Skip to main content

Industrial Monitoring of Cell Culture

  • Chapter
  • First Online:
Cell Culture Engineering and Technology

Part of the book series: Cell Engineering ((CEEN,volume 10))

  • 1765 Accesses

Abstract

The monitoring of cell cultivation processes is at the core of every such cultivation. It is the basis for thoroughly understanding each cell line’s growth and metabolism characteristics and to ensure reproducible cell cultivation processes. Monitoring comprises physiological and biological quality attributes like cell count and viability, substrate, metabolite and product concentrations, as well as a large set of physicochemical parameters. While many publications on this topic describe in detail the large number of different monitoring concepts, techniques and developments, only a few look at it from the perspective of an industrial application: Which monitoring techniques are used in process development, which in large-scale manufacturing? How do regulatory requirements impact the implementation of monitoring devices? Here, we concentrate on the subset of monitoring techniques – old and new – that are used in an industrial cell cultivation context or, in the opinion of the authors, have the potential to make it in the near future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Schwamb S, Puskeiler R, Wiedemann P (2015) Monitoring of cell culture. In: Al-Rubeai M (ed) Cell engineering: animal cell culture. Springer, Basel, pp 185–221

    Chapter  Google Scholar 

  2. Konstantinov KB (1996) Monitoring and control of the physiological state of cell cultures. Biotechnol Bioeng 52:271–289

    Article  CAS  PubMed  Google Scholar 

  3. BioPhorum (2017) Biomanufacturing technology roadmap in-line monitoring and real-time release. https://www.biophorum.com/download/in-line-monitoring-and-real-time-release/. Accessed 9.12.2020

  4. Food and Drug Administration (2004) Guidance for Industry: PAT – a framework for innovative pharmaceutical development, manufacturing, and quality assurance. U.S. Department of Health and Human Services, Food and Drug Administration. https://www.fda.gov/media/71012/download. Accessed 9.12.2020

  5. Read EK, Shah RB, Riley BS et al (2009) Process analytical technology (PAT) for biopharmaceutical products: part II. Concepts and applications. Biotechnol Bioeng 105:285–295

    Article  Google Scholar 

  6. International Conference on Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use (2005) ICH harmonised tripartite guideline: quality risk management (Q9). https://database.ich.org/sites/default/files/Q9_Guideline.pdf. Accessed 7.12.2020

  7. International Conference on Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use (2008) ICH harmonised tripartite guideline: pharmaceutical quality system (Q10). https://database.ich.org/sites/default/files/Q10%20Guideline.pdf. Accessed 9.12.2020

  8. International Conference on Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use (2009) ICH harmonised tripartite guideline: pharmaceutical development Q8(R2). https://database.ich.org/sites/default/files/Q8%28R2%29%20Guideline.pdf. Accessed 9.12.2020

  9. Rathore AS (2009) Roadmap for implementation of quality by design (QbD) for biotechnology products. Trends Biotechnol 27:546–553

    Article  CAS  PubMed  Google Scholar 

  10. Zurdo J, Arnell A, Obrezanova O et al (2015) Early implementation of QbD in biopharmaceutical development: a practical example. Biomed Res Int 2015:605427

    Article  PubMed  PubMed Central  Google Scholar 

  11. Narayanan H, Luna MF, von Stosch M et al (2020) Bioprocessing in the digital age: the role of process models. Biotechnol J 15(1):e1900172

    Article  PubMed  Google Scholar 

  12. Graham Ryan J, Bhatia H, Yoon S (2019) Consequences of trace metal variability and supplementation on Chinese hamster ovary (CHO) cell culture performance: a review of key mechanisms and considerations. Biotechnol Bioeng 116(12):3446–3456

    Article  CAS  PubMed  Google Scholar 

  13. Castillo FC, Cooney B, Levine HL (2016) Biopharmaceutical manufacturing process validation and quality risk management. Pharm Eng 36(3):82–92

    Google Scholar 

  14. Rhee JI, Ritzka A, Scheper T (2004) On-line monitoring and control of substrate concentrations in biological processes by flow injection analysis systems. Biotechnol Bioprocess Eng 9:156–165

    Article  CAS  Google Scholar 

  15. Schwamb S, Munteanu B, Meyer B et al (2013) Monitoring CHO cell cultures: cell stress and early apoptosis assessment by mass spectrometry. J Biotechnol 168:452–461

