Skip to main content

Monitoring of Cell Culture

  • Chapter
  • First Online:
Animal Cell Culture

Part of the book series: Cell Engineering ((CEEN,volume 9))

Abstract

Cell culture monitoring is essential for the continuous characterisation of cultivated cells. This helps us to understand each cell line’s growth and metabolism properties and to establish and ensure reproducible cell cultivations. Monitoring not only comprises biological parameters, like cell count and viability, but also physiological parameters, like substrate, metabolite and possibly product concentrations. Furthermore, a large set of physicochemical parameters such as pH, temperature and osmolarity is routinely monitored in cell culture applications. A multiplicity of monitoring technologies exists. Often, there are several methods for one monitoring parameter to choose from and the choice depends on application and process needs. Moreover, new methods are developed at ever increasing speed. Today, cell culture processes and regulatory agencies demand detailed process understanding, which extensive monitoring is a prerequisite for. In this chapter, the current state of monitoring technologies and applications is reviewed. Particular emphasis is placed on biological parameters, i.e. cell density and viability as well as substrates, metabolites, and product concentration but also on cell stress and apoptosis. Furthermore, promising exploratory technologies are surveyed. Lastly, the chapter is meant to bridge the gap between existing technology-driven and more biology-oriented publications in this field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abu-Absi NR, Kenty BM, Cuellar ME, Borys MC, Sakhamuri S, Strachan DJ, Hausladen MC, Li ZJ (2011) Real time monitoring of multiple parameters in mammalian cell culture bioreactors using an in-line Raman spectroscopy probe. Biotechnol Bioeng 108:1215–1221

    CAS  PubMed  Google Scholar 

  • Abu-Absi S, Xu S, Graham H, Dalal N, Boyer M, Dave K (2014) Cell culture process operations for recombinant protein production. Adv Biochem Eng Biotechnol 139:35–68

    PubMed  Google Scholar 

  • Akin M, Prediger A, Yuksel M, Höpfner T, Demirkol DO, Beutel S, Timur S, Scheper T (2011) A new set up for multi-analyte sensing: at-line bio-process monitoring. Biosens Bioelectron 26(11):4532–4537

    CAS  PubMed  Google Scholar 

  • Al-Rubeai M, Emery AN (1993) Flow cytometry in animal cell culture. Nat Biotechnol 11:572–579

    CAS  Google Scholar 

  • Al-Rubeai M, Welzenbach K, Lloyed DR, Emery AN (1997) A rapid method for evaluation of cell number and viability by flow cytometry. Cytotechnology 24:161–168

    CAS  PubMed Central  PubMed  Google Scholar 

  • Altman SA, Randers L, Rao G (1993) Comparison of trypan blue dye exclusion and fluorometric assays for mammalian cell viability determinations. Biotechnol Prog 9:671–674

    CAS  PubMed  Google Scholar 

  • Arnold WM (2001) Monitoring of biological cell collection by dielectric spectroscopy. In: 2001 annual report conference on electrical insulation and dielectric phenomena. Electrical Insulation and Dielectric Phenomena, 2001 annual report, conference on, Kitchener, pp 40–44

    Google Scholar 

  • Arnold SA, Crowley J, Woods N, Harvey LM, Mcneil B (2003) In-situ near infrared spectroscopy to monitor key analytes in mammalian cell cultivation. Biotechnol Bioeng 84:13–19

    CAS  PubMed  Google Scholar 

  • Ashton L, Xu Y, Brewster VL, Cowcher DP, Sellick CA, Dickson AJ, Stephen GM, Goodacre R (2013) The challenge of applying Raman spectroscopy to monitor recombinant antibody production. Analyst 138:6977–6985

    CAS  PubMed  Google Scholar 

  • Becker FF, Wang XB, Huang Y, Pethig R, Vykoukal J, Gascoyne PR (1995) Separation of human breast cancer cells from blood by differential dielectric affinity. Proc Natl Acad Sci U S A 92:860–864

    CAS  PubMed Central  PubMed  Google Scholar 

  • Becker T, Hitzmann B, Muffler K, Pörtner R, Reardon KF, Stahl F, Ulber R (2007) Future aspects of bioprocess monitoring. Adv Biochem Eng Biotechnol 105:249–293

    CAS  PubMed  Google Scholar 

  • Bhuyan BK, Loughman BE, Fraser TJ, Day KJ (1976) Comparison of different methods of determining cell viability after exposure to cytotoxic compounds. Exp Cell Res 97:275–280

