Skip to main content
Log in

Osmolality of mammalian blood and of media for culture of mammalian cells

  • Published:
In Vitro Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Ringer, S. 1880. Concerning the influence exerted by each of the constituents of the blood on the contraction of the ventricle. J. Physiol. 3: 380–393.

    Google Scholar 

  2. Ringer, S. 1883. A further contribution regarding the influence of the different constituents of the blood on the contraction of the heart. J. Physiol. 4: 29–32.

    PubMed  CAS  Google Scholar 

  3. Ringer, S. 1883. A third contribution regarding the influence of the inorganic constituents of the blood on the ventricular contraction. J. Physiol. 4: 222–225.

    PubMed  CAS  Google Scholar 

  4. Ringer, S. 1186. Further experiments regarding the influence of small quantities of lime potassium and other salts on muscular tissue. J. Physiol. 7: 291–308.

    Google Scholar 

  5. Ringer, S. 1895. Further observations regarding the antagonism between calcium salts and sodium potassium and ammonium salts. J. Physiol. 18: 425–429.

    PubMed  CAS  Google Scholar 

  6. Locke, F. S. 1895. Artificial fluids as uninjurious as possible to animal tissues. Boston Med. Surg. J. 134: 173.

    Google Scholar 

  7. Locke, F. S. 1895. Towards the ideal artificial circulating fluid for the isolated frog's heart. J. Physiol. 18: 332–333.

    PubMed  CAS  Google Scholar 

  8. Locke, F. S. 1900 Die Wirkung der Metalle das Blutplasmas und verschiedener Zucker auf des isoliertes Saügetierherz. Zbl. Physiol. 14: 670.

    Google Scholar 

  9. Tyrode, M. V. 1910. The mode of action of some purgative salts. Arch. Int. Pharmacodyn. 20: 205–223.

    Google Scholar 

  10. Krebs, H. A., and K. Henseleit 1932. Untersuchunger über die Harnstoffbildung in Tierkorper. Z. Physiol. Chem. 210: 33–66.

    CAS  Google Scholar 

  11. Krebs, H. A. 1950. Body size and tissue respiration. Biochim. Biophys. Acta 4: 249–269.

    Article  PubMed  CAS  Google Scholar 

  12. Lewis, M. R., and W. H. Lewis. 1911. The cultivation of tissues from chick embryos in solutions of NaCl, KCl and NaHCO3. Anat. Rec. 5: 277–285.

    Article  Google Scholar 

  13. Lewis, W. H., and M. R. Lewis. 1912. The cultivation of chick tissues in media of known chemical composition. Anat. Rec. 6: 207–211.

    Article  Google Scholar 

  14. Waymouth, C. 1954. The nutrition of animal cells. Int. Rev. Cytol. 3: 1–68.

    CAS  Google Scholar 

  15. Waymouth, C. 1965. Construction and use of synthetic media. In: E. N. Willmer (ed.)Cells and Tissues in Culture, Vol. 1, pp. 99–142. Academic Press, London.

    Google Scholar 

  16. Gey, G. O., and M. K. Gey. 1936. The maintenance of human normal cells and human tumor cells in continuous culture. I. Preliminary report: Cultivation of mesoblastic tumors and normal tissue and notes on methods of cultivation. Amer. J. Cancer 27: 45–76.

    Google Scholar 

  17. Earle, W. R. 1943. Production of malignancy in vitro. IV. The mouse fibroblast cultures and changes seen in the living cells. J. Nat. Cancer Inst. 4: 165–212.

    CAS  Google Scholar 

  18. Hanks, J. H. 1948. The longevity of chick tissue cultures without renewal of medium. J. Cell. Comp. Physiol. 31: 235–260.

    Article  CAS  Google Scholar 

  19. Hanks, J. H., and R. E. Wallace. 1949. Relation of oxygen and temperature in the preservation of tissue by refrigeration. Proc. Soc. Exp. Biol. Med. 71: 196–200.

    PubMed  CAS  Google Scholar 

  20. Waymouth, C. 1968. Culture media: animal tissue. In: P. L. Altman and D. S. Dittmer (eds.).Metabolism. FASEB, Washington, D.C. pp. 180–187.

