water with a tannin-based focculant agent. J. Hazard. Mater. 165, 1215–1218 (2009)

    Article  CAS  Google Scholar 

  89. Renault, F., Sancey, B., Badot, P.M., Crini, G.: Chitosan for coagulation/focculation processes – an eco-friendly approach. Eur. Polym. J. 45, 1337–1348 (2009)

    Article  CAS  Google Scholar 

  90. Hu, C.-Y., Lo, S.-L., Chang, C.-L., Chen, F.-L., Wu, Y.-D., Ma, J.: Treatment of highly turbid water using chitosan and aluminum salts. Sep. Purif. Technol. 104, 322–326 (2013)

    Article  CAS  Google Scholar 

  91. Bratby, J.: Coagulation and Flocculation in Water and Wastewater Treatment, 2nd edn. IWA Publishing, London (2006)

    Google Scholar 

  92. Alexander, J.T., Hai, F.I., Al-aboud, T.M.: Chemical coagulationbased processes for trace organic contaminant removal: current state and future potential. J. Environ. Manag. 111, 195–207 (2012)

    Article  CAS  Google Scholar 

  93. Suopajärvi, T., Liimatainen, H., Hormi, O., Niinimäki, J.: Coagulation–flocculation treatment of municipal wastewater based on anionized nanocelluloses. Chem. Eng. J. 231, 59–67 (2013)

    Article  CAS  Google Scholar 

  94. Bolto, B., Gregory, J.: Organic polyelectrolytes in water treatment. Water Res. 41, 2301–2324 (2007)

    Article  CAS  PubMed  Google Scholar 

  95. Wang, R., Guan, S., Sato, A., Wang, X., Wang, Z., Yang, R., Hsiao, B.S., Chu, B.: Nanofibrousmicrofiltration membranes capable of removing bacteria, viruses and heavy metal ions. J. Membr. Sci. 2446, 376–382 (2013)

    Article  CAS  Google Scholar 

  96. Kabdaşli, I., Ölmez, T., Tünay, O.: Nitrogen removal from tannery wastewater by protein recovery. Water Pollut. Res. 48, 215–223 (2003)

    Google Scholar 

  97. Jüttner, K., Galla, U., Schmieder, H.: Electrochemical approaches to environmental problems in the process industry. Electrochim. Acta. 45, 2575–2594 (2000)

    Article  Google Scholar 

  98. Wingenfelder, U., Hansen, C., Furrer, G., Schulin, R.: Removal of heavy metals from mine waters by natural zeolites. Environ. Sci. Technol. 39, 4606–4613 (2005)

    Article  CAS  PubMed  Google Scholar 

  99. Jiang, J.Q.: Research progress in the use of ferrate(VI) for the environmental remediation. J. Hazard. Mater. 146, 617–623 (2007)

    Article  CAS  PubMed  Google Scholar 

  100. Jain, A., Sharma, V.K., Mbuya, O.S.: Removal of arsenite by Fe(VI), Fe(VI)/Fe(III), and Fe(VI)/Al(III) salts: effect of pH and anions. J. Hazard. Mater. 169, 339–344 (2009)

    Article  CAS  PubMed  Google Scholar 

  101. Borch, T., Kretzschmar, R., Kappler, A., Van Cappelen, P., Ginder-Vogel, M., Voegelin, A., Campbell, K.: Biogeochemical redox processes and their impact on contaminant dynamics. Environ. Sci. Technol. 44, 15–23 (2010)

    Article  CAS  PubMed  Google Scholar 

  102. (a) Herrmann, J.-M.: Heterogeneous photocatalysis: fundamentals and applications to the removal of various types of aqueous pollutants. Catal. Today 53, 115–129 (1999). (b) Ibhadon, O.A., Fitzpatrick, P.: Heterogeneous photocatalysis: recent advances and applications. Catalysts 3, 189–218 (2013). (c) Gutiérrez, M.C., Crespi, M.: A review of electrochemical treatments for colour elimination. Color. Technol. 115, 342–345 (1999)

    Google Scholar 

  103. Wu, Q., He, H., Zhou, H., Xue, F., Zhu, H., Zhou, S., Wang, S.: Multiple active sites cellulose-based adsorbent for the removal of low-level Cu(II), Pb(II) and Cr(VI) via multiple cooperative mechanisms. Carbohydr. Polym. 233, 115860 (2020)

    Article  CAS  PubMed  Google Scholar 

  104. Dąbrowski, A., Hubicki, Z., Podkościelny, P., Robens, E.: Selective removal of the heavy metal ions from waters and industrial wastewaters by ion-exchange method. Chemosphere. 56, 91–106 (2004)

    Article  PubMed  CAS  Google Scholar 

  105. Kang, S.Y., Lee, J.U., Moon, S.H.: Sorption of Cu2+ and Cd2+ onto acid- and base-pretreated granular activated carbon and activated carbon fiber samples. J. Ind. Eng. Chem. 14, 131–135 (2008)

    Article  CAS  Google Scholar 

  106. Fathima, S.Z., Pandith, A.H.: Synthesis and characterization of zirconium-resorcinol phosphate; a new hybrid cation exchanger and dye adsorbent for water treatment. Mater. Sci. Forum. 842, 196–208 (2016)

    Article  Google Scholar 

  107. Lu, X., Wang, F., Li, X.Y., Shih, K., Zeng, E.Y.: Adsorption and thermal stabilization of Pb2+ and Cu2+ by zeolite. Ind. Eng. Chem. Res. 55, 8767–8773 (2016)

    Article  CAS  Google Scholar 

  108. (a) Fu, F., Wang, Q.: Removal of heavy metal ions from wastewaters: a review. J. Environ. Manag. 92, 407–418 (2011). (b) Ahmed, S., Chughtai, S., Keane, M.A.: The removal of cadmium and lead from aqueous solution by ion exchange with Na-Y zeolite. Sep. Purif. Technol. 13, 57–64 (1998)

    Google Scholar 

  109. Bashir, A., Malik, L.A., Ahad, S., Manzoor, T., Bhat, M.A., Dar, G.N., Pandith, A.H.: Removal of heavy metal ions from aqueous system by ion-exchange and biosorption methods. Environ. Chem. Lett. 17, 729–754 (2019)