    CAS  PubMed  Google Scholar 

  • Bousse L, Mouradian S, Minalla A, Yee H, Williams K, Dubrow R (2001) Protein sizing on a microchip. Anal Chem 73:1207–1212

    CAS  PubMed  Google Scholar 

  • Braasch K, Nikolic-Jaric M, Cabel T, Salimi E, Bridges GE, Thomson DJ, Butler M (2013) The changing dielectric properties of CHO cells can be used to determine early apoptotic events in a bioprocess. Biotechnol Bioeng 110:2902–2914

    CAS  PubMed  Google Scholar 

  • Browne SM, Al-Rubeai M (2011) Defining viability in mammalian cell cultures. Biotechnol Lett 33:1745–1749

    CAS  PubMed  Google Scholar 

  • Büntemeyer H (2013) Off-line analysis in animal cell culture. In: Flickinger MC (ed) Upstream industrial biotechnology: equipment, process design, sensing, control, and cGMP operations, vol 2, 1st edn. Wiley, Hoboken

    Google Scholar 

  • Camisard V, Brienne JP, Cassar JP, Hammann J, Suhr H (2002) Inline characterisation of cell-concentration and cell-volume in agitated bioreactors using in situ microscopy: application to volume variation induced by osmotic stress. Biotechnol Bioeng 78:73–80

    CAS  PubMed  Google Scholar 

  • Capito F, Skudas R, Kolmar H, Hunzinger C (2013a) Mid-infrared spectroscopy-based antibody aggregate quantification in cell culture fluids. Biotechnol J 8:912–917

    CAS  PubMed  Google Scholar 

  • Capito F, Skudas R, Kolmar H, Stanislawski B (2013b) Host cell protein quantification by Fourier transform mid infrared spectroscopy (FT-MIR). Biotechnol Bioeng 110:252–259

    CAS  PubMed  Google Scholar 

  • Carvell JP, Dowd JE (2006) On-line measurements and control of viable cell density in cell culture manufacturing processes using radio-frequency impedance. Cytotechnology 50:35–48

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cervera AE, Petersen N, Lantz AE, Larsen A, Gernaey KV (2009) Application of near-infrared spectroscopy for monitoring and control of cell culture and fermentation. Biotechnol Prog 25:1561–1581

    CAS  PubMed  Google Scholar 

  • Chuan KH, Lim SF, Martin L, Yun CY, Loh SO, Lasne F, Song Z (2006) Caspase activation, sialidase release and changes in sialylation pattern of recombinant human erythropoietin produced by CHO cells in batch and fed-batch cultures. Cytotechnology 51(2):67–79

    CAS  PubMed Central  PubMed  Google Scholar 

  • Clementschitsch F, Bayer K (2006) Improvement of bioprocess monitoring: development of novel concepts. Microb Cell Fact 5:19

    PubMed Central  PubMed  Google Scholar 

  • Cotter TG, Al-Rubeai M (1995) Cell death (apoptosis) in cell culture systems. Trends Biotechnol 13:150–155

    CAS  PubMed  Google Scholar 

  • Coulter WH (1953) Means for counting particles suspended in a fluid. US patent 2,656,508, 20 Oct 1953

    Google Scholar 

  • Cruz HJ, Dias EM, Peixoto CM, Moreira JL, Carrondo MJT (2000) Product quality of a recombinant fusion protein expressed in immobilised baby hamster kidney cells grown in protein-free medium. Biotechnol Lett 22:677–682

    CAS  Google Scholar 

  • Dahod SK (1982) Redox potential as a better substitute for dissolved oxygen in fermentation process control. Biotechnol Bioeng 24(9):2123–2125

    CAS  PubMed  Google Scholar 

  • Darzynkiewicz Z, Juan G, Li X, Gorczyca W, Murakami T, Traganos F (1997) Cytometry in cell necrobiology: analysis of apoptosis and accidental cell death (necrosis). Cytometry 27:1–20

    CAS  PubMed  Google Scholar 

  • Dayne D (2012) BioLayer Interferometry (BLI) – how does it work? fortéBIO interactions. http://www.fortebio.com/interactions/Spring_2012/page5.html – article1: ForteBio, Inc.