    Google Scholar 

  21. Diem, K. (ed.). 1962.Documenta Geigy. Scientific Tables. Geigy Pharmaceuticals, N.Y. 6th Ed.

    Google Scholar 

  22. Dick, D. A. T. 1959. Osmotic properties of living cells. Int. Rev. Cytol. 8: 387–448.

    PubMed  CAS  Google Scholar 

  23. Opie, E. L. 1959. Isotonicity of liver and kidney tissue in solutions of electrolytes. J. Exp. Med. 110: 103–111.

    Article  PubMed  CAS  Google Scholar 

  24. Glasser, O. (ed.). 1944.Medical Physics. Vol. 1. Year Book Publ. Co., Chicago, Ill.

    Google Scholar 

  25. Prosser, C. L., and F. A. Brown 1961.Comparative Animal Physiology. Saunders Co., Philadelphia.

    Google Scholar 

  26. Gettler, A. O., and W. Baker. 1916. Chemical and physical analysis of blood in thirty normal cases. J. Biol. Chem. 25: 211–222.

    Google Scholar 

  27. Margaria, R. 1930. The vapour pressure of normal human blood. J. Physiol. 70: 417–433.

    PubMed  CAS  Google Scholar 

  28. Hill, A. V. 1928. Myothermic apparatus. Proc. Roy. Soc. (Lond.) 103(B): 117–137.

    CAS  Google Scholar 

  29. Hill, A. V. 1930. Thermal method of measuring the vapor pressure of an aqueous solution. Proc. Roy. Soc. (Lond.) 127(A): 9–19.

    CAS  Google Scholar 

  30. Culbert, R. W. 1935. The vapor pressure of human blood by Hill's thermoelectric method. Apparatus and technique. J. Biol. Chem. 109: 547–563.

    CAS  Google Scholar 

  31. Culbert, R. W., D. J. McCune, and A. A. Weech. 1937. Rate of evaporation in serum as a measure of vapor pressure, osmotic pressure and concentration of solutes. J. Biol. Chem. 119: 589–606.

    CAS  Google Scholar 

  32. Spector, W. S. (ed.). 1956.Handbook of Biological Data. Saunders Co., Philadelphia. Table 36, p. 51.

    Google Scholar 

  33. Altman, P. L., and D. S. Dittmer (eds.). 1961.Blood and Other Body Fluids. FASEB, Washington, D.C.

    Google Scholar 

  34. Sunderman, F. W. 1951. Studies in serum electrolyties XVII. Some clinical aspects. Amer. J. Clin. Path. 21: 319–331.

    CAS  Google Scholar 

  35. Hendry, E. B. 1961. Osmolarity of human serum and of chemical solutions of biological importance. Clin. Chem. 7: 156–164.

    CAS  Google Scholar 

  36. Holmes, J. H. 1962. Measurement of osmolality in serum, urine and other biologic fluids by freezing point determination. Commission on continuing education. Amer. Soc. Clin. Path. 20 pp.

  37. Popescu, D., H. Cristea, and S. Negreanu. 1963. Ionic composition and distribution in preserved blood and derivatives. Chirurgia (Bucharest) 7: 457–462.

    CAS  Google Scholar 

  38. Aldred, P. 1940. A note on the osmotic pressure of the blood of various animals. J. Exp. Biol. 17: 223–226.

    Google Scholar 

  39. Dukes, H. H. 1937.The Physiology of Domestic Animals. 4th ed. Comstock Publ. Co., Inc., Ithaca, N.Y.

    Google Scholar 

  40. Dukes, H. H. 1947.The Physiology of Domestic Animals. 6th ed. Comstock Publ. Co., Inc., Ithaca, N.Y.

    Google Scholar 

  41. Benham, G. H., W. S. Duke-Elder, and T. H. Hodgson. 1938. The osmotic pressure of the aqueous humour in the normal and glaucomatous eye. J. Physiol. 92: 355–360.

    PubMed  CAS  Google Scholar 

  42. Lifson, N. 1944. Note on the total osmotic activity of human plasma or serum. J. Biol. Chem. 152: 659–663.

    CAS  Google Scholar 

  43. Olmstead, E. G., and D. A. Roth. 1957. The relationship of serum sodium to total serum osmolarity; a method of distinguishing hyponatremic states. Amer. J. Med. Sci. 233: 392–399.

    PubMed  CAS  Google Scholar 

  44. Stenger, V., D. Eitzman, I. Gessner, T. Anderson, C. De Padua, and H. Prystowsky. 1963. A comparison of the freezing points of fetal and maternal plasmas of humans. J. Obstet. Gynecol. 87: 1042–1046.

    CAS  Google Scholar 

  45. Collins, D. A., and F. H. Scott 1932. The freezing points of serum and corpuscles. J. Biol. Chem. 97: 189–213.

    CAS  Google Scholar 

  46. Benham, G. H., H. Davson, and W. S. Duke-Elder. 1937. The total osmotic concentrations in serum and aqueous humour. J. Physiol. 89: 61–63.

    PubMed  CAS  Google Scholar 

  47. Follansbee, R. 1945. The osmotic activity of gastrointestinal fluids after water ingestion in the rat. Amer. J. Physiol. 144: 355–362.