    Article  CAS  Google Scholar 

  110. Wang, R., Guan, S., Sato, A., Wang, X., Wang, Z., Yang, R., Hsiao, B.B., Chu, S.: Nanofibrous microfiltration membranes capable of removing bacteria, viruses and heavy metal ions. J. Membr. Sci. 446, 376–382 (2013)

    Article  CAS  Google Scholar 

  111. Kardam, A., Raj, K.R., Srivastava, S., Srivastava, M.M.: Nanocellulose fibers for biosorption of cadmium, nickel, and lead ions from aqueous solution. Clean Techn. Environ. Policy. 16(2), 385–393 (2014)

    Article  CAS  Google Scholar 

  112. Shiyou, L., Zhongqing, H., Shuibo, X., Haiyan, L., Jinxiang, L.: Removal of Cr(VI) from electroplating industry effluent via electrochemical reduction. Int. J. Electrochem. Sci. 13, 655–663 (2018)

    Google Scholar 

  113. Un, U.T., Ocal, S.E.: Removal of heavy metals (Cd, Cu, Ni) by electrocoagulation. Int. J. Environ. Sci. Dev. 6, 425–429 (2015)

    Article  CAS  Google Scholar 

  114. Gunatilake, S.K.: Methods of removing heavy metals from industrial wastewater. J. Multidisciplin. Eng. Sci. Stud. 1, 12–18 (2015)

    Google Scholar 

  115. Yang, G., Tang, L., Lei, X., Zeng, G., Cai, Y., Wei, X., Zhoua, Y., Li, S., Fang, Y., Zhang, Y.: Cd (II) removal from aqueous solution by adsorption on α-ketoglutaric acid-modified magnetic chitosan. Appl. Surf. Sci. 292, 710–716 (2014)

    Article  CAS  Google Scholar 

  116. Yang, R., Aubrecht, K.B., Ma, H.Y., Wang, R., Grubbs, R.B., Hsiao, B.S., Chu, B.: Thiol-modified cellulose nanofibrous composite membranes for chromium(VI) and lead(II) adsorption. Polymer. 55, 1167–1176 (2014)

    Article  CAS  Google Scholar 

  117. (a) de La Rochebrochard, S., Naffrechoux, E., Drogui, P., Mercier, G., Blais, J.-F.: Low frequency ultrasound-assisted leaching of sewage sludge for toxic metal removal, dewatering and fertilizing properties preservation. Ultrason. Sonochem. 20, 109–117 (2013). (b) Wang, X., Chen, J., Yan, X., Wang, X., Zhang, J., Huang, J., Zhao, J.: Heavy metal chemical extraction from industrial and municipal mixed sludge by ultrasound-assisted citric acid. J. Ind. Eng. Chem. 27, 368–372 (2015)

    Google Scholar 

  118. Mohammad, H.O., Mohammad, H.A.A., Bahram, G.-C.: Sonochemistry: a good, fast and clean method to promote the removal of Cu(ii) and Cr(vi) by MWCNT/CoFe2O4@PEI nanocomposites: optimization study. New J. Chem. 42, 16307–16328 (2018)

    Article  Google Scholar 

  119. Pooralhossini, J., Zanjanchi, M.A., Ghaedi, M., Asfaram, A., Azqhandi, M.H.A.: Statistical optimization and modeling approach for azo dye decolorization: combined effects of ultrasound waves and nanomaterial-based adsorbent. Appl. Organomet. Chem. 32, e4205 (2018)

    Article  CAS  Google Scholar 

  120. Zhang, P., Ma, Y., Xie, F.: Impacts of ultrasound on selective leaching recovery of heavy metals from metal-containing waste sludge. J. Mater. Cycles Waste Manag. 15, 530–538 (2013)

    Article  CAS  Google Scholar 

  121. Neppolian, B., Doronila, A., Ashokkumar, M.: Sonochemical oxidation of arsenic(III) to arsenic(V) using potassium peroxydisulfate as an oxidizing agent. Water Res. 44, 3687–3695 (2010)

    Article  CAS  PubMed  Google Scholar 

  122. Qin, H., Hu, T., Zhai, Y., Lu, N., Aliyeva, J.: Sonochemical synthesis of ZnS nanolayers on the surface of microbial cells and their application in the removal of heavy metals. J. Hazard. Mater. 400, 123161 (2020)

    Article  CAS  PubMed  Google Scholar 

  123. Li, J., Tan, S., Xu, Z.: Anisotropic nanocellulose aerogel loaded with modified UiO-66 as efficient adsorbent for heavy metal ions removal. Nanomaterials. 10(6) (2020)

    Google Scholar 

  124. Tangahu, B.V., Sheikh-Abdullah, S.R., Basri, H., Idris, M., Anuar, N., Mukhlisin, M.: A review on heavy metals (As, Pb, and Hg) uptake by plants through phytoremediation. Int. J. Chem. Eng. 939161, 1–31 (2011)

    Article  Google Scholar 

  125. Mohsenzadeh, F., Rad, A.C.: Bioremediation of heavy metal pollution by nano particles of Noaea mucronata. Int. J. Biosci. Biochem. Bioinforma. 2, 85–89 (2012)

    Google Scholar 

  126. Ramakrishna, G., Susmita, M.: Application of response surface methodology for optimization of Cr(III) and Cr(VI) adsorption on commercial activated carbons. Res. J. Chem. Sci. 2, 40–48 (2012)

    Google Scholar 

  127. Barakat, M.A.: New trends in removing heavy metals from industrial wastewater. Arab. J. Chem. 4, 361–377 (2011)

    Article  CAS  Google Scholar 

  128. (a) Mahini, R., EsmaeiliHand, Foroutan R.: Adsorption of methyl violet from aqueous solution using brown algae Padina sanctae-crucis Turk. J. Biochem. 43, 623–631 (2018). (b) Esmaeili, H., Foroutan, R.: Adsorptive behavior of methylene blue onto sawdust of sour lemon, date palm, and eucalyptus as agricultural wastes. J. Dispers. Sci. Technol. 40, 990–999 (2019)