  • De Jesus M1, Wurm FM (2011) Manufacturing recombinant proteins in kg-ton quantities using animal cells in bioreactors. Eur J Pharm Biopharm 78(2):184–188

    CAS  PubMed  Google Scholar 

  • Denecker G, Dooms H, Van Loo G, Vercammen D, Grooten J, Fiers W, Declercq W, Vandenabeele P (2000) Phosphatidyl serine exposure during apoptosis precedes release of cytochrome c and decrease in mitochondrial transmembrane potential. FEBS Lett 465(1):47–52

    CAS  PubMed  Google Scholar 

  • Deshpande RR, Wittmann C, Heinzle E (2004) Microplates with integrated oxygen sensing for medium optimization in animal cell culture. Cytotechnology 46(1):1–8

    CAS  PubMed Central  PubMed  Google Scholar 

  • Diaz R, Payen S (2008) Biological cell separation using dielectrophoresis in a microfluidic device. In: Bio and Thermal Engineering Laboratory – University of California B (ed). http://robotics.eecs.berkeley.edu/%7Epister/245/project/DiazPayen.pdf

  • Dong H, Shen W, Cheung MT, Liang Y, Cheung HY, Allmaier G, Kin-Chung Au O, Lam YW (2011) Rapid detection of apoptosis in mammalian cells by using intact cell MALDI mass spectrometry. Analyst 136:5181–5189

    CAS  PubMed  Google Scholar 

  • Food and Drug Administration (2004) Guidance for Industry: PAT – a framework for innovative pharmaceutical development, manufacturing, and quality assurance. U.S. Department of Health and Human Services, Food and Drug Administration. http://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/UCM070305.pdf

  • European Medicines Agency (2014) Guideline on process validation for finished products – information and data to be provided in regulatory submissions. EMA/CHMP/CVMP/QWP/BWP/70278/2012-Rev1

    Google Scholar 

  • Evans HM, Schulemann W (1914) The action of vital stains belonging to the benzidine group. Science 39:443–454

    CAS  PubMed  Google Scholar 

  • Fadeel B, Gleiss B, Högstrand K, Chandra J, Wiedmer T, Sims PJ, Henter JI, Orrenius S, Samali A (1999) Phosphatidylserine exposure during apoptosis is a cell-type-specific event and does not correlate with plasma membrane phospholipid scramblase expression. Biochem Biophys Res Commun 266(2):504–511

    CAS  PubMed  Google Scholar 

  • Farkas DL, Wei MD, Febbroriello P, Carson JH, Loew LM (1989) Simultaneous imaging of cell and mitochondrial membrane potentials. Biophys J 56:1053–1069

    CAS  PubMed Central  PubMed  Google Scholar 

  • Feng HT, Wong NS, Sim LC, Wati L, Ho Y, Lee MM (2010) Rapid characterization of high/low producer CHO cells using matrix-assisted laser desorption/ionization time-of-flight. Rapid Commun Mass Spectrom 24:1226–1230

    CAS  PubMed  Google Scholar 

  • Feng HT, Sim LC, Wan C, Wong NS, Yang Y (2011) Rapid characterization of protein productivity and production stability of CHO cells by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Rapid Commun Mass Spectrom 25:1407–1412

    CAS  PubMed  Google Scholar 

  • Freshney RI (2005) Culture of animal cells: a manual of basic technique. Wiley, Hoboken

    Google Scholar 

  • Gascoyne PR, Wang XB, Huang Y, Becker FF (1997) Dielectrophoretic separation of cancer cells from blood. IEEE Trans Ind Appl 33:670–678

    PubMed Central  PubMed  Google Scholar 

  • Glacken MW (1988) Catabolic control of mammalian cell culture. Nat Biotechnol 6:1041–1050

    CAS  Google Scholar 

  • Glacken MW, Fleischaker RJ, Sinskey AJ (1986) Reduction of waste product excretion via nutrient control: possible strategies for maximizing product and cell yields on serum in cultures of mammalian cells. Biotechnol Bioeng 28(9):1376–1389

    CAS  PubMed  Google Scholar 

  • Glacken MW, Adema E, Sinskey AJ (1988) Mathematical descriptions of hybridoma culture kinetics: I. Initial metabolic rates. Biotechnol Bioeng 32(4):491–506

    CAS  PubMed  Google Scholar 

  • Gonzalez RC, Woods RE (2008) Digital image processing, 3rd edn. Prentice Hall, Upper Saddle River

    Google Scholar 

  • Goodacre R, Jarvis RM (2005) Raman spectroscopy: applications in bioprocesses and biotechnology. Eur Pharm Rev 11:72–77