    Article  CAS  PubMed  Google Scholar 

  16. Wiedemann P, Guez JS, Wiegemann HB et al (2011) In situ microscopic cytometry enables noninvasive viability assessment of animal cells by measuring entropy states. Biotechnol Bioeng 108(12):2884–2993

    Article  CAS  PubMed  Google Scholar 

  17. Mandenius CF, Gustavsson R (2015) Mini-review: soft sensors as means for PAT in the manufacture of bio-therapeutics. J Chem Technol Biotechnol 90:215–227

    Article  CAS  Google Scholar 

  18. Pohlscheidt M, Charaniya S, Bork C et al (2013) Bioprocess and fermentation monitoring. In: Flickinger MC (ed) Upstream industrial biotechnology: equipment, process design, sensing, control, and cGMP operations, vol 2, 1st edn. Wiley, Hoboken, pp 1471–1491

    Google Scholar 

  19. Rogstad S, Faustino A, Ruth A et al (2017) A retrospective evaluation of the use of mass spectrometry in FDA biologics license applications. J Am Soc Mass Spectrom 28(5):786–794

    Article  CAS  PubMed  Google Scholar 

  20. Rehbock C, Beutel S, Bruckerhoff T et al (2008) Bioprozessanalytik. Chemie Ingenieur Technik 80(3):267–286

    Article  CAS  Google Scholar 

  21. Braasch K, Nikolic-Jaric M, Cabel T et al (2013) The changing dielectric properties of CHO cells can be used to determine early apoptotic events in a bioprocess. Biotechnol Bioeng 110:2902–2914

    Article  CAS  PubMed  Google Scholar 

  22. Justice C, Brix A, Freimark D et al (2011) Process control in cell culture technology using dielectric spectroscopy. Biotechnol Adv 29:391–401

    Article  CAS  PubMed  Google Scholar 

  23. Carvell JP, Dowd JE (2006) On-line measurements and control of viable cell density in cell culture manufacturing processes using radio-frequency impedance. Cytotechnology 50:35–48

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Arnold WM (2001) Monitoring of biological cell collection by dielectric spectroscopy. In: 2001 annual report conference on electrical insulation and dielectric phenomena. Electrical Insulation and Dielectric Phenomena, 2001 annual report, conference on, Kitchener, pp 40–44

    Google Scholar 

  25. Metze S, Blioch S, Matuszczyk J et al (2020) Multivariate data analysis of capacitance frequency scanning for online monitoring of viable cell concentrations in small-scale bioreactors. Anal Bioanal Chem 412(9):2089–2102

    Article  CAS  PubMed  Google Scholar 

  26. Ma F, Zhang A, Chang D et al (2019) Real-time monitoring and control of CHO cell apoptosis by in situ multifrequency scanning dielectric spectroscopy. Process Biochem 80:138–145

    Article  CAS  Google Scholar 

  27. Wasalathanthri DP, Rehmann MS, Song Y et al (2020) Technology outlook for real-time quality attribute and process parameter monitoring in biopharmaceutical development-a review. Biotechnol Bioeng 117(10):3182–3198

    Article  CAS  PubMed  Google Scholar 

  28. Berry B, Moretto J, Matthews T et al (2015) Cross-scale predictive modeling of CHO cell culture growth and metabolites using Raman spectroscopy and multivariate analysis. Biotechnol Prog 31(2):566–577

    Article  CAS  PubMed  Google Scholar 

  29. Berry BN, Dobrowsky TM, Timson RC et al (2016) Quick generation of Raman spectroscopy based in-process glucose control to influence biopharmaceutical protein product quality during mammalian cell culture. Biotechnol Prog 32(1):224–234

    Article  CAS  PubMed  Google Scholar 

  30. Esmonde-White KA, Cuellar M, Uerpmann C et al (2017) Raman spectroscopy as a process analytical technology for pharmaceutical manufacturing and bioprocessing. Anal Bioanal Chem 409(3):637–649

    Article  CAS  PubMed  Google Scholar 

  31. Webster TA, Hadley BC, Hilliard W et al (2018) Development of generic Raman models for a GS-KOTM CHO platform process. Biotechnol Prog 34:730–737