    Google Scholar 

  129. Yuan, P., Fan, M., Yang, D., He, H., Liu, D., Yuan, A., Zhu, J.X., Chen, T.H.: Montmorillonite-supported magnetite nanoparticles for the removal of hexavalent chromium [Cr(VI)] from aqueous solutions. J. Hazard. Mater. 166, 821–829 (2009)

    Article  CAS  PubMed  Google Scholar 

  130. (a) Fomina, M., Gadd, G.M.: Biosorption: current perspectives on concept, definition and application. Bioresour. Technol. 160, 3–14 (2014). (b) Lingamdinne, L.P., Yang, J.K., Chang, Y.Y., Koduru, J.R.: Low-cost magnetized Lonicera japonica flower biomass for the sorption removal of heavy metals. Hydrometallurgy 165, 81–89 (2016)

    Google Scholar 

  131. Saeed, A., Iqbal, M., Akhtar, M.W.: Application of biowaste materials for the sorption of heavy metals in contaminated aqueous medium. Pak. J. Sci. Ind. Res. 45, 206–211 (2002)

    CAS  Google Scholar 

  132. (a) He, Y., Liu, Q.Q., Hu, J., Zhao, C.X., Peng, C.J., Yang, Q., Wang, H.L., Liu, H.L.: Efficient removal of Pb(II) by amine functionalized porous organic polymer through post-synthetic modification. Sep. Purif. Technol. 180, 142–148 (2017). (b) Zare, E.N., Lakouraj, M.M., Ramezani, A.: Efficient sorption of Pb(ii) from an aqueous solution using a poly(aniline-co-3-aminobenzoic acid)-based magnetic core–shell nanocomposite. New J. Chem. 40, 2521–2529 (2016). (c) Bhaumika, M., Maity, A., Srinivasu, V.V., Onyango, M.S.: Enhanced removal of Cr(VI) from aqueous solution using polypyrrole/Fe3O4 magnetic nanocomposite. J. Hazard. Mater. 190, 381–390 (2011)

    Google Scholar 

  133. Pehlivan, E., Yanik, B.H., Ahmetli, G., Pehlivan, M.: Equilibrium isotherm studies for the uptake of cadmium and lead ions onto sugar beet pulp. Bioresour. Technol. 99, 3520–3527 (2008)

    Article  CAS  PubMed  Google Scholar 

  134. Mohan, S., Gandhimathi, R.: Removal of heavy metal ions from municipal solid waste leachate using coal fly ash as an adsorbent. J. Hazard. Mater. 169, 351–359 (2009)

    Article  CAS  PubMed  Google Scholar 

  135. Parab, H., Joshi, S., Shenoy, N., Lali, A., Sarma, U.S., Sudersanan, M.: Determination of kinetic and equilibrium parameters of the batch adsorption of Co(II), Cr(III) and Ni(II) onto coir pith. Process Biochem. 41, 609–615 (2006)

    Article  CAS  Google Scholar 

  136. Kumar, R., Sharma, R.K.: Synthesis and characterization of cellulose based adsorbents for removal of Ni(II), Cu(II) and Pb(II) ions from aqueous solutions. React. Funct. Polym. 140, 82–92 (2019)

    Article  CAS  Google Scholar 

  137. Al Rmalli, S.W., Dahmani, A.A., Abuein, M.M., Gleza, A.A.: Biosorption of mercury from aqueous solutions by powdered leaves of castor tree (Ricinus communis L.). J. Hazard. Mater. 152, 955–959 (2008)

    Article  PubMed  CAS  Google Scholar 

  138. Kobya, M., Demirbas, E., Senturk, E., Ince, M.: Adsorption of heavy metal ions from aqueous solutions by activated carbon prepared from apricot stone. Bioresour. Technol. 96, 1518–1521 (2005)

    Article  CAS  PubMed  Google Scholar 

  139. Kumar, S., Nair, R.R., Pillai, P.B., Gupta, S.N., Iyengar, M.A.R., Sood, A.K.: Graphene oxide-MnFe2O4 magnetic nanohybrids for efficient removal of lead and arsenic from water. ACS Appl. Mater. Interfaces. 6, 17426–17436 (2014)

    Article  CAS  PubMed  Google Scholar 

  140. Rebecca, O.A., Joshua, N.E., Olugbenga, S.B., Adeyemi, O.A., John, O.O.: Influence of selective conditions on various composite sorbents for enhanced removal of copper (II) ions from aqueous environments. Int. J. Environ. Res. Public Health. 16, 4596 (2019)

    Article  CAS  Google Scholar 

  141. Yin, C.Y., Aroua, M.K., Daud, W.M.A.W.: Review of modifications of activated carbon for enhancing contaminant uptakes from aqueous solutions. Sep. Purif. Technol. 52, 403–415 (2007)

    Article  CAS  Google Scholar 

  142. (a) Nadeem, M., Mahmood, A., Shahid, S.A., Shah, S.S., Khalid, A.M., McKay, G.: Sorption of lead from aqueous solution by chemically modified carbon adsorbents. J. Hazard. Mater. B 138, 604–613 (2006). (b) Youssef, A.M., El-Nabarawy, T., Samra, S.E.: Sorption properties of chemically activated carbons. 1. Sorption of Cadmium(II) ions. Colloids Surf. A Physicochem. Eng. Asp. 235, 153–163 (2004)

    Google Scholar 

  143. (a) Hong, H.-J., Kim, H., Baek, K., Yang, J.-W.: Removal of arsenate, chromate and ferricyanide by cationic surfactant modified powdered activated carbon. Desalination 223, 221-228 (2008). (b) Choi, H.-D., Cho, J.-M., Baek, K., Yang, J.-S., Lee, J.-Y.: Influence of cationic surfactant on adsorption of Cr(VI) onto activated carbon. J. Hazard. Mater. 161, 1565–1568 (2009). (c) Yang, L., Wu, S., Chen, J.P.: Modification of activated carbon by polyaniline for enhanced adsorption of aqueous arsenate. Ind. Eng. Chem. Res. 46, 2133–2140 (2007)