    Google Scholar 

  • Guez JS, Cassar JP, Wartelle F, Dhulster P, Suhr H (2004) Real time in situ microscopy for animal cell-concentration monitoring during high density culture in bioreactor. J Biotechnol 111:335–343

    CAS  PubMed  Google Scholar 

  • Guez JS, Cassar JP, Wartelle F, Dhulster P, Suhr H (2010) The viability of animal cell cultures: can it be estimated online by using in situ microscopy? Process Biochem 45:288–291

    CAS  Google Scholar 

  • Gutmann J (1966) A calibrated instrument for the determination of the statistical distribution of cell volumes in a population. Elektromed Biomed Tech 11:80–87

    CAS  PubMed  Google Scholar 

  • Hakemeyer C, Strauss U, Werz S, Folque F, Menezes JC (2013) Near-infrared and two-dimensional fluorescence spectroscopy monitoring of monoclonal antibody fermentation media quality: aged media decreases cell growth. Biotechnol J 8(7):835–846

    CAS  PubMed  Google Scholar 

  • Hansen FH, Miró M (2007) How flow-injection analysis (FIA) over the past 25 years has changed our way of performing chemical analysis. Trends Anal Chem 26:18–26

    CAS  Google Scholar 

  • Harthun S, Matischak K, Friedl P (1998) Simultaneous prediction of human antithrombin III and main metabolites in animal cell culture processes by near-infrared spectroscopy. Biotechnol Tech 12:393–398

    CAS  Google Scholar 

  • Höpfner T, Bluma A, Rudolph G, Lindner P, Scheper T (2010) A review of non-invasive optical-based image analysis systems for continuous bioprocess monitoring. Bioprocess Biosyst Eng 33(2):247–256

    PubMed  Google Scholar 

  • Hu WS (2012) Cell culture bioprocess engineering. ISBN:978-0-9856626-0-8. http://www.cellprocessbook.com/

  • Hu J, El-Fakahany EE (1994) An artifact associated with using trypan blue exclusion to measure effects of amyloid beta on neuron viability. Life Sci 55:1009–1016

    CAS  PubMed  Google Scholar 

  • Hutchens TW, Yip TT (1993) New desorption strategies for the mass spectrometric analysis of macromolecules. Rapid Commun Mass Spectrom 7:576–580

    CAS  Google Scholar 

  • International Conference on Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use (2005) ICH harmonised tripartite guideline: quality risk management (Q9). http://www.ich.org/fileadmin/Public_Web_Site/ICH_Products/Guidelines/Quality/Q9/Step4/Q9_Guideline.pdf

  • International Conference on Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use (2008) ICH harmonised tripartite guideline: pharmaceutical quality system (Q10). http://www.ich.org/fileadmin/Public_Web_Site/ICH_Products/Guidelines/Quality/Q10/Step4/Q10_Guideline.pdf

  • International Conference on Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use (2009) ICH harmonised tripartite guideline: pharmaceutical development Q8(R2). http://www.ich.org/fileadmin/Public_Web_Site/ICH_Products/Guidelines/Quality/Q8_R1/Step4/Q8_R2_Guideline.pdf

  • Ishaque A, Al-Rubeai M (2002) Role of vitamins in determining apoptosis and extent of suppression by bcl-2 during hybridoma cell culture. Apoptosis 7:231–239

    CAS  PubMed  Google Scholar 

  • Jestel NL (2005) Process Raman spectroscopy. In: Bakeev KA (ed) Process analytical technology. Blackwell, Oxford, UK

    Google Scholar 

  • Joeris K, Frerichs JG, Konstantinov K, Scheper T (2002) In-situ microscopy: online process monitoring of mammalian cell cultures. Cytotechnology 38:129–134

    CAS  PubMed Central  PubMed  Google Scholar 

  • Justice C, Brix A, Freimark D, Kraume M, Pfromm P, Eichenmueller B, Czermak P (2011) Process control in cell culture technology using dielectric spectroscopy. Biotechnol Adv 29:391–401

    CAS  PubMed  Google Scholar 

  • Karas M, Hillenkamp F (1988) Laser desorption ionization of proteins with molecular masses exceeding 10,000 daltons. Anal Chem 60:2299–2301

    CAS  PubMed  Google Scholar 

  • Kim JY, Kim YG, Lee GM (2012) CHO cells in biotechnology for production of recombinant proteins: current state and further potential. Appl Microbiol Biotechnol 93:917–930

