Skip to main content

QTL That Control Seed Protein, Oil, and Fatty Acids Contents

  • Chapter
  • First Online:
Soybean Seed Composition
  • 397 Accesses

Abstract

Plant breeders and farmers aim at developing soybean cultivars and lines with high seed protein and oil contents, high oleic acid contents, and low palmitic, stearic, and linolenic acid contents. Therefore, different types of molecular markers and mapping populations have been used to genetically map quantitative trait loci (QTL) that control seed protein, oil, and fatty acids in soybean using biparental populations as well as wild soybean accessions via genome-wide association studies (GWAS). Here, we summarized QTL mapping data for seed protein, oil, and fatty acids content from 1992 to 2000. Candidate genes identified within these QTL regions are also summarized. These findings are promising; however, decades of followed studies are still needed to fine map these regions, identify candidate genes, and understand the full extent of the metabolic pathways involved in these traits.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akond, M., S. Liu, M. Boney, S.K. Kantartzi, K. Meksem, N. Bellaloui, D.A. Lightfoot, and M.A. Kassem. 2014. Identification of Quantitative Trait Loci (QTL) underlying protein, oil, and five major fatty acids’ contents in soybean. American Journal of Plant Sciences 5 (1): 158–167.

    Article  CAS  Google Scholar 

  • Arcade, A., A. Labourdette, M. Falque, B. Mangin, F. Chardon, A. Charcosset, and J. Joets. 2004. Biomercator: integrating genetic maps and QTL towards discovery of candidate genes. Bioinformatics 20: 2324–2326.

    Article  CAS  PubMed  Google Scholar 

  • Atwell, S., Y.S. Huang, B.J. Vilhjálmsson, G. Willems, M. Horton, Y. Li, D. Meng, A. Platt, A.M. Tarone, T.T. Hu, R. Jiang, N.W. Muliyati, X. Zhang, M.A. Amer, I. Baxter, B. Brachi, J. Chory, C. Dean, M. Debieu, J. de Meaux, J.R. Ecker, N. Faure, J.M. Kniskern, J.D.G. Jones, T. Michael, A. Nemri, F. Roux, D.E. Salt, C. Tang, M. Todesco, M.B. Traw, D. Weigel, P. Marjoram, J.O. Borevitz, J. Bergelson, and M. Nordborg. 2010. Genome-wide association study of 107 phenotypes in Arabidopsis thaliana inbred lines. Nature 465: 627–631.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bachlava, E., R.E. Dewey, J.W. Burton, and A.J. Cardinal. 2009. Mapping and comparison of quantitative trait loci for oleic acid seed content in two segregating soybean populations. Crop Science 49: 433–442. https://doi.org/10.2135/cropsci2008.06.0324.

    Article  CAS  Google Scholar 

  • Bandillo, N., D. Jarquin, Q.J. Song, R. Nelson, P.B. Cregan, J. Specht, and A. Lorenz. 2015. A population structure and genome-wide association analysis on the USDA soybean germplasm collection. Plant Genome 8 (3): 1–13. https://doi.org/10.3835/plantgenome2015.04.0024.

    Article  CAS  Google Scholar 

  • Bolon, Y.T., B. Joseph, S.B. Cannon, M.A. Graham, B.W. Diers, A.D. Farmer, G.D. May, G.J. Muehlbauer, J.E. Specht, Z.J. Tu, N. Weeks, W.W. Xu, R.C. Shoemaker, and C.P. Vance. 2010. Complementary genetic and genomic approaches help characterize the linkage group I seed protein QTL in soybean. BMC Plant Biology 10: 41. https://doi.org/10.1186/1471-2229-10-41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bolon, Y.T., D.L. Hyten, J.H. Orf, C.P. Vance, and G.J. Muehlbauer. 2014. eQTL networks reveal complex genetic architecture in the immature soybean seed. Plant Genome 7: 1–14. https://doi.org/10.3835/plantgenome2013.08.0027.

    Article  Google Scholar 

  • Brown, A.V., S.I. Conners, W. Huang, A.P. Wilkey, D. Grant, N.T. Weeks, S.B. Cannon, M.A. Graham, and R.T. Nelson. 2020. A new decade and new data at SoyBase, the USDA-ARS soybean genetics and genomics database. Nucleic Acids Research 2020: 1–6. https://doi.org/10.1093/nar/gkaa1107.

    Article  CAS  Google Scholar 

  • Brummer, E.C., G.L. Graef, J. Orf, J.R. Wilcox, and R.C. Shoemaker. 1997. Mapping QTL for Seed Protein and Oil Content in Eight Soybean Populations. Crop Science 37: 370–378.