    Google Scholar 

  144. Karim, Z., Claudpierre, S., Grahn, M., Oksman, K., Mathew, A.P.: Nanocellulose based functional membranes for water cleaning: tailoring of mechanical properties, porosity and metal ion capture. J. Membr. Sci. 514, 418–428 (2016)

    Article  CAS  Google Scholar 

  145. Mautner, A., Kwaw, Y., Weiland, K., Mvubu, M., Botha, A., John, M.J., Mtibec, A., Siqueiraf, G., Bismarck, A.: Natural fibre-nanocellulose composite filters for the removal of heavy metal ions from water. Ind. Crop. Prod. 133, 325–332 (2019)

    Article  CAS  Google Scholar 

  146. Godiya, C.B., Cheng, X., Li, D., Chen, Z., Lu, X.: Carboxymethyl cellulose/polyacrylamide composite hydrogel for cascaded treatment/reuse of heavy metal ions in wastewater. J. Hazard. Mater. 364, 28–38 (2018)

    Article  PubMed  CAS  Google Scholar 

  147. Waheed, A., Mansha, M., Ullah, N.: Nanomaterials-based electrochemical detection of heavy metals in water: current status, challenges and future direction. TrAC Trends Anal. Chem. 105, 37–51 (2018)

    Article  CAS  Google Scholar 

  148. Zuo, Y., Xu, J., Zhu, X., Duan, X., Limin, L., Yongfang, Y.: Graphene-derived nanomaterials as recognition elements for electrochemical determination of heavy metal ions: a review. Microchim. Acta. 186, 171 (2019)

    Article  CAS  Google Scholar 

  149. Abbas, I.A., Al-Amer, A.M., Laoui, T., Al-Marri, M.J., Nasser, M.S., Khraisheh, M., Atieh, M.A.: Heavy metal removal from aqueous solution by advanced carbon nanotubes: critical review of adsorption applications. Sep. Purif. Technol. 157, 141–161 (2016)

    Article  CAS  Google Scholar 

  150. Verduzco, J., Oliva, A.I., Oliva, E., Macias, C.R., Garcia, M., Herrera-Trejo, N., Pariona, A.I.: Enhanced removal of arsenic and chromium contaminants from drinking water by electrodeposition technique using graphene composites. Mater. Chem. Phys. 229, 197–209 (2019)

    Article  CAS  Google Scholar 

  151. (a) Perreault, F., De Faria, A.F., Elimelech, M.: Environmental applications of graphene-based nanomaterials. Sociol. Rev. 44, 5861–5896 (2015). (b) Meng, F.L., Guo, Z., Huang, X.J.: Graphene-based hybrids for chemiresistive gas sensors. TrAC-Trend Anal. Chem. 68, 37–47 (2015)

    Google Scholar 

  152. Luo, X., Zhang, L.: High effective adsorption of organic dyes on magnetic cellulose beads entrapping activated carbon. J. Hazard. Mater. 171, 340–347 (2009)

    Article  CAS  PubMed  Google Scholar 

  153. Anirudhan, T., Shainy, F.: Effective removal of mercury (II) ions from chlor-alkali industrial wastewater using 2-mercaptobenzamide modified itaconic acid-grafted-magnetite nanocellulose composite. J. Colloid Interface Sci. 456, 22–31 (2015)

    Article  CAS  PubMed  Google Scholar 

  154. Wei, J., Yang, Z., Sun, Y., et al.: Nanocellulose-based magnetic hybrid aerogel for adsorption of heavy metal ions from water. J. Mater. Sci. 54, 6709–6718 (2019)

    Article  CAS  Google Scholar 

  155. Lin, C.X.C., Qiao, S.Z., Yu, C.Z., Ismadji, S., Lu, G.Q.: Periodic mesoporous silica and organosilica with controlled morphologies as carriers for drug release. Microporous Mesoporous Mater. 117, 213–219 (2009)

    Article  CAS  Google Scholar 

  156. Kong, X., Yang, B., Xiong, H., Zhou, Y., Xue, S., Xu, B., Wang, S.-X.: Selective removal of heavy metal ions from aqueous solutions with surface functionalized silica nanoparticles by different functional groups. J. Cent. South Univ. 21, 3575–3579 (2014)

    Article  CAS  Google Scholar 

  157. Jeelani, P.G., Mulay, P., Venkat, R., Ramalingam, C.: Multifaceted application of silica nanoparticles. A review. Silicon. 12, 1337–1354 (2020)

    Article  CAS  Google Scholar 

  158. Akl, M.A.A., Kenawy, I.M.M., Lasheen, R.R.: Organically modified silica gel and flame atomic absorption spectrometry: employment for separation and preconcentration of nine trace heavy metals for their determination in natural aqueous systems. Microchem. J. 78, 143–156 (2004)

    Article  CAS  Google Scholar 

  159. Fu, J., Gu, Z., Liu, Y., Zhang, J., Song, H., Yang, Y., Yang, Y., Noonan, O., Tang, J., Yu, C.Z.: Bottom-up self-assembly of heterotrimeric nanoparticles and their secondary Janus generations. Chem. Sci. 10, 10388–10394 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Yannan, Y., Min, Z., Hao, S., Chengzhong, Y.: Silica-based nanoparticles for biomedical applications: from nanocarriers to biomodulators. Acc. Chem. Res. 53(8), 1545–1556 (2020)

    Article  CAS  Google Scholar 

  161. Suman, K.A., Gera, M., Jain, V.K.: A novel reusable nanocomposite for complete removal of dyes, heavy metals and microbial load from water based on nanocellulose and silver nano-embedded pebbles. Environ. Technol. 36, 706–714 (2014)

    Article  PubMed  CAS  Google Scholar 

  162. Zhang, Q., Jie, T., Zhang, Z., Nie, G., Zhao, H., Peng, Q., Jiao, T.: Unique and outstanding cadmium sequestration by polystyrene-supported nanosized zirconium hydroxides: a case study. RSC Adv. 5, 55445–55452 (2015)

    Article  CAS  Google Scholar 

  163. Stietiya, M.H., Wang, J.J.: Zinc and cadmium adsorption to aluminum oxide nanoparticles affected by naturally occurring ligands. J. Environ. Qual. 43, 498–506 (2014)