    CAS  PubMed  Google Scholar 

  • Koh JY, Choi DW (1987) Quantitative determination of glutamate mediated cortical neuronal injury in cell culture by lactate dehydrogenase efflux assay. J Neurosci Methods 20:83–90

    CAS  PubMed  Google Scholar 

  • Konstantinov KB (1996) Monitoring and control of the physiological state of cell cultures. Biotechnol Bioeng 52:271–289

    CAS  PubMed  Google Scholar 

  • Kornmann H, Valentinotti S, Duboc P, Marison I, Von Stockar U (2004) Monitoring and control of Gluconacetobacter xylinus fed-batch cultures using in situ mid-IR spectroscopy. J Biotechnol 113:231–245

    CAS  PubMed  Google Scholar 

  • Kroemer G, Reed JC (2000) Mitochondrial control of cell death. Nat Med 6:513–519

    CAS  PubMed  Google Scholar 

  • Kroemer G, Galluzzi L, Vandenabeele P, Abrams J, Alnemri ES, Baehrecke EH, Blagosklonny MV, El-Deiry WS, Golstein P, Green DR, Hengartner M, Knight RA, Kumar S, Lipton SA, Malorni W, Nunez G, Peter ME, Tschopp J, Yuan J, Piacentini M, Zhivotovsky B, Melino G (2009) Classification of cell death: recommendations of the Nomenclature Committee on Cell Death 2009. Cell Death Differ 16:3–11

    CAS  PubMed Central  PubMed  Google Scholar 

  • Krysko DV, Vanden Berghe T, D’herde K, Vandenabeele P (2008) Apoptosis and necrosis: detection, discrimination and phagocytosis. Methods 44:205–221

    CAS  PubMed  Google Scholar 

  • Kuystermans D, Mohd A, Al-Rubeai M (2012) Automated flow cytometry for monitoring CHO cell cultures. Methods 56:358–365

    CAS  PubMed  Google Scholar 

  • Labeed FH, Coley HM, Thomas H, Hughes MP (2003) Assessment of multidrug resistance reversal using dielectrophoresis and flow cytometry. Biophys J 85:2028–2034

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lam H, Kostov Y (2010) Optical instrumentation for bioprocess monitoring. Adv Biochem Eng Biotechnol 116:1–28

    Google Scholar 

  • Landgrebe D, Haake C, Hopfner T, Beutel S, Hitzmann B, Scheper T, Rhiel M, Reardon KF (2010) On-line infrared spectroscopy for bioprocess monitoring. Appl Microbiol Biotechnol 88:11–22

    CAS  PubMed  Google Scholar 

  • Le H, Kabbur S, Pollastrini L, Sun Z, Mills K, Johnson K, Karypis G, Hu WS (2012) Multivariate analysis of cell culture bioprocess data – lactate consumption as process indicator. J Biotechnol 162(2–3):210–223

    CAS  PubMed  Google Scholar 

  • Lee BW, Olin MR, Johnson GL, Griffin RJ (2008) In vitro and in vivo apoptosis detection using membrane permeant fluorescent-labeled inhibitors of caspases. Methods Mol Biol 414:109–135

    CAS  PubMed  Google Scholar 

  • Legmann R, Schreyer HB, Combs RG, Mccormick EL, Russo AP, Rodgers ST (2009) A predictive high-throughput scale-down model of monoclonal antibody production in CHO cells. Biotechnol Bioeng 104:1107–1120

    CAS  PubMed  Google Scholar 

  • Li J, Schantz A, Schwegler M, Shankar G (2011) Detection of low-affinity anti-drug antibodies and improved drug tolerance in immunogenicity testing by Octet((R)) biolayer interferometry. J Pharm Biomed Anal 54:286–294

    CAS  PubMed  Google Scholar 

  • Li B, Ray BH, Leister KJ, Ryder AG (2013) Performance monitoring of a mammalian cell based bioprocess using Raman spectroscopy. Anal Chim Acta 796:84–91

    CAS  PubMed  Google Scholar 

  • Lourenco ND, Lopes JA, Almeida CF, Sarraguca MC, Pinheiro HM (2012) Bioreactor monitoring with spectroscopy and chemometrics: a review. Anal Bioanal Chem 404:1211–1237

    CAS  PubMed  Google Scholar 

  • Matsushita T, Brendzel AM, Shotola MA, Groh KR (1982) Electrical determination of viability in saline-treated mouse myeloma cells. Biophys J 39:41–47

    CAS  PubMed Central  PubMed  Google Scholar 

  • Naciri M, Kuystermans D, Al-Rubeai M (2008) Monitoring pH and dissolved oxygen in mammalian cell culture using optical sensors. Cytotechnology 57:245–250

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nikolic-Jaric M, Cabel T, Salimi E, Bhide A, Braasch K, Butler M, Bridges GE, Thomson DJ (2013) Differential electronic detector to monitor apoptosis using dielectrophoresis-induced translation of flowing cells (dielectrophoresis cytometry). Biomicrofluidics 7(24):101–113

    Google Scholar 

  • Opel CF, Li J, Amanullah A (2010) Quantitative modeling of viable cell density, cell size, intracellular conductivity, and membrane capacitance in batch and fed-batch CHO processes using dielectric spectroscopy. Biotechnol Prog 26(4):1187–1199

    CAS  PubMed  Google Scholar 

  • Perrin J (1909) Mouvement brownien et molecules. Annales de chimie et de physique 18:1–114

    Google Scholar 

  • Pohl HA, Hawk I (1966) Separation of living and dead cells by dielectrophoresis. Science 152:647–649

    CAS  PubMed  Google Scholar 

  • Pohlscheidt M, Charaniya S, Bork C, Jenzsch M, Noetzel TL, Luebbert A (2013) Bioprocess and fermentation monitoring. In: Flickinger MC (ed) Upstream industrial biotechnology: equipment, process design, sensing, control, and cGMP operations, vol 2, 1st edn. Wiley, Hoboken

    Google Scholar 

  • Puskeiler R, Kusterer A, John GT, Weuster-Botz D (2005) Miniature bioreactors for automated high-throughput bioprocess design (HTBD): reproducibility of parallel fed-batch cultivations with Escherichia coli. Biotechnol Appl Biochem 42:227–235

    CAS  PubMed  Google Scholar 

  • Qui J, Arnold MA, Murhammer DW (2014) On-line near infrared bioreactor monitoring of cell density and concentrations of glucose and lactate during insect cell cultivation. J Biotechnol 173:106–111

    Google Scholar 

  • Racher AJ, Looby D, Griffiths JB (1990) Use of lactate dehydrogenase release to assess changes in culture viability. Cytotechnology 3:301–307

    CAS  PubMed  Google Scholar 

  • Rao G, Moreira A, Brorson K (2009) Disposable bioprocessing: the future has arrived. Biotechnol Bioeng 102(2):348–356

    CAS  PubMed  Google Scholar 

  • Rathore AS (2009) Roadmap for implementation of quality by design (QbD) for biotechnology products. Trends Biotechnol 27:546–553

    CAS  PubMed  Google Scholar 

  • Read EK, Shah RB, Riley BS, Park JT, Brorson KA, Rathore AS (2009) Process analytical technology (PAT) for biopharmaceutical products: Part II. Concepts and applications. Biotechnol Bioeng 105:285–295

    Google Scholar 

  • Reardon KF, Scheper T, Bailey JE (1987) Einsatz eines Fluoreszenzsensors zur Messung der NAD(P)H-abhängigen Kulturfluoreszenz immobilisierter Zellsysteme. Chemie Ingenieur Technik 59(7):600–601

    CAS  Google Scholar 

  • Reers M, Smiley ST, Mottola-Hartshorn C, Chen A, Lin M, Chen LB (1995) Mitochondrial membrane potential monitored by JC-1 dye. Methods Enzymol 260:406–417

    CAS  PubMed  Google Scholar 

  • Rehbock C, Beutel S, Bruckerhoff T, Hitzmann B, Riechers D, Rudolph G, Stahl F, Scheper T, Friehs K (2008) Bioprozessanalytik. Chemie Ingenieur Technik 80(3):267–286

    CAS  Google Scholar 

  • Reuveny S, Velez D, Macmillan JD, Miller L (1986) Factors affecting cell growth and monoclonal antibody production in stirred reactors. J Immunol Methods 86(1):53–59

    CAS  PubMed  Google Scholar 

  • Rhiel M, Ducommun P, Bolzonella I, Marison I, Von Stockar U (2002) Real-time in situ monitoring of freely suspended and immobilized cell cultures based on mid-infrared spectroscopic measurements. Biotechnol Bioeng 77:174–185

    CAS  PubMed  Google Scholar 

  • Rodionova OY, Sokovikov YV, Pomerantsev AL (2009) Quality control of packed raw materials in pharmaceutical industry. Anal Chim Acta 642:222–227

    CAS  PubMed  Google Scholar 

  • Rudolph G, Lindner P, Gierse A, Bluma A, Martinez G, Hitzmann B, Scheper T (2008) Online monitoring of microcarrier based fibroblast cultivations with in situ microscopy. Biotechnol Bioeng 99(1):136–145

    CAS  PubMed  Google Scholar 

  • Rudolph G, Lindner P, Bluma A, Joeris K, Martinez G, Hitzmann B, Scheper T (2010) Optical inline measurement procedures for counting and sizing cells in bioprocess technology. Adv Biochem Eng Biotechnol 116:125–142

    Google Scholar 

  • Sandor M, Rüdinger F, Solle D, Bienert R, Grimm C, Groß S, Scheper T (2013) NIR-spectroscopy for bioprocess monitoring & control. In: BMC proceedings, 2013, Lille

    Google Scholar 

  • Scarff M, Arnold SA, Harvey LM, Mcneil B (2006) Near infrared spectroscopy for bioprocess monitoring and control: current status and future trends. Crit Rev Biotechnol 26:17–39

    CAS  PubMed  Google Scholar 

  • Schasfoort RBM, Mcwhirter A (2008) SPR Instrumentation. In: Handbook of surface Plasmon resonance. The Royal Society of Chemistry, Cambridge

    Google Scholar 

  • Schwamb S, Munteanu B, Meyer B, Hopf C, Hafner M, Wiedemann P (2013) Monitoring CHO cell cultures: cell stress and early apoptosis assessment by mass spectrometry. J Biotechnol 168:452–461

    CAS  PubMed  Google Scholar 

  • Sellick CA, Hansen R, Jarvis RM, Maqsood AR, Stephens GM, Dickson AJ, Goodacre R (2010) Rapid monitoring of recombinant antibody production by mammalian cell cultures using fourier transform infrared spectroscopy and chemometrics. Biotechnol Bioeng 106:432–442

    CAS  PubMed  Google Scholar 

  • Simpson MB (2005) Near-Infrared spectroscopy for process analytical chemistry: theory, technology and implementation. In: Bakeev KA (ed) Process analytical technology. Blackwell, Oxford, UK

    Google Scholar 

  • Singh RP, Al-Rubeai M, Gregory CD, Emery AN (1994) Cell death in bioreactors: a role for apoptosis. Biotechnol Bioeng 44:720–726

    CAS  PubMed  Google Scholar 

  • Sitton G, Srienc F (2008) Mammalian cell culture scale-up and fed-batch control using automated flow cytometry. J Biotechnol 135:174–180

    CAS  PubMed  Google Scholar 

  • Smelko JP, Wiltberger KR, Hickman EF, Morris BJ, Blackburn TJ, Ryll T (2011) Performance of high intensity fed-batch mammalian cell cultures in disposable bioreactor systems. Biotechnol Prog 27(5):1358–1364

    CAS  PubMed  Google Scholar 

  • Suhr H, Wehnert G, Schneider K, Bittner C, Scholz T, Geissler P, Jähne B, Scheper T (1995) In situ microscopy for online characterization of cell-populations in bioreactors, including cell- concentration measurements by depth from focus. Biotechnol Bioeng 47:106–117

    CAS  PubMed  Google Scholar 

  • Teixeira AP, Oliveira R, Alves PM, Carrondo MJ (2009a) Advances in on-line monitoring and control of mammalian cell cultures: supporting the PAT initiative. Biotechnol Adv 27:726–732

    CAS  PubMed  Google Scholar 

  • Teixeira AP, Portugal CA, Carinhas N, Dias JM, Crespo JP, Alves PM, Carrondo MJ, Oliveira R (2009b) In situ 2D fluorometry and chemometric monitoring of mammalian cell cultures. Biotechnol Bioeng 102:1098–1106

    CAS  PubMed  Google Scholar 

  • Ulber R, Frerichs JG, Beutel S (2003) Optical sensor systems for bioprocess monitoring. Anal Bioanal Chem 376:342–348

    CAS  PubMed  Google Scholar 

  • Wagner A, Marc A, Engasser JM, Einsele A (1992) The use of lactate dehydrogenase (LDH) release kinetics for the evaluation of death and growth of mammalian cells in perfusion reactors. Biotechnol Bioeng 39:320–326

    CAS  PubMed  Google Scholar 

  • Wei N, You J, Friehs K, Flaschel E, Nattkemper TW (2007) An in situ probe for on-line monitoring of cell density and viability on the basis of dark field microscopy in conjunction with image processing and supervised machine learning. Biotechnol Bioeng 97(6):1489–1500

    CAS  PubMed  Google Scholar 

  • Wendler J, Vallejo LF, Rinas U, Bilitewski U (2005) Application of an SPR-based receptor assay for the determination of biologically active recombinant bone morphogenetic protein-2. Anal Bioanal Chem 381:1056–1064

    CAS  PubMed  Google Scholar 

  • Wiedemann P, Guez JS, Cassar JP, Egner F, Wiegemann H, Quintana JC, Storhas W, Schwiebert C, Schneider P, Asanza-Maldonado D, Wilkesman J, Suhr H (2010) Optical sampling in-situ microscopy for on-line monitoring of animal cell cultures. Comput Appl Biotechnol (IFAC-PapersOnline) 11(1):197–202

    Google Scholar 

  • Wiedemann P, Worf M, Wiegemann HB, Egner F, Schwiebert C, Wilkesman J, Guez JS, Quintana JC, Assanza D, Suhr H (2011a) On-line and real time cell counting and viability determination for animal cell process monitoring by in situ microscopy. BMC Proceedings 5(Suppl 8):P77

    PubMed Central  Google Scholar 

  • Wiedemann P, Guez JS, Wiegemann HB, Egner F, Quintana JC, Asanza-Maldonado D, Filipaki M, Wilkesman J, Schwiebert C, Cassar JP, Dhulster P, Suhr H (2011b) In situ microscopic cytometry enables noninvasive viability assessment of animal cells by measuring entropy states. Biotechnol Bioeng 108(12):2884–2993

    CAS  PubMed  Google Scholar 

  • Winheim S, Walser A, Kania M (2009) Development and qualification of a generic IgG quantification assay using surface plasmon resonance. BioProcess Int 7(6):36–42

    CAS  Google Scholar 

  • Wlodkowic D, Skommer J, Darzynkiewicz Z (2012) Cytometry of apoptosis. Historical perspective and new advances. Exp Oncol 34(3):255–262

    CAS  PubMed Central  PubMed  Google Scholar 

  • Woolley JF, Al-Rubeai M (2009a) The application of SELDI-TOF mass spectrometry to mammalian cell culture. Biotechnol Adv 27:177–184

    CAS  PubMed  Google Scholar 

  • Woolley JF, Al-Rubeai M (2009b) The isolation and identification of a secreted biomarker associated with cell stress in serum-free CHO cell culture. Biotechnol Bioeng 104:590–600

    CAS  PubMed  Google Scholar 

  • Xu Y, Ford JF, Mann CK, Vickers TJ, Brackett JM, Cousineau KL, Robey WG (1997) Raman measurement of glucose in bioreactor materials. Proc SPIE 2976:10–19

    CAS  Google Scholar 

  • Zamzami N, Marchetti P, Castedo M, Zanin C, Vayssiere JL, Petit PX, Kroemer G (1995) Reduction in mitochondrial potential constitutes an early irreversible step of programmed lymphocyte death in vivo. J Exp Med 181:1661–1672

    CAS  PubMed  Google Scholar 

  • Zeder-Lutz G, Benito A, Van Regenmortel MH (1999) Active concentration measurements of recombinant biomolecules using biosensor technology. J Mol Recognit 12:300–309

    CAS  PubMed  Google Scholar 

  • Zhang X, Scalf M, Berggren TW, Westphall MS, Smith LM (2006) Identification of mammalian cell lines using MALDI-TOF and LC-ESI-MS/MS mass spectrometry. J Am Soc Mass Spectrom 17:490–499

    CAS  PubMed  Google Scholar 

  • Zustiak MP, Pollack JK, Marten MR, Betenbaugh MJ (2008) Feast or famine: autophagy control and engineering in eukaryotic cell culture. Curr Opin Biotechnol 19:518–526

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Andrea Suhr, Chris Marquis and Janike Ehret for their valuable help in preparing this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philipp Wiedemann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Schwamb, S., Puskeiler, R., Wiedemann, P. (2015). Monitoring of Cell Culture. In: Al-Rubeai, M. (eds) Animal Cell Culture. Cell Engineering, vol 9. Springer, Cham. https://doi.org/10.1007/978-3-319-10320-4_7

Download citation

Publish with us

Policies and ethics