    Article  Google Scholar 

  • Chapman, A., V.R. Pantalone, A. Ustun, F.L. Allen, D. Landau-Ellis, R.N. Trigiano, and M. Gresshoff. 2003. Quantitative trait loci for agronomic and seed quality traits in an F-2 and F-4:6 soybean population. Euphytica 129 (3): 387–393.

    Article  CAS  Google Scholar 

  • Chen, Q.S., Z.C. Zhang, C.Y. Liu, W.Q. Wang, and W.B. Li. 2005. Construction and analysis of soybean genetic map using recombinant inbred line of Charleston 9 Dongnong 594. Agricultural Sciences in China 38: 1312–1316.

    CAS  Google Scholar 

  • Chen, Q.S., Z.C. Zhang, C.Y. Liu, D.W. Xin, H.M. Qiu, D.P. Shan, and G.H. Hu. 2007. QTL analysis of major agronomic traits in soybean. Agricultural Sciences in China 6 (4): 399–405. https://doi.org/10.1016/S1671-2927(07)60062-5.

    Article  CAS  Google Scholar 

  • Chung J, H. L Babka, GL Graef, PE Staswick, DJ Lee, PB Cregan, RC Shoemaker, and JE Specht (2003) The Seed Protein, Oil, and Yield QTL on Soybean Linkage Group I. Crop Science 43 (3): 1053-1067.

    Google Scholar 

  • Csanadi, G., J. Vollmann, G. Stift, and T. Lelley. 2001. Seed quality QTLs identified in a molecular map of early maturing soybean. Theoretical and Applied Genetics 103: 912–919.

    Article  CAS  Google Scholar 

  • Diers, B.W., and R.C. Shoemaker. 1992. Restriction fragment length polymorphism analysis of soybean fatty acid content. Journal of the American Oil Chemists Society 69 (12): 1242–1244.

    Article  CAS  Google Scholar 

  • Diers, B.W., P. Keim, W.R. Fehr, and R.C. Shoemaker. 1992. RFLP analysis of soybean seed protein and oil content. Theoretical and Applied Genetics 83 (5): 608–612.

    Article  CAS  PubMed  Google Scholar 

  • Eskandari, M., E.R. Cober, and I. Rajcan. 2013. Genetic control of soybean seed oil: II. QTL and genes that increase oil concentration without decreasing protein or with increased seed yield. Theoretical and Applied Genetics 126: 1677–1687.

    Article  CAS  PubMed  Google Scholar 

  • Fan, S., B. Li, F. Yu, F. Han, S. Yan, L. Wang, and J. Sun. 2015. Analysis of additive and epistatic quantitative trait loci underlying fatty acid concentrations in soybean seeds across multiple environments. Euphytica 206: 689–700. https://doi.org/10.1007/s10681-015-1491-3.

    Article  CAS  Google Scholar 

  • Fang, C., Y. Ma, S. Wu, L.C. Fang, Y. Ma, S. Wu, Z. Liu, Z. Wang, R. Yang, G. Hu, Z. Zhou, H. Yu, M. Zhang, Y. Pan, G. Zhou, H. Ren, W. Du, H. Yan, Y. Wang, D. Han, Y. Shen, S. Liu, T. Liu, J. Zhang, H. Qin, J. Yuan, X. Yuan, F. Kong, B. Liu, J. Li, Z. Zhang, G. Wang, B. Zhu, and Z. Tian. 2017. Genome-wide association studies dissect the genetic networks underlying agronomical traits in soybean. Genome Biology 18: 161. https://doi.org/10.1186/s13059-017-1289-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fasoula, V.A., D.K. Harris, and H.R. Boerma. 2004. Validation and designation of quantitative trait loci for seed protein, seed oil, and seed weight from two soybean populations. Crop Science 44 (4): 1218–1225. https://doi.org/10.2135/cropsci2004.1218.

    Article  CAS  Google Scholar 

  • Fehr, W.R. 2007. Breeding for modified fatty acid composition in soybean. Crop Science 47 (S3): S72–S87.

    Article  CAS  Google Scholar 

  • Gai, J., W. Yongjun, W. Xiaolei, and C. Shouyi. 2007. A comparative study on segregation analysis and QTL mapping of quantitative traits in plants—with a case in soybean. Frontiers of Agriculture in China 1 (1): 1–7.

    Article  Google Scholar 

  • Graef, G.L., W.R. Fehr, L.A. Miller, E.G. Hammond, and S.R. Cianzo. 1988. Inheritance of fatty acid composition in a soybean mutant with low linolenic acid. Crops Science 28 (1): 55–58.