    Article  PubMed  CAS  Google Scholar 

  164. Umar, A., Kumar, R., Akhtar, M.S., Kumar, G., Kim, S.H.: Growth and properties of well-crystalline cerium oxide (CeO2) nanoflakes for environmental and sensor applications. J. Colloid Interface Sci. 454, 61–68 (2015)

    Article  CAS  PubMed  Google Scholar 

  165. (a) Khezami, L., M’Hamed, M.O., Lemine, O.M., Bououdina, M., Bessadokjemai, A.: Milled goethite nanocrystalline for selective and fast uptake of cadmium ions from aqueous solution. Desalinat. Water Treat. 57, 6531–6539 (2016). (b) Etale, A., Tutu, H., Drake, D.C.: The effect of silica and maghemite nanoparticles on remediation of Cu(II)-, Mn(II)- and U(VI)-contaminated water by Acutodesmus sp. J. Appl. Phycol. 28, 251–260 (2016). (c) Adeli, M., Yamini, Y., Faraji, M.: Removal of copper, nickel and zinc by sodium dodecyl sulphate coated magnetite nanoparticles from water and wastewater samples. Arab. J. Chem. 10, S514–S521 (2017). (d) Kefeni, K.K., Msagati, T.A.M., Nkambule, T.T.I., Mamba, B.B.: Synthesis and application of hematite nanoparticles for acid mine drainage treatment. J. Environ. Chem. Eng. 6, 1865–1874 (2018)

    Google Scholar 

  166. Wang, X., Huang, K., Chen, Y., Liu, J., Chen, S., Cao, J., Mei, S., Zhou, Y., Jing, T.: Preparation of dumbbell manganese dioxide/gelatin composites and their application in the removal of lead and cadmium ions. J. Hazard. Mater. 350, 46–54 (2018)

    Article  CAS  PubMed  Google Scholar 

  167. (a) Zhao, G., Huang, X., Tang, Z., Huang, Q., Wang, X.K.: Polymer-based nanocomposites for heavy metal ions removal from aqueous solution: a review. Polym. Chem. 9, 3562–3582 (2018). (b) Lofrano, G., Carotenuto, M., Libralato, G., Domingos, R.F., Markus, A., Dini, L., Gautam, R.K., Baldantoni, D., Rossi, M., Sharma, S.K.: Polymer functionalized nanocomposites for metals removal from water and wastewater: an overview. Water Res. 92, 22–37 (2016). (c) Lü, T., Qi, D., Dong, Z., Lü, Y., Zhao, H.: A facile method for emulsified oil-water separation by using polyethylenimine-coated magnetic nanoparticles J. Nanopart. Res. 20, 88 (2018)

    Google Scholar 

  168. Taleb, K., Markovski, J., Veličković, Z., Rusmirović, J., Rančić, M., Pavlović, V., Marinković, A.: Arsenic removal by magnetite-loaded amino modified nano/microcellulose adsorbents: effect of functionalization and media size. Arab. J.Chem. 12, 4675–4693 (2019)

    Article  CAS  Google Scholar 

  169. Chen, X., Cui, J., Xu, X., Sun, B., Zhang, L., Dong, W., Sun, D.: Bacterial cellulose/attapulgite magnetic composites as an efficient adsorbent for heavy metal ions and dye treatment. Carbohydr. Polym., 115512 (2019)

    Google Scholar 

  170. Hokkanen, S., Repo, E., Sillanpää, M.: Removal of heavy metals from aqueous solutions by succinic anhydride modified mercerized nanocellulose. Chem. Eng. J. 223, 40–47 (2013)

    Article  CAS  Google Scholar 

  171. Yu, X., Tong, S., Ge, M., Wu, L., Zuo, J., Cao, C.: Adsorption of heavy metal ions from aqueous solution by carboxylated cellulose nanocrystals. J. Environ. Sci. 25, 933–943 (2013)

    Article  CAS  Google Scholar 

  172. Sun, B., Zhang, M., Hou, Q.: Further characterization of cellulose nanocrystal (CNC) preparation from sulfuric acid hydrolysis of cotton fibers. Cellulose. 23, 439–450 (2016)

    Article  CAS  Google Scholar 

  173. Liu, P., Borrell, P.F., Bozi, M., Kokol, V., Oksman, K., Mathew, A.P.: Nanocelluloses and their phosphorylated derivatives for selective adsorption of Ag+, Cu2+and Fe3+ from industrial effluents. J. Hazard. Mater. 294, 177–185 (2015)

    Article  CAS  PubMed  Google Scholar 

  174. Shen, W., Chen, S., Shi, S., Li, X., Zhang, X., Hu, W.: Adsorption of Cu(II) and Pb(II) onto diethylenetriamine bacterial cellulose. Carbohydr. Polym. 75, 110–114 (2009)

    Article  CAS  Google Scholar 

  175. Chen, S., Zou, Y., Yan, Z., Shen, W., Shi, S., Zhang, X.: Carboxymethylated-bacterial cellulose for copper and lead ion removal. J. Hazard. Mater. 161, 1355–1359 (2009)

    Article  CAS  PubMed  Google Scholar 

  176. Pan, L., Wang, Z., Yang, Q., Huang, R.: Efficient removal of lead, copper and cadmium ions from water by a porous calcium alginate/graphene oxide composite aerogel. Nanomaterials. 8, 11 (2018)

    Google Scholar 

  177. Sirviö, J.A., Hasa, T., Leiviskä, T., Liimatainen, H., Hormi, O.: Bisphosphonate nanocellulose in the removal of vanadium(V) from water. Cellulose. 23, 689–697 (2016)

    Article  CAS  Google Scholar 

  178. Mautner, A., Maples, H.A., Kobkeatthawin, T.: Phosphorylated nanocellulose papers for copper adsorption from aqueous solutions. Int. J. Environ. Sci. Technol. 13, 1861–1872 (2016)

    Article  CAS  Google Scholar 

  179. Suman, S., Kardam, A., Gera, M., Jain, V.K.: A novel reusable nanocomposite for complete removal of dyes, heavy metals and microbial load from water based on nanocellulose and silver nano-embedded pebbles. Environ. Technol. 36, 5–8 (2015)