    Article  CAS  PubMed  Google Scholar 

  32. Abu-Absi NR, Kenty BM, Cuellar ME et al (2011) Real time monitoring of multiple parameters in mammalian cell culture bioreactors using an in-line Raman spectroscopy probe. Biotechnol Bioeng 108:1215–1221

    Article  CAS  PubMed  Google Scholar 

  33. Yilmaz D, Connor MO, Mccormick P (2020) Application of raman spectroscopy in monoclonal antibody producing continuous systems for downstream process intensification. Biotechnol Prog 36:e2947

    Article  CAS  PubMed  Google Scholar 

  34. Lourenco ND, Lopes JA, Almeida CF et al (2012) Bioreactor monitoring with spectroscopy and chemometrics: a review. Anal Bioanal Chem 404:1211–1237

    Article  CAS  PubMed  Google Scholar 

  35. Rolinger L, Rüdt M, Hubbuch J (2020) A critical review of recent trends, and a future perspective of optical spectroscopy as PAT in biopharmaceutical downstream processing. Anal Bioanal Chem 412(9):2047–2064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Whelan J, Craven S, Glennon B (2012) In situ Raman spectroscopy for simultaneous monitoring of multiple process parameters in mammalian cell culture bioreactors. Biotechnol Prog 28(5):1355–1362

    Article  CAS  PubMed  Google Scholar 

  37. Jestel NL (2005) Process Raman spectroscopy. In: Bakeev KA (ed) Process analytical technology. Blackwell, Oxford

    Google Scholar 

  38. Ulber R, Frerichs JG, Beutel S (2003) Optical sensor systems for bioprocess monitoring. Anal Bioanal Chem 376:342–348

    Article  CAS  PubMed  Google Scholar 

  39. Trunfio N, Lee H, Starkey J et al (2017) Characterization of mammalian cell culture raw materials by combining spectroscopy and chemometrics. Biotechnol Prog 33(4):1127–1138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Rodionova OY, Sokovikov YV, Pomerantsev AL (2009) Quality control of packed raw materials in pharmaceutical industry. Anal Chim Acta 642:222–227

    Article  CAS  PubMed  Google Scholar 

  41. Hakemeyer C, Strauss U, Werz S (2013) Near-infrared and two-dimensional fluorescence spectroscopy monitoring of monoclonal antibody fermentation media quality: aged media decreases cell growth. Biotechnol J 8(7):835–846

    Article  CAS  PubMed  Google Scholar 

  42. Kambayashi T, Noguchi T, Nojima A et al (2020) Glucose monitoring in cell culture with online ultrasound-assisted near-infrared spectroscopy. Anal Chem 92(4):2946–2952

    Article  CAS  PubMed  Google Scholar 

  43. Arnold SA, Crowley J, Woods N et al (2003) In-situ near infrared spectroscopy to monitor key analytes in mammalian cell cultivation. Biotechnol Bioeng 84:13–19

    Article  CAS  PubMed  Google Scholar 

  44. Cervera AE, Petersen N, Lantz AE et al (2009) Application of near-infrared spectroscopy for monitoring and control of cell culture and fermentation. Biotechnol Prog 25:1561–1581

    CAS  PubMed  Google Scholar 

  45. Qui J, Arnold MA, Murhammer DW (2014) On-line near infrared bioreactor monitoring of cell density and concentrations of glucose and lactate during insect cell cultivation. J Biotechnol 173:106–111

    Article  Google Scholar 

  46. Scarff M, Arnold SA, Harvey LM et al (2006) Near infrared spectroscopy for bioprocess monitoring and control: current status and future trends. Crit Rev Biotechnol 26:17–39

    Article  CAS  PubMed  Google Scholar 

  47. Food and Drug Administration (2015) Development and submission of near infrared analytical procedures guidance for industry. U.S. Department of Health and Human Services, Food and Drug Administration. https://www.fda.gov/media/91343/download. Accessed 7.12.2020

  48. Simpson MB (2005) Near-infrared spectroscopy for process analytical chemistry: theory, technology and implementation. In: Bakeev KA (ed) Process analytical technology. Blackwell, Oxford, pp 107–153

    Google Scholar 

  49. Evans HM, Schulemann W (1914) The action of vital stains belonging to the benzidine group. Science 39:443–454

    Article  CAS  PubMed  Google Scholar 

  50. Chen A, Leith M, Tu R et al (2017) Effects of diluents on cell culture viability measured by automated cell counter. PLoS One 12(3):e0173375