    Article  CAS  Google Scholar 

  • Ha, B.K., H.J. Kim, V. Velusamy, T.D. Vuong, H.T. Nguyen, J.G. Shannon, and J.D. Lee. 2014. Identification of quantitative trait loci controlling linolenic acid concentration in PI483463 (Glycine soja). Theoretical and Applied Genetics 127: 1501–1512.

    Article  CAS  PubMed  Google Scholar 

  • Hacisalihoglu, G., A.L. Burton, J.L. Gustin, S. Eker, S. Asikli, E.H. Heybet, L. Ozturk, I. Cakmak, A. Yazici, K.O. Burkey, J. Orf, and A.M. Settles. 2018. Quantitative trait loci associated with soybean seed weight and composition under different phosphorus levels. Journal of Integrative Plant Biology 60 (3): 232–241.

    Article  CAS  PubMed  Google Scholar 

  • Han, Y., W. Teng, Y. Wang, X. Zhao, L. Wu, D. Li, and W. Li. 2015. Unconditional and conditional QTL underlying the genetic interrelationships between soybean seed isoflavone, and protein or oil contents. Plant Breeding 134: 300–309. https://doi.org/10.1111/pbr.12259.

    Article  CAS  Google Scholar 

  • Haun, W., A. Coffman, B.M. Clasen, Z.L. Demorest, A. Lowy, E. Ray, A. Retterath, T. Stoddard, A. Juillerat, F. Cedrone, L. Mathis, D.F. Voytas, and F. Zhang. 2014. Improved soybean oil quality by targeted mutagenesis of the fatty acid desaturase 2 gene family. Plant Biotechnology Journal 12: 934–940.

    Article  CAS  PubMed  Google Scholar 

  • Hwang, E.Y., Q. Song, G. Jia, J.E. Specht, D.L. Hyten, J. Costa, and P.B. Cregan. 2014. A genome-wide association study of seed protein and oil content in soybean. BMC Genomics 15: 1. https://doi.org/10.1186/1471-2164-15-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hyten, D.L., V.R. Pantalone, A.M. Saxton, M.E. Schmidt, and C.E. Sams. 2004a. Molecular mapping and identification of soybean fatty acid modifier quantitative trait loci. Journal of the American Oil Chemists’ Society 81 (12): 1115–1118. https://doi.org/10.1007/s11746-004-1027-z.

    Article  CAS  Google Scholar 

  • Hyten, D.L., V.R. Pantalone, C.E. Sams, A.M. Saxton, D. Landau-Ellis, T.R. Stefaniak, and M.E. Schmidt. 2004b. Seed quality QTL in a prominent soybean population. Theoretical and Applied Genetics 109: 552–561. https://doi.org/10.1007/s00122-004-1661-5.

    Article  CAS  PubMed  Google Scholar 

  • Jun, T.H., K. Van, M.Y. Kim, S.H. Lee, and D.R. Walker. 2008. Association analysis using SSR markers to find QTL for seed protein content in soybean. Euphytica 162 (2): 179–191.

    Article  CAS  Google Scholar 

  • Kabelka, E.A., B.W. Diers, W.R. Fehr, A.R. LeRoy, I.C. Baianu, T. You, D.J. Neece, and R.L. Nelson. 2004. Putative alleles for increased yield from soybean plant introductions. Crop Science 44: 784–791. https://doi.org/10.2135/cropsci2004.0784.

    Article  Google Scholar 

  • Karikari, B., S. Li, J.A. Bhat, Y. Cao, J. Kong, J. Yang, J. Gai, and T. Zhao. 2019. Genome-wide detection of major and epistatic effect qtls for seed protein and oil content in soybean under multiple environments using high-density bin map. International Journal of Molecular Sciences 2019 (20): 979. https://doi.org/10.3390/ijms20040979.

    Article  CAS  Google Scholar 

  • Kim, H.K., Y.C. Kim, S.T. Kim, B.G. Son, Y.W. Choi, J.S. Kang, Y.H. Park, Y.S. Cho, and I.S. Choi. 2010. Analysis of quantitative trait loci (QTLs) for seed size and fatty acid composition using recombinant inbred lines in soybean. Journal of Life Science 20 (8): 1186–1192.

    Article  CAS  Google Scholar 

  • Kim, H.J., B.K. Ha, K.S. Ha, J.H. Chae, J.H. Park, M.S. Kim, S. Asekova, J.G. Shannon, C.K. Son, and J.D. Lee. 2015. Comparison of a high oleic acid soybean line to cultivated cultivars for seed yield, protein and oil concentrations. Euphytica 201: 285–292.

    Article  CAS  Google Scholar 

  • La, T., E. Large, E. Taliercio, Q. Song, J.D. Gillman, D. Xu, H.T. Nguyen, G. Shannon, and A. Scaboo. 2019. Characterization of select wild soybean accessions in the USDA germplasm collection for seed composition and agronomic traits. Crop Science 58 (1): 1–19.

    Google Scholar 

  • Lalles, J.P., and H.M. Tukur. 1996. Analytical criteria for predicting apparent digestibility of soybean protein in preruminant calves. Dairy Science 79: 475–482. https://doi.org/10.3168/jds.S0022-0302(96)76388-9.

    Article  CAS  Google Scholar 

  • Lark, K.G., J. Orf, and L.M. Mansur. 1994. Epistatic expression of quantitative trait loci (QTL) in soybean [Glycine max (L.) Merr.] determined by QTL association with RFLP alleles. Theoretical and Applied Genetics 88: 486–489.

    Article  CAS  PubMed  Google Scholar 

  • Leamy, L.J., H. Zhang, C. Li, C.Y. Chen, and B.H. Song. 2017. A genome-wide association study of seed composition traits in wild soybean (Glycine soja). BMC Genomics 18: 18. https://doi.org/10.1186/s12864-016-3397-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee, S.H., M.A. Bailey, M.A.R. Mian, T.E. Carter, E.R. Shipe, D.A. Ashley, W.A. Parrott, R.S. Hussey, and H.R. Boerma. 1996. RFLP loci associated with soybean seed protein and oil content across populations and locations. Theoretical and Applied Genetics 93 (5-6): 649–657.

    Article  CAS  PubMed  Google Scholar 

  • Leite, D.C., J.B. Pinheiro, J.B. Campos, A.O.D. Mauro, and S.H. Uneda-Trevisoli. 2016. QTL mapping of soybean oil content for marker-assisted selection in plant breeding program. Genetics and Molecular Research 15 (1): 1–11. https://doi.org/10.4238/gmr.15017685.

    Article  CAS  Google Scholar 

  • Li, Z., R.F. Wilson, W.E. Rayford, and H.R. Boerma. 2002. Molecular mapping genes conditioning reduced palmitic acid content in N87‐2122‐4 soybean. Crops Science 42 (2): 373–378. https://doi.org/10.2135/cropsci2002.3730.

    Article  CAS  Google Scholar 

  • Li, D., M. Sun, Y. Han, W. Teng, and W. Li. 2010. Identification of QTL underlying soluble pigment content in soybean stems related to resistance to soybean white mold (Sclerotinia sclerotiorum). Euphytica 172: 49–57. https://doi.org/10.1007/s10681-009-0036-z.

    Article  Google Scholar 

  • Li, H., T. Zhao, Y. Wang, D. Yu, S. Chen, R. Zhou, and J. Gai. 2011. Genetic structure composed of additive QTL, epistatic QTL pairs and collective unmapped minor QTL conferring oil content and fatty acid components of soybeans. Euphytica 182: 117–132. https://doi.org/10.1007/s10681-011-0524-9.

    Article  Google Scholar 

  • Li, Y.H., J.C. Reif, Y.S. Ma, H.L. Hong, Z.X. Liu, R.Z. Chang, and L.J. Qiu. 2015. Targeted association mapping demonstrating the complex molecular genetics of fatty acid formation in soybean. BMC Genomics 16: 841. https://doi.org/10.1186/s12864-015-2049-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, Y., J.C. Reif, H. Hong, H. Lia, Z. Liu, Y. Ma, J. Li, Y. Tian, Y. Li, and L. Qiua. 2018a. Genome-wide association mapping of QTL underlying seed oil and protein contents of a diverse panel of soybean accessions. Plant Science 266: 95–101. https://doi.org/10.1016/j.plantsci.2017.04.013.

    Article  CAS  PubMed  Google Scholar 

  • Li, X., R. Tian, S. Kamala, H. Du, W. Li, Y. Kong, and C. Zhang. 2018b. Identification and verification of pleiotropic QTL controlling multiple amino acid contents in soybean seed. Euphytica 214: 93. https://doi.org/10.1007/s10681-018-2170-y.

    Article  CAS  Google Scholar 

  • Li, W., Z. Shao, R. Tian, H. Zhang, H. Du, Y. Kong, W. Li, and C. Zhang. 2019a. Mining QTLs and candidate genes for seed protein and oil contents across multiple environments and backgrounds in soybean. Molecular Breeding 39: 139. https://doi.org/10.1007/s11032-019-1055-7.

    Article  CAS  Google Scholar 

  • Li, D., X. Zhao, Y. Han, W. Li, and F. Xie. 2019b. Genome-wide association mapping for seed protein and oil contents using a large panel of soybean accessions. Genomics 111: 90–95. https://doi.org/10.1016/j.ygeno.2018.01.004.

    Article  CAS  PubMed  Google Scholar 

  • Li, S., H. Xu, J. Yang, and T. Zhao. 2019c. Dissecting the genetic architecture of seed protein and oil content in soybean from the Yangtze and Huaihe River Valleys using multi-locus genome-wide association studies. International Journal of Molecular Science 2019 (20): 3041. https://doi.org/10.3390/ijms20123041.

    Article  CAS  Google Scholar 

  • Li, X., H. Xue, K. Zhang, W. Li, Y. Fang, Z. Qi, Y. Wang, X. Tian, J. Song, W. Li, and H. Ning. 2020. Mapping QTLs for protein and oil content in soybean by removing the influence of related traits in a four-way recombinant inbred line population. The Journal of Agricultural Science 157: 659–675. https://doi.org/10.1017/S0021859620000040.

    Article  CAS  Google Scholar 

  • Liang, H.Z., S.F. Wang, Y.L. Yu, Y. Lian, T.F. Wang, Y.L. Wei, P.T. Geong, X.Y. Liu, and X.J. Fang. 2010. QTL mapping of isoflavone, oil and protein content in soybean. Agricultural Sciences in China 9 (8): 1108–1116.

    Article  CAS  Google Scholar 

  • Liener, I.E. 1996. Effects of processing on antinutritional factors in legumes: the soybean case. Archivos Latinoamericanos de Nutrición 44: 48S–54S. PMID:9137638.

    CAS  PubMed  Google Scholar 

  • Lu, W., Z. Wen, H. Li, D. Yuan, J. Li, H. Zhang, Huang Zn, S. Cui, and W. Du. 2013. Identification of the quantitative trait loci (QTL) underlying water-soluble protein content in soybean. Theoretical and Applied Genetics 126: 425–433.

    Article  CAS  PubMed  Google Scholar 

  • Mansur, L.M., K.G. Lark, H. Kross, and A. Oliveira. 1993. Interval mapping of quantitative trait loci for reproductive, morphological, and seed traits of soybean (Glycine max L.). Theoretical and Applied Genetics 86: 907–913.

    Article  CAS  PubMed  Google Scholar 

  • Mansur, L.M., J.H. Orf, K. Chase, T. Jarvik, P.B. Cregan, and K.G. Lark. 1996. Genetic mapping of agronomic traits using recombinant inbred lines of soybean. Crop Science 36 (5): 1327–1336.

    Article  CAS  Google Scholar 

  • Mao, T., Z. Jiang, Y. Han, W. Teng, X. Zhao, and W. Li. 2013. Identification of quantitative trait loci underlying seed protein and oil contents of soybean across multi‐genetic backgrounds and environments. Plant Breeding 132 (6): 630–641. https://doi.org/10.1111/pbr.12091.

    Article  CAS  Google Scholar 

  • Meksem, K., T. Doubler, K. Chancharoenchai, N. Nijti, S.J. Chang, A.P. Rao-Arelli, P.E. Cregan, L.E. Gray, P.T. Gibson, and D.A. Lightfoot. 1999. Clustering among loci underlying soybean resistance to Fusarium solani, SDS and SCN in near-isogenic lines. Theoretical and Applied Genetics 99: 1131–1142. https://doi.org/10.1007/s001220051317.

    Article  CAS  Google Scholar 

  • Moongkanna, J., S. Nakasathien, W.P. Novitzky, P. Kwanyuen, P. Sinchaisri, and P. Srinives. 2011. SSR Markers Linking to Seed Traits and Total Oil Content in Soybean. Thai Journal of Agricultural Science 44 (4): 233–241.

    Google Scholar 

  • Nichols, D.M., K.D. Glover, S.R. Carlson, J.E. Specht, and B.W. Diers. 2006. Fine mapping of a seed protein QTL on soybean linkage group I and its correlated effects on agronomic traits. Crop Science 46: 834–839. https://doi.org/10.2135/cropsci2005.05-0168.

    Article  Google Scholar 

  • Orf, J.H., K. Chase, T. Jarvik, L.M. Mansur, P.B. Cregan, F.R. Adler, and K.G. Lark. 1999. Genetics of soybean agronomic traits: I. comparison of three related recombinant inbred populations. Crop Science 39 (6): 1642–1651.

    Article  Google Scholar 

  • Palomeque, L., L. Li-Jun, W. Li, B. Hedges, E.R. Cober, and I. Rajcan. 2009a. QTL in mega-environments: I. Universal and specific seed yield QTL detected in a population derived from a cross of high-yielding adapted high-yielding exotic soybean lines. Theoretical and Applied Genetics 119: 417–427. https://doi.org/10.1007/s00122-009-1049-7.

    Article  PubMed  Google Scholar 

  • ———. 2009b. QTL in mega-environments: II. Agronomic trait QTL co-localized with seed yield QTL detected in a population derived from a cross of high-yielding adapted £ high-yielding exotic soybean lines. Theoretical and Applied Genetics 119: 429–436. https://doi.org/10.1007/s00122-009-1048-8.

    Article  PubMed  Google Scholar 

  • Pandurangan, S., A. Pajak, S.J. Molnar, E.R. Cober, S. Dhaubhadel, C. Hernandez-Sebastia, W.M. Kaiser, R.L. Nelson, S.C. Huber, and F. Marsolais. 2012. Relationship between asparagine metabolism and protein concentration in soybean seed. Journal of Experimental Botany 63 (8): 3173–3184. https://doi.org/10.1093/jxb/ers039.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Panthee, D.R., V.R. Pantalone, D.R. Westa, A.M. Saxtonb, and C.E. Samsa. 2005. Quantitative trait loci for seed protein and oil concentration, and seed size in soybean. Crop Science 45 (5): 2015–2022.

    Article  CAS  Google Scholar 

  • Panthee, D.R., V.R. Pantalone, and A.M. Saxton. 2006. Modifier QTL for fatty acid composition in soybean oil. Euphytica 152: 67–73.

    Article  CAS  Google Scholar 

  • Pathan, S.M., T. Vuong, K. Clark, J.D. Lee, J.G. Shannon, C.A. Roberts, M.R. Ellersieck, J.W. Burton, P.B. Cregan, D.L. Hyten, H.T. Nguyen, and D.A. Sleper. 2013. Genetic mapping and confirmation of quantitative trait loci for seed protein and oil contents and seed weight in soybean. Crop Science 53 (3): 765–774. https://doi.org/10.2135/cropsci2012.03.0153.

    Article  CAS  Google Scholar 

  • Patil, G., T.D. Vuong, S. Kale, B. Valliyodan, R. Deshmukh, C. Zhu, X. Wu, Y. Bai, D. Yungbluth, F. Lu, S. Kumpatla, J.G. Shannon, R.K. Varshney, and H.T. Nguyen. 2018. Dissecting genomic hotspots underlying seed protein, oil, and sucrose content in an interspecific mapping population of soybean using high-density linkage mapping. Plant Biotechnology Journal 16: 1939–1953. https://doi.org/10.1111/pbi.12929.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Priolli, R.H.G., J.B. Campos, N.S. Stabellini, J.B. Pinheiro, and N.A. Vello. 2015. Association mapping of oil content and fatty acid components in soybean. Euphytica 203: 83–96. https://doi.org/10.1007/s10681-014-1264-4.

    Article  CAS  Google Scholar 

  • Qi, Z.M., X. Han, Y.N. Sun, Q. Wu, D.P. Shan, X.Y. Du, C.Y. Liu, H.W. Jiang, G.H. Hu, and Q.S. Chen. 2011. An integrated quantitative trait locus map of oil content in soybean, Glycine max (L.) Merr., generated using a meta-analysis method for mining genes. Agricultural Sciences in China 10 (11): 1681–1692. https://doi.org/10.1016/S1671-2927(11)60166-1.

    Article  CAS  Google Scholar 

  • Qi, Z.M., M. Hou, X. Han, C. Liu, H. Jiang, D. Xin, G. Hu, and Q. Chen. 2014. Identification of quantitative trait loci (QTLs) for seed protein concentration in soybean and analysis for additive effects and epistatic effects of QTLs under multiple environments. Plant Breeding 133 (4): 499–507. https://doi.org/10.1111/pbr.12179.

    Article  CAS  Google Scholar 

  • Qiu, B.X., P.R. Arelli, and D.A. Sleper. 1999. RFLP markers associated with soybean cyst nematode resistance and seed composition in a ‘Peking’בEssex’ population. Theoretical and Applied Genetics 98: 356–364.

    Article  CAS  Google Scholar 

  • Reinprecht, Y., V.W. Poysa, K. Yu, I. Rajcan, G.R. Ablett, and K.P. Paulsa. 2006. Seed and agronomic QTL in low linolenic acid, lipoxygenase-free soybean (Glycine max (L.) Merrill) germplasm. Genome 49 (12): 1510–1527. https://doi.org/10.1139/g06-112.

    Article  CAS  PubMed  Google Scholar 

  • Rossi, M.E., J.H. Orf, L.J. Liu, Z. Dong, and I. Rajcan. 2013. Genetic basis of soybean adaptation to North American vs. Asian mega-environments in two independent populations from Canadian × Chinese crosses. Theor and Appl Genet 126: 1809–1823.

    Article  Google Scholar 

  • Sebolt, A.M., R.C. Shoemaker, and B.W. Diers. 2000. Analysis of a Quantitative Trait Locus Allele from Wild Soybean That Increases Seed Protein Concentration in Soybean. Crop Science 40 (95): 1438–1444.

    Article  CAS  Google Scholar 

  • Shibata, M., K. Takayama, A. Ujiie, T. Yamada, J. Abe, and K. Kitamura. 2008. Genetic relationship between lipid content and linolenic acid concentration in soybean seeds. Breeding Science 58: 361–366.

    Article  CAS  Google Scholar 

  • Sonah, H., L. O’Donoughue, E. Cober, I. Rajcan, and F. Belzile. 2015. Identification of loci governing eight agronomic traits using a GBS-GWAS approach and validation by QTL mapping in soya bean. Plant Biotech Journal 13: 211–221. https://doi.org/10.1111/pbi.12249.

    Article  CAS  Google Scholar 

  • Specht, J.E., K. Chase, M. Macrander, G.L. Graef, J. Chung, J.P. Markwell, M. Germann, J.H. Orf, and K.G. Lark. 2001. Soybean Response to water: A QTL analysis of drought tolerance. Crop Science 41 (2): 493–509.

    Article  CAS  Google Scholar 

  • Spencer, M.M., D. Landau-Ellis, E.J. Meyer, and V.R. Pantalone. 2004. Molecular markers associated with linolenic acid content in soybean. JAOCS 81: 559–562.

    Article  CAS  Google Scholar 

  • Stevenson, D.G., J.L. Jane, and G.E. Ingletta. 2007. Structures and physicochemical properties of starch from immature seeds of soybean varieties (Glycine max (L.) Merr.) exhibiting normal, low-linolenic or low-saturated fatty acid oil profiles at maturity-Carbohydrate. Polymers 70 (2): 149–159.

    CAS  Google Scholar 

  • Stombaugh, S.K., J.H. Orf, H.G. Jung, K. Chase, K.G. Lark, and D.A. Somers. 2004. Quantitative trait loci associated with cell wall polysaccharides in soybean seed. Crop Science 44: 2101–2106.

    Article  CAS  Google Scholar 

  • Tajuddin, T., S. Watanabe, N. Yamanaka, and K. Harada. 2003. Analysis of quantitative trait loci for protein and lipid contents in soybean seeds using recombinant inbred lines. Breeding Science 53: 133–140.

    Article  CAS  Google Scholar 

  • Teng, W., W. Li, Q. Zhang, D. Wu, X. Zhao, H. Li, Y. Han, and W. Li. 2017. Identification of quantitative trait loci underlying seed protein content of soybean including main, epistatic, and QTL × environment effects in different regions of Northeast China. Genome 60 (8): 649–655. https://doi.org/10.1139/gen-2016-0189.

    Article  CAS  PubMed  Google Scholar 

  • Van Ooijen JM (2004) Software for the mapping of quantitative trait loci in experimental populations. MapQTL5 Kyazma BV, Wageningen. The Netherlands.

    Google Scholar 

  • Vollmann, J., H. Schausberger, H. Bistrich, and T. Lelley. 2002. The presence or absence of the soybean Kunitz trypsin inhibitor as a quantitative trait locus for seed protein content. Plant Breeding 121 (3): 272–274.

    Article  CAS  Google Scholar 

  • Voorrips, R.E. 2002. MapChart: software for the graphical presentation of the linkage maps and QTLs. Journal of Heredity 93: 77–78.

    Article  CAS  PubMed  Google Scholar 

  • Vuong, T.D., D.A. Sleper, J.G. Shannon, X. Wu, and H.T. Nguyen. 2010. Novel quantitative trait loci for broad-based resistance to soybean cyst nematode (Heterodera glycines I.) in soybean PI 567516C. Theoretical and Applied Genetics 121: 1253–1266. https://doi.org/10.1007/s00122-010-1385-7.

    Article  CAS  PubMed  Google Scholar 

  • ———. 2011. Confirmation of quantitative trait loci for resistance to multiple-HG types of soybean cyst nematode (Heterodera glycines I.). Euphytica 181: 101–113. https://doi.org/10.1007/s10681-011-0430-1.