    Article  CAS  Google Scholar 

  180. Geng, B., Wang, H., Wu, S., Ru, J., Tong, C., Chen, Y., Liu, X.: Surface-tailored nanocellulose aerogels with thiol-functional moieties for highly efficient and selective removal of Hg(II) ions from water. ACS Sustain. Chem. Eng. 5, 11715–11726 (2017)

    Article  CAS  Google Scholar 

  181. Qiao, H., Zhou, Y., Yu, F., Wang, E., Min, Y., Huang, Q.: Effective removal of cationic dyes using carboxylate-functionalized cellulose nanocrystals. Chemosphere. 141, 297–303 (2015)

    Article  CAS  PubMed  Google Scholar 

  182. Rodrigues, F.H.A., de Magalhães, C.E., Medina, A.L.: Hydrogel composites containing nanocellulose as adsorbents for aqueous removal of heavy metals: design, optimization, and application. Cellulose. 26, 9119–9133 (2019)

    Article  CAS  Google Scholar 

  183. Xie, K., Zhao, W., He, X.: Adsorption properties of nano-cellulose hybrid containing polyhedral oligomeric silsesquioxane and removal of reactive dyes from aqueous solution. Carbohydr. Polym. 83, 1516–1520 (2011)

    Article  CAS  Google Scholar 

  184. Mack, C., Wilhelmi, B., Duncan, J.R., Burgess, J.E.: Biosorption of precious metals. Biotechnol. Adv. 25, 264–271 (2007)

    Article  CAS  PubMed  Google Scholar 

  185. Tan, Y., Hanyu, Z., Qi, M., Donglei, P., Yang, L., Lijie, H., Hao, X., Bao, H., Hainong, S.: From cellulose to cellulose nanofibrils – a comprehensive review of the preparation and modification of cellulose nanofibrils. Materials. 13, 5062 (2020)

    Article  CAS  Google Scholar 

  186. Carpenter, A.W., de Lannoy, C.-F., Wiesner, M.R.: Cellulose nanomaterials in water treatment technologies. Environ. Sci. Technol. 49, 5277–5287 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Besbes, I., Sabrine, A., Sami, B.: Nanofibrillated cellulose from TEMPO-oxidized eucalyptus fibres: effect of the carboxyl content. Carbohydr. Polym. 84, 975–983 (2011)

    Article  CAS  Google Scholar 

  188. Aoki, D., Nishio, Y.: Phosphorylated cellulose propionate derivatives as thermoplastic flame resistant/retardant materials: influence of regioselective phosphorylation on their thermal degradation behaviour. Cellulose. 17, 963–976 (2010)

    Article  CAS  Google Scholar 

  189. Rina, M., Sally, K., Takeo, K., Yohsuke, G., Masayuki, H., Yoshikuni, T.: Cellulose nanofibers as a module for paper-based microfluidic analytical devices: labile substance storage, processability, and reaction field provision and control. ACS Appl. Bio Mater. 1, 480–486 (2018)

    Article  CAS  Google Scholar 

  190. Kevin, E.S., Joel, A.K., Wadood, Y.H., Mark, J.M.: Biopolymer templated glass with a twist: controlling the chirality, porosity, and photonic properties of silica with cellulose nanocrystals. Adv. Funct. Mater. 24, 327–338 (2014)

    Article  CAS  Google Scholar 

  191. George, M., Montemagno, C.: Estimation of the sulfur ester content of cellulose nanocrystals prepared by sulfuric acid hydrolysis: a reproducible and fast infrared method. Wood Sci. Technol. 51, 535–556 (2017)

    Article  CAS  Google Scholar 

  192. Hasani, M., Emily, D.C., Gunnar, W., Derek, G.G.: Cationic surface functionalization of cellulose nanocrystals. Soft Matter. 4, 2238–2244 (2008)

    Article  CAS  Google Scholar 

  193. Saito, T., Masayuki, H., Naoyuki, T., Satoshi, K., Hayaka, F., Laurent, H., Akira, I.: Individualization of nano-sized plant cellulose fibrils by direct surface carboxylation using TEMPO catalyst under neutral conditions. Biomacromolecules. 10, 1992–1996 (2009)

    Article  CAS  PubMed  Google Scholar 

  194. Isogai, A., Saito, T., Fukuzumi, H.: TEMPO-oxidized cellulose nanofibers. Nanoscale. 3, 71–85 (2011)

    Article  CAS  PubMed  Google Scholar 

  195. Karnitz, O., Gurgel, L.V.A., Gil, L.F.: Removal of Ca(II) and Mg(II) from aqueous single metal solutions by mercerized cellulose and mercerized sugarcane bagasse grafted with EDTA dianhydride (EDTAD). Carbohydr. Polym. 79, 184–191 (2010)

    Article  CAS  Google Scholar 

  196. Srivastava, S., Kardam, A., Raj, K.R.: Nanotech reinforcement onto cellulosic fibers: green remediation of toxic metals. Int. J. Green Nanotechnol. 4, 46–53 (2012)

    Article  CAS  Google Scholar 

  197. Sehaqui, H., de Larraya, U.P., Liu, P., Pfenninger, N., Mathew, A.P., Zimmermann, T., Tingaut, P.: Enhancing adsorption of heavy metal ions onto biobased nanofibers from waste pulp residues for application in wastewater treatment. Cellulose. 21, 2831–2844 (2014)

    Article  CAS  Google Scholar 

  198. Hamid, H.A., Jenidi, Y., Thielemans, W., Somerfield, C., Gomes, R.L.: Predicting the capability of carboxylated cellulose nanowhiskers for the remediation of copper from water using response surface methodology (RSM) and artificial neural network (ANN) models. Ind. Crop. Prod. 93, 108–120 (2016)

    Article  CAS  Google Scholar 

  199. Zhu, C., Liu, P., Mathew, A.P.: Self-assembled TEMPO cellulose nanofibers: graphene oxide-based biohybrids for water purification. ACS Appl. Mater. Interfaces. 9, 21048–21058 (2017)

    Article  CAS  PubMed  Google Scholar 

  200. Li, C., Ma, H., Venkateswaran, S., Hsiao, B.S.: Highly efficient and sustainable carboxylated cellulose filters for removal of cationic dyes/heavy metals ions. Chem. Eng. J. 389, 123458 (2020)

    Article  CAS  Google Scholar 

  201. Low, K.S., Lee, C.K., Mak, S.M.: Sorption of copper and lead by citric acid modified wood. Wood Sci. Technol. 38, 629–640 (2004)

    Article  CAS  Google Scholar 

  202. Alves-Gurgel, L.V., Karnitz-Junior, O., de Freitas-Gil, R.P., Gil, L.F.: Adsorption of Cu(II), Cd(II), and Pb(II) from aqueous single metal solutions by cellulose and mercerized cellulose chemically modified with succinic anhydride. Bioresour. Technol. 99, 3077–3083 (2008)

    Article  CAS  Google Scholar 

  203. Hokkanen, S., Bhatnagar, A., Sillanpää, M.: A review on modification methods to cellulose-based adsorbents to improve adsorption capacity. Water Res. 91, 156–173 (2016)

    Article  CAS  PubMed  Google Scholar 

  204. Batmaz, R., Mohammed, N., Zaman, M., Minhas, G., Berry, R.M., Ta, K.C.: Cellulose nanocrystals as promising adsorbents for the removal of cationic dyes. Cellulose. 21, 1655–1665 (2014)

    Article  CAS  Google Scholar 

  205. Lizundiaa, E., Vilasb, J.L., León, L.M.: Crystallization, structural relaxation and thermal degradation in Poly (l-lactide)/cellulose nanocrystal renewable nanocomposites. Carbohydr. Polym. 123, 256–265 (2015)

    Article  CAS  Google Scholar 

  206. Eichhorn, S.J., Dufresne, A., Aranguren, M., Marcovich, N.E., Capadona, J.R., Rowan, S.J., Weder, C., Thielemans, W., Roman, M., Renneckar, S., Gindl, W., Veigel, S., Keckes, J., Yano, H., Abe, K., Nogi, M., Nakagaito, A.N., Mangalam, A., Simonsen, J., Benight, A.S., Bismarck, A., Berglund, L.A., Peij, T.: Review: current international research into cellulose nanofibres and nanocomposites. J. Mater. Sci. 45, 1–33 (2010)

    Article  CAS  Google Scholar 

  207. Linlin, L., Wei, M., Yuji, H., Kazutaka, K., Atsushi, T.: Organic–inorganic hybrid thin films fabricated by layer-by-layer assembly of the phosphorylated cellulose nanocrystal and imogolite nanotubes. Langmuir. 34, 13361–13367 (2018)

    Article  CAS  Google Scholar 

  208. Ghanadpour, M., Carosio, F., Larsson, P.T., Wågberg, L.: Phosphorylated cellulose nanofibrils: a renewable nanomaterial for the preparation of intrinsically flame-retardant materials. Biomacromolecules. 16, 3399–3410 (2015)

    Article  CAS  PubMed  Google Scholar 

  209. Granja, P.L., Pouységu, L., Pétraud, M., De Jéso, B., Baquey, C., Barbosa, M.: Cellulose phosphates as biomaterials. I. Synthesis and characterization of highly phosphorylated cellulose gels. J. Appl. Polym. Sci. 82, 3341–3353 (2001)

    Article  CAS  Google Scholar 

  210. Coleman, R.J., Lawrie, G., Lambert, L.K., Whittaker, M., Jack, K.S., Grøndahl, L.: Phosphorylation of alginate: synthesis, characterization, and evaluation of in vitro mineralization capacity. Biomacromolecules. 12, 889–897 (2011)

    Article  CAS  PubMed  Google Scholar 

  211. Suflet, D.M., Chitanu, G.C., Popa, V.I.: Phosphorylation of polysaccharides: new results on synthesis and characterisation of phosphorylated cellulos. React. Funct. Polym. 66, 1240–1249 (2006)

    Article  CAS  Google Scholar 

  212. Rose-Marie, P.K., Per Tomas, L., Torbjörn, P., Lars, W.: Swelling of cellulose-based fibrillar and polymeric networks driven by ion-induced osmotic pressure. Langmuir. 36, 12261–12271 (2020)

    Article  CAS  Google Scholar 

  213. Titi, O.A., Bello, O.S.: An Overview of low cost adsorbents for copper (II) ions removal. J. Biotechnol. Biomater. 5, 117 (2015)

    Google Scholar 

  214. Božič, M., Liu, P., Mathew, A., Kokol, V.: Enzymatic phosphorylation of cellulose nanofibers to new highly-ions adsorbing, flame-retardant and hydroxyapatite-growth induced natural nanoparticles. Cellulose. 21, 2713–2726

    Google Scholar 

  215. Mautner, A., Maples, H.A., Kobkeatthawin, T., Kokol, V., Karim, Z., Li, K., Bismarck, A.: Phosphorylated nanocellulose papers for copper adsorption from aqueous solutions. Int. J. Environ. Sci. Technol. 13, 1861–1872 (2016)

    Article  CAS  Google Scholar 

  216. Blilid, S., Katir, N., El Haskouri, J., Lachini, M., Royer, S., El Kadib, A.: Phosphorylated micro- vs. nano-cellulose: a comparative study on their surface functionalisation, growth of titanium-oxo-phosphate clusters and removal of chemical pollutant. New J. Chem. 43, 15555–15562 (2019)

    Article  CAS  Google Scholar 

  217. Boufi, S., Belgacem, M.N.: Modified cellulose fibres for adsorption of dissolved organic solutes. Cellulose. 13, 81–94 (2006)

    Article  CAS  Google Scholar 

  218. Bras, J., Vaca-Garcia, C., Borredon, M.E., Glasser, W.: Oxygen and water vapor permeability of fully substituted long chain cellulose esters (LCCE). Cellulose. 14, 367–374 (2007)

    Article  CAS  Google Scholar 

  219. Crépy, L., Chaveriat, L., Banoub, J., Martin, P., Joly, N.: Synthesis of cellulose fatty esters as plastics – influence of the degree of substitution and the fatty chain length on mechanical properties. Chem. Sus. Chem. 2, 165–170 (2009)