    Article  PubMed  PubMed Central  Google Scholar 

  51. Darzynkiewicz Z, Juan G, Li X, Gorczyca W et al (1997) Cytometry in cell necrobiology: analysis of apoptosis and accidental cell death (necrosis). Cytometry 27:1–20

    Article  CAS  PubMed  Google Scholar 

  52. Ishaque A, Al-Rubeai M (2002) Role of vitamins in determining apoptosis and extent of suppression by bcl-2 during hybridoma cell culture. Apoptosis 7:231–239

    Article  CAS  PubMed  Google Scholar 

  53. Kroemer G, Galluzzi L, Vandenabeele P et al (2009) Classification of cell death: recommendations of the nomenclature committee on cell death 2009. Cell Death Differ 16:3–11

    Article  CAS  PubMed  Google Scholar 

  54. Krysko DV, Vanden Berghe T, D’herde K et al (2008) Apoptosis and necrosis: detection, discrimination and phagocytosis. Methods 44:205–221

    Article  CAS  PubMed  Google Scholar 

  55. Fagète S, Steimer C, Girod PA (2019) Comparing two automated high throughput viable-cell counting systems for cell culture applications. J Biotechnol 305:23–26

    Article  PubMed  Google Scholar 

  56. Cotter TG, Al-Rubeai M (1995) Cell death (apoptosis) in cell culture systems. Trends Biotechnol 13:150–155

    Article  CAS  PubMed  Google Scholar 

  57. Matthews TE, Berry BN, Smelko J et al (2016) Closed loop control of lactate concentration in mammalian cell culture by Raman spectroscopy leads to improved cell density, viability, and biopharmaceutical protein production. Biotechnol Bioeng 113:2416–2424

    Article  CAS  PubMed  Google Scholar 

  58. André S, Cristau LS, Gaillard S et al (2015) In-line and real-time prediction of recombinant antibody titer by in situ Raman spectroscopy. Anal Chim Acta 892:148–152

    Article  PubMed  Google Scholar 

  59. Ashton L, Xu Y, Brewster VL et al (2013) The challenge of applying Raman spectroscopy to monitor recombinant antibody production. Analyst 138:6977–6985

    Article  CAS  PubMed  Google Scholar 

  60. Liu B, Villacres-Barragan C, Lattova E et al (2013) Differential affects of low glucose on the macroheterogeneity and microheterogeneity of glycosylation in CHO-EG2 camelid monoclonal antibodies. BMC Proc 7(Suppl 6):P112

    Article  PubMed Central  Google Scholar 

  61. Bhatia H, Mehdizadeh H, Drapeau D, Yoon S (2017) In-line monitoring of amino acids in mammalian cell cultures using raman spectroscopy and multivariate chemometrics models. Eng Life Sci 18(1):55–61

    Article  PubMed  PubMed Central  Google Scholar 

  62. Hiller GW, Mulukutla BC (2017) Method of cell culture. WO2015140708A1. Google Patents, https://patents.google.com/patent/WO2015140708A1/en. Accessed 20.11.2020

  63. Douma R (2019) Monitoring the scale-up of a biopharmaceutical cell culture process using Raman Spectroscopy at 2000 L scale in a GMP environment. Presentation: BioProcess International Europe, Vienna, April 2019

    Google Scholar 

  64. Rees-Manley A, Carpio M (2019) Evaluating integrated analytics for single-use mini bioreactors. American Pharmaceutical Review. https://www.americanpharmaceuticalreview.com/1504-White-Papers-Application-Notes/557243-Evaluating-Integrated-Analytics-for-Single-use-Mini-Bioreactors/?catid=6262. Accessed 15.11.2020

  65. Hofer A, Herwig C (2018) Automated bioreactor sampling for on-line analysis of amino acids using two approaches: HPLC and Cedex® Bio HT Analyzer. Secure Cell Application Note #004. https://securecell.ch/de/automated-bioreactor-sampling-for-on-line-analysis-of-amino-acids-using-two-approaches-hplc-and-cedex-bio-ht-analyzer/. Accessed 9.12.2020

  66. Willard SS, Suttle A, Schneider FJ et al (2018) Automated Glucose Control for a Cell Culture Process. http://www.flownamics.com/docs/BioFlo320_SegFlow-Integration.pdf. Accessed 3.11.2020

  67. St Amand MM, Ogunnaike BA, Robinson AS (2014) Development of at-line assay to monitor charge variants of MAbs during production. Biotechnol Prog 30(1):249–255

    Article  CAS  PubMed  Google Scholar 

  68. Pais DA, Carrondo MJ, Alves PM et al (2014) Towards real-time monitoring of therapeutic protein quality in mammalian cell processes. Curr Opin Biotechnol 30:161–167

    Article  CAS  PubMed  Google Scholar 

  69. Berkowitz SA, Engen JR, Mazzeo JR et al (2012) Analytical tools for characterizing biopharmaceuticals and the implications for biosimilars. Nat Rev Drug Discov 11(7):527–540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Gryniewicz CM, Kauffman JF (2008) Multivariate calibration of covalent aggregate fraction to the Raman Spectrum of regular human insulin. J Pharm Sci 97(9):3727–3734

    Article  CAS  PubMed  Google Scholar 

  71. McAvan BS, Bowsher LA, Powell T et al (2020) Raman spectroscopy to monitor post-translational modifications and degradation in monoclonal antibody therapeutics. Anal Chem 92(15):10381–10389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Zhang C, Springall JS, Wang X et al (2019) Rapid, quantitative determination of aggregation and particle formation for antibody drug conjugate therapeutics with label-free Raman spectroscopy. Anal Chim Acta 1081:138–145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Mungikar A, Kamat M (2010) Use of In-line Raman Spectroscopy as a Non-destructive and Rapid Analytical Technique to Monitor Aggregation of a Therapeutic Protein. American Pharmaceutical Reviews. https://www.americanpharmaceuticalreview.com/Featured-Articles/37071-Use-of-In-line-Raman-Spectroscopy-as-a-Non-destructive-and-Rapid-Analytical-Technique-to-Monitor-Aggregation-of-a-Therapeutic-Protein/. Accessed 15.10.2020

  74. Drenski MF, Brader ML, Alston RW et al (2013) Monitoring protein aggregation kinetics with simultaneous multiple sample light scattering. Anal Biochem 437(2):185–197

    Article  CAS  PubMed  Google Scholar 

  75. Waymouth C (1970) Osmolality of mammalian blood and of media for culture of mammalian cells. In Vitro 6:109–127

    Article  CAS  PubMed  Google Scholar 

  76. Sweeney TE, Beuchat CA (1993) Limitations of methods of osmometry: measuring the osmolality of biological fluids. Am J Phys 264(3 Pt 2):R469–R480

    CAS  Google Scholar 

  77. Qin J, Wu X, Xia Z et al (2019) The effect of hyperosmolality application time on production, quality, and biopotency of monoclonal antibodies produced in CHO cell fed-batch and perfusion cultures. Appl Microbiol Biotechnol 103(3):1217–1229

    Article  CAS  PubMed  Google Scholar 

  78. De Zengotita VM, Schmelzer AE, Miller WM (2002) Characterization of hybridoma cell responses to elevated pCO(2) and osmolality: intracellular pH, cell size, apoptosis, and metabolism. Biotechnol Bioeng 77(4):369–380

    Article  Google Scholar 

  79. Zhu MM, Goyal A, Rank DL et al (2005) Effects of elevated pCO2 and osmolality on growth of CHO cells and production of antibody-fusion protein B1: a case study. Biotechnol Prog 21(1):70–77

    Article  PubMed  Google Scholar 

  80. Ryu JS, Kim TK, Chung JY et al (2000) Osmoprotective effect of glycine betaine on foreign protein production in hyperosmotic recombinant chinese hamster ovary cell cultures differs among cell lines. Biotechnol Bioeng 70(2):167–175

    Article  CAS  PubMed  Google Scholar 

  81. Moretto J, Smelko JP, Cuellar M et al (2011) Process Raman Spectroscopy for In-Line CHO Cell Culture Monitoring. American Pharmaceutical Reviews. https://www.americanpharmaceuticalreview.com/Featured-Articles/37040-Process-Raman-Spectroscopy-for-In-Line-CHO-Cell-Culture-Monitoring/. Accessed 14.12.2020

  82. Clavaud M, Roggo Y, Von Daeniken R et al (2013) Chemometrics and in-line near infrared spectroscopic monitoring of a biopharmaceutical Chinese hamster ovary cell culture: prediction of multiple cultivation variables. Talanta 111:28–38

    Article  CAS  PubMed  Google Scholar 

  83. Mattes R, Root D, Sugui MA et al (2009) Real-time bioreactor monitoring of osmolality and pH using near-infrared spectroscopy. Bioprocess Int 7:44–50.146

    CAS  Google Scholar 

  84. Clark LC Jr, Wolf R, Granger D et al (1953) Continuous recording of blood oxygen tensions by polarography. J Appl Physiol 6(3):189–193

    Article  CAS  PubMed  Google Scholar 

  85. Beckman AO, Fracker HE (1934) US Patent No. 2,058,761

    Google Scholar 

  86. Chopda VR, Holzberg T, Ge X et al (2020) Real-time dissolved carbon dioxide monitoring I: application of a novel in situ sensor for CO2 monitoring and control. Biotechnol Bioeng 117(4):981–991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Kimura R, Miller WM (1996) Effects of elevated pCO2 and/or osmolality on the growth and recombinant tPA production of CHO cells. Biotechnol Bioeng 52:152–160

    Article  CAS  PubMed  Google Scholar 

  88. Abu-Absi S, Xu S, Graham H et al (2014) Cell culture process operations for recombinant protein production. Adv Biochem Eng Biotechnol 139:35–68

    CAS  PubMed  Google Scholar 

  89. Chen A, Chitta R, Chang D et al (2009) Twenty-four well plate miniature bioreactor system as a scale-down model for cell culture process development. Biotechnol Bioeng 102:148–160

    Article  CAS  PubMed  Google Scholar 

  90. Steinegger A, Wolfbeis OS, Borisov SM (2020) Optical sensing and imaging of pH values: spectroscopies, materials, and applications. Chem Rev 120(22):12357–12489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Wang XD, Wolfbeis OS (2014) Optical methods for sensing and imaging oxygen: materials, spectroscopies and applications. Chem Soc Rev 43(10):3666–3761

    Article  CAS  PubMed  Google Scholar 

  92. Weigl BH, Holobar A, Trettnak W et al (1994) Optical triple sensor for measuring pH, oxygen and carbon dioxide. J Biotechnol 32(2):127–138

    Article  CAS  PubMed  Google Scholar 

  93. Wiegmann V, Bernal C, Kreukniet M et al (2017) micro-Matrix: Monitored CHO cell batch in 24 parallel micro-bioreactors. https://www.applikon-biotechnology.com/files/appk-poster2a0-chocell-210617lr.pdf. Accessed 7.12.2020

  94. m2p-labs, 2020.: https://www.m2p-labs.com/bioreactors/products/biolector. Accessed 7.12.2020

  95. Applikon Biotechnology (2020) https://www.applikon-biotechnology.com/en/products/cultivation-systems/micro-flask/. Accessed 7.12.2020

  96. Schneider K, Schütz V, John GT et al (2010) Optical device for parallel online measurement of dissolved oxygen and pH in shake flask cultures. Bioprocess Biosyst Eng 33:541–547

    Article  CAS  PubMed  Google Scholar 

  97. Tric M, Lederle M, Neuner L et al (2017) Optical biosensor optimized for continuous in-line glucose monitoring in animal cell culture. Anal Bioanal Chem 409(24):5711–5721

    Article  CAS  PubMed  Google Scholar 

  98. Tsai W-L, Autsen JL, Ma J et al (2012) Noninvasive optical sensor technology in Shake Flasks for mammalian cell cultures. BioProcess International 10(1):50–56

    CAS  Google Scholar 

  99. Takahashi M, Aoyagi H (2018) Practices of shake-flask culture and advances in monitoring CO2 and O2. Appl Microbiol Biotechnol 102:4279–4289

    Article  CAS  PubMed  Google Scholar 

  100. Lee S, Ibey BL, Coté GL et al (2008) Measurement of pH and dissolved oxygen within cell culture media using a hydrogel microarray sensor. Sensors Actuators B Chem 128:388–398