    CAS  Google Scholar 

  48. Prosser, C. L. 1950.Comparative Animal Physiology. Saunders Co., Philadelphia.

    Google Scholar 

  49. Brodsky, W. A., J. W. Appelbloom, W. H. Dennis, W. S. Rehm, J. F. Miley, and I. Diamond. 1956. The freezing point depression of mammalian tissues in relation to the question of osmotic activity of cell fluid. J. Gen. Physiol. 40: 183–199.

    Article  PubMed  CAS  Google Scholar 

  50. Meschia, G., and D. H. Barron 1956-57. Freezing point depression of arterial and venous plasmas in vivo. Yale J. Biol. Med. 29: 54–59.

    PubMed  CAS  Google Scholar 

  51. Meschia, G., F. C. Battaglia, and D. H. Barron. 1957. A comparison of the freezing points of fetal and maternal plasmas of sheep and goat. Quart. J. Exp. Physiol. 42: 163–170.

    PubMed  CAS  Google Scholar 

  52. Battaglia, F. C., G. Meschia, A. Hellegers, and D. H. Barron. 1958. The effects of acute hypoxia on the osmotic pressure of the plasma. Quart. J. Exp. Physiol. 43: 197–208.

    PubMed  CAS  Google Scholar 

  53. Wheeler, H. O., and O. L. Ramos. 1960. Determinants of the flow and composition of the bile in the unanesthetized dog during constant infusion of sodium taurocholate. J. Clin. Invest. 39: 161–170.

    PubMed  CAS  Google Scholar 

  54. Parsons, D. S., and G. D. V. van Rossum. 1961. Postnatal changes in the water and electrolyte content of rat liver. Quart. J. Exp. Physiol. 46: 353–368.

    PubMed  CAS  Google Scholar 

  55. Koch-Weser, J. 1963. Influence of osmolarity of perfusate on contractility of mammalian myocardium. Amer. J. Physiol. 204: 957–962.

    PubMed  CAS  Google Scholar 

  56. Harpur, R. P., and J. S. Popkin 1965. Osmolality of blood and intestinal contents in the pig, guinea pig, and Ascaris lumbricoides. Canad. J. Biochem. 43: 1157–1169.

    CAS  Google Scholar 

  57. Morrison, J. H. 1967. Separation of lymphocytes of rat bone marrow by combined glass-wool filtration and dextran-gradient centrifugation. Brit. J. Haematol. 13: 229–235.

    CAS  Google Scholar 

  58. Deringer, M. K., T. B. Dunn, and W. E. Heston. 1953. Results of exposure of strain C3H mice to chloroform. Proc. Soc. Exp. Biol. Med. 83: 474–479.

    PubMed  CAS  Google Scholar 

  59. Shubik, P., and A. C. Ritchie 1953. Sensitivity of male dba mice to the toxicity of chloroform as a laboratory hazard. Science 117: 285.

    Article  PubMed  CAS  Google Scholar 

  60. Meier, H., and J. L. Fuller. 1966. Response to drugs. Chap. 23 in E. L. Green (ed.),Biology of the Laboratory Mouse. McGraw-Hill, New York. pp. 447–455.

    Google Scholar 

  61. Parker, R. C.. 1938.Methods of Tissue Culture. 1st ed. Hoeber, New York, N.Y.

    Google Scholar 

  62. Parker, R. C.. 1961.Methods of Tissue Culture. 3rd. ed. Hoeber, New York, N.Y.

    Google Scholar 

  63. Ebeling, A. H.. 1914. The effect of the variation in the osmotic tension and of the dilution of culture media on the cell proliferation of connective tissue. J. Exp. Med. 20: 130–139.

    Article  Google Scholar 

  64. Hogue, M. J.. 1919. The effect of hypotonic and hypertonic solutions on fibroblasts of the embryonic chick heart in vitro. J. Exp. Med. 30: 617–648.

    Article  Google Scholar 

  65. Willmer, E. N.. 1927. Studies on the influence of the surrounding medium on the activity of cells in tissue culture. Brit. J. Exp. Biol. 4: 280–291.

    Google Scholar 

  66. Tullis, J. L.. 1947. Studies on permeability of the leucocyte. Amer. J. Physiol. 148: 708–714.

    Google Scholar 

  67. Trowell, O. A.. 1962. The optimum concentration of sodium chloride for survival of lymphocytesin vitro. Brit. J. Haematol. 8: 304.

    Google Scholar 

  68. Trowell, O. A.. 1963. The optimum concentration of sodium chloride for the survival of lymphocytesin vitro. Exp. Cell Res. 29: 220–234.

    Article  PubMed  CAS  Google Scholar 

  69. