Skip to main content
Log in

On-line Measurements and Control of Viable Cell Density in Cell Culture Manufacturing Processes using Radio-frequency Impedance

  • Published:
Cytotechnology Aims and scope Submit manuscript

Abstract

In this work, radio-frequency (RF) impedance is reviewed as a method for monitoring and controlling cell culture manufacturing processes. It is clear from the many publications cited that RF Impedance is regarded as an accurate and reliable method for measuring the live cell bio-volume both on-line and off-line and the technology is also sutable for animal cells in suspension, attached to micro-carriers or immobilized in fixed beds. In cGMP production, RF Impedance is being used in three main areas. Firstly, it is being used as a control instrument for maintaining consistent perfusion culture allowing the bioreactor to operate under optimum conditions for maximum production of recombinant proteins. In the second application it has not replaced traditional off-line live cell counting techniques but it is being used as an additional monitoring tool to check product conformance. Finally, RF Impedance is being used to monitor the concentration of live cells immobilized on micro-carriers or packed beds in cGMP processes where traditional off-line live cell counting methods are inaccurate or impossible to perform.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Asami K., Yonezawa T., Wakamatsu H. and Koyanagi N. (1996). Dielectric spectroscopy of biological cells. Biochem. Bioener. 40: 141–145

    Article  CAS  Google Scholar 

  • Barer M.R., Kaprelyants A.S., Weichart D.H., Harwood C.R. and Kell D.B. (1998). Microbial stress and culturability: conceptual and operational domains. Microbiology UK 144: 2009–2010

    Article  CAS  Google Scholar 

  • Belving H., Ericksson L.E.G., Davey C.L. and Kell D.B. (1994). Dielectric properties of human blood and erythrocytes at radio frequencies (0.2–10 MHz); dependence on cell volume fraction and medium composition. Eur. Biophys. J. 23: 207–215

    Article  Google Scholar 

  • Carvell J.P. 2003. Monitoring live cell concentration in real time. Bioprocess Int.: 2–7.

  • Cerkel I., Garcia A., Degouys V., Dubois D., Fabry L. and Miller A.O.A. (1993). Dielectric-spectroscopy of mammalian cells: evaluation of the biomass of Hela-Cell and CHO-cells in suspension by low frequency dielectric spectroscopy. Cytotechnology 13: 185–193

    Article  Google Scholar 

  • Clegg J.S. (1984). Properties and metabolism of the aqueous cytoplasm and its boundaries. Am. J. Physiol. 246: R133–R151

    CAS  Google Scholar 

  • Davey C.L. and Kell D.B. 1995. The low-frequency dielectric properties of biological cells. In: Bioelectrochemistry: Principles and PracticeVol. 2. Bioelectrochem’of Cells and Tissues. pp. 159–207.

  • Davey C.L., Davey H.M., Kell D.B. and Todd R.W. (1993a). Introduction to the dielectric estimation of cellular biomass in real timewith special emphasis on measurements at high volume fractions. Anal. Chim. Acta 279: 155–161

    Article  Google Scholar 

  • Davey C.L., Markx G.H. and Kell D.B. (1993b). On the dielectric method of measuring cellular viability. Pure Appl. Chem. 65: 1921–1926

    Article  CAS  Google Scholar 

  • Davey C.L., Guan Y. and Kemp R.B. (1997a). Real time monitoring of the biomass content of animal cell cultures using dielectric spectroscopy. Animal Cell Technol.: Basic Appl. Aspects 8: 61–65

    Google Scholar 

  • Davey C.L., Guan Y., Kemp R.B. and Kell D.B. (1997b). Real-time monitoring of the biomass content of animal cell cultures using dielectric spectroscopy. In: Funatsu, K., Shirai, Y., and Matsushita, T. (eds) Animal Cell Technology: Basic and Applied Aspects, Vol. 8, pp 61–65. Kluwer, Dordrecht

    Google Scholar 

  • Degouys V., Cerkel I., Garcia A., Harfield J., Dubois D., Fabry L. and Miller A.O.A. (1993). Dielectric spectroscopy of mammalian cells: 2, simultaneous in situ evaluation by aperture impedance pulse spectroscopy and low-frequency dielectric spectroscopy of the biomass of HTC cells on Cytodex 3. Cytotechnology 13: 195–202

    Article  CAS  Google Scholar 

  • Dowd J.E., Jubb A., Kwok E.K. and Piret J.M. (2003). Optimization and control of perfusion cultures using a viable cell probe and cell specific perfusion rates. Cytotechnology 42: 35–45

    Article  CAS  Google Scholar 

  • Dowd J.E. and Carvell J.P. (2005). Improved control of cGMP fermentations and cell culture. Genet. Engineer. News 25(11): 64–68

    Google Scholar 

  • Ducommun P., Kadori A., Von Stockar U. and Marison I. (2002a). On-line determination of animal cell concentration in two industrial high density culture processes by dielectric spectroscopy. Biotechnol. Bioeng. 77: 316–323

    Article  CAS  Google Scholar 

  • Ducommun P., Ruffieux P.A., Kadouri A., Von Stockar U. and Marison (2002b). Monitoring temperature effects on cell metabolism in a packed bed process. Biotechnol. Bioeng. 77: 838–842

    Article  CAS  Google Scholar 

  • Elias C.B., Zeiser A., Bedard C. and Kamen A.A. (2000). Enhanced growth of Sf-9 cells to a maximum density of 5.2×107 cells per ml and production of B-Galactosidase at high cell density by fed batch culture. Biotechnol. Bioeng. 68: 381–388

    Article  CAS  Google Scholar 

  • Elias C.B., Zeiser A. and Kamen A.A. (2003). Advances in high cell density culture technology using the Sf-9 insect cell baculovirus expression system — the fed batch approach. Bioprocess J. 2(1): 22–29

    Google Scholar 

  • Ferreira A.P., Vieira L.M., Cordoso J.P. and Menzes J.C. (2005). Evaluation of a new capacitance probe for biomass monitoring in industrial pilot-scale fermentations. J. Biotechnol. 116: 403–409

    Article  Google Scholar 

  • Foster K.R. and Schwan H.P. (1986). Dielectric properties of tissues. In: Polk, C. and Postow, E. (eds) CRC Handbook of Biological Effects of Electromagnetuic Fields, pp. CRC Press, Boca Raton, FL

    Google Scholar 

  • Foster K.R. and Schwan H.P. (1989). Dielectric properties of tissues and biological materials: a critical review. Critical Reviews in Biomedical Engineering 17: 25–104

    CAS  Google Scholar 

  • Guan Y. and Kemp R. (1997). The viable cell monitor: a dielectric spectroscope for growth and metabolic studies of animal cells on macroporous beads. In: Merten, O.-W., Perrin, P. and Griffiths, B. (eds) New Developments and New Applications in Animal Cell Technology, pp 321–328. Kluwer Academic Publishers, Dordrecht/NL

    Google Scholar 

  • Guan Y., Evans P.M. and Kemp R.B. (1998). An on-line monitor and potential control variable of specific metabolic rate in animal cell culture that combines microcalorimetry with dielectric spectroscopy. Biotechnol. Bioeng. 58: 463–477

    Article  Google Scholar 

  • Harris C.M., Todd R.W., Bungard S.H., Lovitt R.W., Morris J.G. and Kell D.B. (1987). The dielectric permietivity of microbial suspensions at radio frequencies: a novel method for the estimation of microbial biomass. Enzyme Microb. Technol. 9: 181–186

    Article  CAS  Google Scholar 

  • Kell D.B. and Todd R.W. (1998). Dielectric estimation of microbial biomass using the Aber Instruments Biomass Monitor. TIBTECH 16: 149–150

    CAS  Google Scholar 

  • Kell D.B., Markx G.H., Davey C.L. and Todd R.W. (1990). Real time monitoring of cellular biomass: methods and applications. Trends Anal. Chem. 9: 190–194

    Article  Google Scholar 

  • Kell D.B., Kaprelyants A.S., Weichart D.H., Harwood C.L. and Baxter M.R. (1998). Viability and activity in readily culturable bacteria: a review and discussion of the practical issues. Antonie van Leeuwenhoek 73: 169–187

    Article  CAS  Google Scholar 

  • Konstantinov K.B., Pambayun R., Matanguihan R., Yoshida T., Perusich C.M. and Hu W.S. (1992). On-line monitoring of hybridoma cell growth using a laser turbidity sensor. Biotechnol. Bioeng. 40: 1337–1342

    Article  CAS  Google Scholar 

  • Konstantinov K., Chuppa S., Saja E., Tsal Y., Golini F. and Yoons (1994). Real time biomass concentration monitoring in animal cell cultures. TIBTECH 12: 324–333

    CAS  Google Scholar 

  • Merten O.-W., Palfi G.E., Stäheli J. and Steiner J. (1987). Invasive infrared sensor for the determination of the cell number in a continuous fermentation of hybridomas. Dev. Biol. Standard 66: 357–360

    CAS  Google Scholar 

  • Noll T. and Biselli M. (1998). Dielectric spectroscopy in the cultivation of suspended and immobilised hybridoma cells. J. Biotechnol. 63: 187–198

    Article  CAS  Google Scholar 

  • Pethig R. (1979). Dielectric and Electronic Properties of Biological Materials. Wiley, Chichester

    Google Scholar 

  • Pethig R. and Kell D.B. (1987). The passive electrical properties of biological systems: their significance in physiology, biophysics and biotechnology. Phys. Med. Biol. 32: 933–970

    Article  CAS  Google Scholar 

  • Schmid G. and Zacher D. (2004). Evaluation of a novel capacitance probe for on-line monitoring of viable cell densities in batch and fed-bach animal cell culture processes. In: Godia, F. and Fussenegger, M. (eds) Animal Cell Technology Meets Genomics, pp 621–624. Springer, Dordrecht/NL

    Google Scholar 

  • Siano S.A. (1997). Biomass measurement by inductive permeattivity. Biotechnol. Bioeng. 55: 289–304

    Article  CAS  Google Scholar 

  • Stoicheva N.G., Davey C.L., Markx G.H. and Kell D.B. (1989). Dielectric spectroscopy: a rapid method for the determination of solvent biocompatibility during biotransformations. Biocatalysis 2: 5–22

    Article  Google Scholar 

  • Takashima S., Asami K. and Takahashi Y. (1988). Frequency domain studies of impedance characteristics of biological cells using micropippette technique. 1. Erythrocyte. Biophys. J. 54: 995–1000

    Article  CAS  Google Scholar 

  • Vits H. and Hu W.S. (1992). Fluctuations in continuous mammalian cell bioreactors with retention. Biotechnol. Progr. 8: 397–403

    Article  CAS  Google Scholar 

  • Wu P., Ozturk S., Blackie J.D., Thrift J.C., Figueroa C. and Naveh D. (1995). Evaluation and applications of optical density probes in mammalian cell bioreactors. Biotechnol. Bioeng. 45: 495–502

    Article  CAS  Google Scholar 

  • Zeiser A., Bedard C., Voyer R., Jardin B., Tom R., Karmen A.A. and Karmen T. (1999). On-line monitoring of the progress of infection in Sf-9 insect cell cultures using relative permittivity measurements. Biotechnol. Bioeng. 63: 122–126

    Article  CAS  Google Scholar 

  • Zeiser A., Voyer R., Jardin B. and Kamen A. (2000). On-line monitoring physiological parameters of insect cell cultures during growth and infection process. Biotechnol. Progr. 16: 803–808

    Article  CAS  Google Scholar 

  • Zho W. and Hu W.S. (1994). On-line characterisation of a hybridoma cell culture process. Biotechnol. Bioeng. 44: 170–177

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John P. Carvell.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carvell, J.P., Dowd, J.E. On-line Measurements and Control of Viable Cell Density in Cell Culture Manufacturing Processes using Radio-frequency Impedance. Cytotechnology 50, 35–48 (2006). https://doi.org/10.1007/s10616-005-3974-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10616-005-3974-x

Key words

Navigation