    Article  CAS  Google Scholar 

  101. Couture J, Lindsay J, Baggio R (2018) Impact of dCO2 on Process Parameters: Effect of High dCO2 on Viable Cell Density and Product Titer in CHO Cell Culture. https://www.presens.de/knowledge/publications/application-note/impact-of-dco2-on-process-parameters-575. Accessed 14.12.2020

  102. Hill M, Kern M, Bose S et al (2019) Evaluation of an Optical CO2 Probe for Long-Term Monitoring in Stirred-Tank Bioreactors, Appl. Note: Prototype Autoclavable CO2 Sensor Used in Low and High Cell Density Cultures https://www.presens.de/knowledge/publications/application-note/evaluation-of-an-optical-co2-probe-for-long-term-monitoring-in-stirred-tank-bioreactors-1715. Accessed 12.12.2020

  103. Kroll P, Herwig C (2019) Control of dissolved carbon dioxide in driving force limited cell culture processes. Semantic Scholar Corpus ID: 202620766. https://www.semanticscholar.org/paper/Control-of-dissolved-carbon-dioxide-in-driving-cell-Kroll-Herwig/d82a5020f309f51b5b7bb71df0f3e704db36b3b5. Accessed 12.12.2020

  104. Pollard D, Christensen J (2013) Vent gas analysis. In: Flickinger MC (ed) Upstream industrial biotechnology: equipment, process design, sensing, control, and cGMP operations, vol 2, 1st edn. Wiley, Hoboken, pp 1567–1584

    Google Scholar 

  105. Severinghaus J, Bradley F (1958) Electrodes for blood pO2 and pCO2 determination. J Appl Physiol 13:515–520

    Article  CAS  PubMed  Google Scholar 

  106. Uttamlal M, Walt D (1995) A fiber-optic carbon dioxide sensor for fermentation monitoring. Biotechnology 13:597–601

    CAS  Google Scholar 

  107. Pattison RN, Swamy J, Mendenhall B et al (2000) Measurement and control of dissolved carbon dioxide in mammalian cell culture processes using an in situ fiber optic chemical sensor. Biotechnol Prog 16(5):769–774

    Article  CAS  PubMed  Google Scholar 

  108. Pluschkell SB, Flickinger MC (1995) Improved methods for investigating the external redox potential in hybridoma cell culture. Cytotechnology 19(1):11–26

    Article  CAS  PubMed  Google Scholar 

  109. Meneses-Acosta A, Gómez A, Ramírez OT (2012) Control of redox potential in hybridoma cultures: effects on MAb production, metabolism, and apoptosis. J Ind Microbiol Biotechnol 39(8):1189–1198

    Article  CAS  PubMed  Google Scholar 

  110. Dionne B, Mishra N, Butler M (2017) A low redox potential affects monoclonal antibody assembly and glycosylation in cell culture. J Biotechnol 246:71–80

    Article  CAS  PubMed  Google Scholar 

  111. Handlogten MW, Wang J, Ahuja S (2020) Online control of cell culture redox potential prevents antibody interchain disulfide bond reduction. Biotechnol Bioeng 117(5):1329–1336

    Article  CAS  PubMed  Google Scholar 

  112. Trexler-Schmidt M, Sargis S, Chiu J et al (2010) Identification and prevention of antibody disulfide bond reduction during cell culture manufacturing. Biotechnol Bioeng 106(3):452–461

    CAS  PubMed  Google Scholar 

  113. Hutterer KM, Hong RW, Lull J et al (2013) Monoclonal antibody disulfide reduction during manufacturing: untangling process effects from product effects. MAbs 5(4):608–613

    Article  PubMed  PubMed Central  Google Scholar 

  114. Nyberg GB, Balcarcel RR, Follstad BD et al (1999) Metabolic effects on recombinant interferon-gamma glycosylation in continuous culture of Chinese hamster ovary cells. Biotechnol Bioeng 62:336–347

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are indebted to Andrea McIntosh-Suhr and Tanja Bergfeld for critical comments on this manuscript.

Disclosure of interests

All authors declare they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philipp Wiedemann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Schwamb, S., Engel, M., Werner, T., Wiedemann, P. (2021). Industrial Monitoring of Cell Culture. In: Pörtner, R. (eds) Cell Culture Engineering and Technology. Cell Engineering, vol 10. Springer, Cham. https://doi.org/10.1007/978-3-030-79871-0_17

Download citation

Publish with us

Policies and ethics