    Article  CAS  Google Scholar 

  220. Ávila Ramírez, J.A., Suriano, C.J., Cerrutti, P., Foresti, M.L.: Surface esterification of cellulose nanofibers by a simple organocatalytic methodology. Carbohydr. Polym. 114, 416–423 (2014)

    Article  PubMed  CAS  Google Scholar 

  221. Pasquini, D., de Morais Teixeira, E., da Silva Curvelo, A.A., Belgacem, M.N., Dufresne, A.: Surface esterification of cellulose fibres: processing and characterisation of low-density polyethylene/cellulose fibres composites. Compos. Sci. Technol. 68, 193–201 (2008)

    Article  CAS  Google Scholar 

  222. Berlioz, S., Molina-Boisseau, S., Nishiyama, Y., Heux, L.: Gas-phase surface esterification of cellulose microfibrils and whiskers. Biomacromolecules. 10, 2144–2151 (2009)

    Article  CAS  PubMed  Google Scholar 

  223. Marchetti, M., Clement, A., Loubinoux, B., Gerardin, P.: Decontamination of synthetic solutions containing heavy metals using chemically modified sawdusts bearing polyacrylic acid chains. J. Wood Sci. 46, 331–333 (2000)

    Article  Google Scholar 

  224. Goussé, C., Chanzy, H., Cerrada, M.L., Fleury, E.: Surface silylation of cellulose microfibrils: preparation and rheological properties. Polymer. 45, 1569–1575 (2004)

    Article  CAS  Google Scholar 

  225. Andresen, M., Stenius, P.: Water-in-oil emulsions stabilized by hydrophobized microfibrillated cellulose. J. Dispers. Sci. Technol. 28, 837–844 (2007)

    Article  CAS  Google Scholar 

  226. Johansson, L.S., Tammelin, T., Campbell, J.M., Setälä, H., Österberg, M.: Experimental evidence on medium driven cellulose surface adaptation demonstrated using nanofibrillated cellulose. Soft Matter. 7, 10917–10924 (2011)

    Article  CAS  Google Scholar 

  227. Qu, P., Zhou, Y., Zhang, X., Yao, S., Zhang, L.: Surface modification of cellulose nanofibrils for poly(lactic acid) composite application. J. Appl. Polym. Sci. 125, 3084–3091 (2012)

    Article  CAS  Google Scholar 

  228. Cherian, B.M., Leão, A.L., de Morais Chaves, M.R., de Souza, S.F., Sain, M., Narine, S.S.: Environmental ageing studies of chemically modified micro and nanofibril phenol formaldehyde composites. Ind. Crop. Prod. 49, 471–483 (2013)

    Article  CAS  Google Scholar 

  229. Yeo, J.S., Kim, O.Y., Hwang, S.H.: The effect of chemical surface treatment on the fracture toughness of microfibrillated cellulose reinforced epoxy composites. J. Ind. Eng. Chem. 45, 301–306 (2017)

    Article  CAS  Google Scholar 

  230. Hokkanen, S., Repo, E., Suopajärvi, T., Liimatainen, H., Niinimaa, J., Sillanpää, M.: Adsorption of Ni(II), Cu(II) and Cd(II) from aqueous solutions by amino modified nanostructured microfibrillated cellulose. Cellulose. 21, 1471–1487 (2014)

    Article  CAS  Google Scholar 

  231. Aulin, C., Johansson, E., Wågberg, L., Lindström, T.: Self-organized films from cellulose I nanofibrils using the layer-by-layer technique. Biomacromolecules. 11, 872–882 (2010)

    Article  CAS  PubMed  Google Scholar 

  232. Olszewska, A., Eronen, P., Johansson, L.S., Malho, J.M., Ankerfors, M., Lindström, T., Ruokolainen, J., Laine, J., Österberg, M.: The behaviour of cationic nanofibrillar cellulose in aqueous media. Cellulose. 18, 1213–1226 (2011)

    Article  CAS  Google Scholar 

  233. Pei, A., Butchosa, N., Berglund, L.A., Zhou, Q.: Surface quaternized cellulose nanofibrils with high water absorbency and adsorption capacity for anionic dyes. Soft Matter. 9, 2047–2055 (2013)

    Article  CAS  Google Scholar 

  234. Littunen, K., Snoei de Castro, J., Samoylenko, A., Xu, Q., Quaggin, S., Vainio, S.: Synthesis of cationized nanofibrillated cellulose and its antimicrobial properties. Eur. Polym. J. 75, 116–124 (2016)

    Article  CAS  Google Scholar 

  235. Hasani, M., Cranston, E.D., Westman, G., Gray, D.G.: Cationic surface functionalization of cellulose nanocrystals. Soft Matter. 4, 2238–2244 (2008)

    Article  CAS  Google Scholar 

  236. Saini, S., Yücel, F.Ç., Belgacem, M.N., Bras, J.: Surface cationized cellulose nanofibrils for the production of contact active antimicrobial surfaces. Carbohydr. Polym. 135, 239–247 (2016)

    Article  CAS  PubMed  Google Scholar 

  237. Abou-Zeid, R.E., Dacrory, S., Ali, K.A., Kamel, S.: Novel method of preparation of tricarboxylic cellulose nanofiber for efficient removal of heavy metal ions from aqueous solution. Int. J. Biol. Macromol. 119, 207–214 (2018)

    Article  CAS  PubMed  Google Scholar 

  238. Choi, H.Y., Bae, J.H., Hasegawa, Y., An, S., Kim, I.S., Lee, H., Kim, M.: Thiol-functionalized cellulose nanofiber membranes for the effective adsorption of heavy metal ions in water. Carbohydr. Polym. 234, 115881 (2020)

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Selma Hamimed .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Hamimed, S., Jebli, N., Othmani, A., Hamimed, R., Barhoum, A., Chatti, A. (2022). Nanocelluloses for Removal of Heavy Metals From Wastewater. In: Barhoum, A. (eds) Handbook of Nanocelluloses. Springer, Cham. https://doi.org/10.1007/978-3-030-89621-8_51

Download citation

Publish with us

Policies and ethics