    Article  Google Scholar 

  • Wang, X., G.L. Jiang, M. Green, R.A. Scott, D.L. Hyten, and P.B. Cregan. 2012. Quantitative trait locus analysis of saturated fatty acids in a population of recombinant inbred lines of soybean. Molecular Breeding 30 (2): 1163–1179.

    Article  Google Scholar 

  • Wang, X., G.L. Jiang, M. Green, R.A. Scott, Q. Song, D.L. Hyten, and P.B. Cregan. 2014a. Identification and validation of quantitative trait loci for seed yield, oil, and protein contents in two recombinant inbred line populations of soybean. Molecular Genetics and Genomics 289 (5): 935–949.

    Article  CAS  PubMed  Google Scholar 

  • Wang, X., G.L. Jiang, M. Green, R.A. Scott, D.L. Hyten, and P.B. Cregan. 2014b. Quantitative trait locus analysis of unsaturated fatty acids in a recombinant inbred population of soybean. Molecular Breeding 33: 281–296.

    Article  CAS  Google Scholar 

  • Xie, D., W. Chang, Y. Han, Y. Zeng, W. Teng, and W. Li. 2012. SSR- and SNP-related QTL underlying linolenic acid and other fatty acid contents in soybean seeds across multiple environments. Molecular Breeding 30: 169–179. https://doi.org/10.1007/s11032-011-9607-5.

    Article  CAS  Google Scholar 

  • Yang, M.L., J.J. Ding, H.Y. Li, M.N. Sui, and J.A. Wang. 2017. Identification of QTL underlying soybean agglutinin content in soybean seeds and analysis for epistatic effects among multiple genetic backgrounds and environments. Canadian Journal of Plant Science 97: 674–683. https://doi.org/10.1139/cjps-2016-0270.

    Article  CAS  Google Scholar 

  • Yesudas, C.R., R. Bashir, M.B. Geisler, and D.A. Lightfoot. 2013. Identification of germplasm with stacked QTL underlying seed traits in an inbred soybean population from cultivars Essex and Forrest. Plant Breeding 31: 693–703. https://doi.org/10.1007/s11032-012-9827-3.

    Article  CAS  Google Scholar 

  • Zhang, K.W., Y.J. Wang, G.Z. Luo, J.S. Zhang, C.Y. He, X.L. Wu, J.Y. Gai, and S.Y. Chen. 2004. QTL mapping of ten agronomic traits on the soybean (Glycine max L. Merr.) genetic map and their association with EST markers. Theoretical and Applied Genetics 108: 1131–1139.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, D., H. Song, H. Cheng, D. Hao, H. Wang, G. Kan, H. Jin, and D. Yu. 2014. The acid phosphatase-encoding gene GmACP1 contributes to soybean tolerance to low-phosphorus stress. PLoS Genetics 10 (1): e1004061. https://doi.org/10.1371/journal.pgen.1004061.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, D., H. Lu, S. Chu, H. Zhang, H. Zhang, Y. Yang, H. Li, and D. Yu. 2017. The genetic architecture of water-soluble protein content and its genetic relationship to total protein content in soybean. Scientific Reports 7: 5053. https://doi.org/10.1038/s41598-017-04685-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, J., X. Wang, Y. Lu, S.J. Bhusal, Q. Song, P.B. Cregan, Y. Yen, M. Brown, and G.L. Jiang. 2018. Genome-wide scan for seed composition provides insights into soybean quality improvement and the impacts of domestication and breeding. Molecular Plant 11 (3): 460–472. https://doi.org/10.1016/j.molp.2017.12.016.

    Article  CAS  PubMed  Google Scholar 

  • Zhou, Z., Y. Jiang, Z. Wang, Z. Gou, J. Lyu, W. Li, Y. Yu, L. Shu, Y. Zhao, Y. Ma, C. Fang, Y. Shen, T. Liu, C. Li, Q. Li, M. Wu, M. Wang, Y. Wu, Y. Dong, W. Wan, X. Wang, Z. Ding, Y. Gao, H. Xiang, B. Zhu, S.H. Lee, W. Wang, and Z. Tian. 2015. Resequencing 302 wild and cultivated accessions identifies genes related to domestication and improvement in soybean. Nature Biotechnology 33: 408–414.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moulay Abdelmajid Kassem .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kassem, M.A. (2021). QTL That Control Seed Protein, Oil, and Fatty Acids Contents. In: Kassem, M.A. (eds) Soybean Seed Composition. Springer, Cham. https://doi.org/10.1007/978-3-030-82906-3_2

Download citation

Publish with us

Policies and ethics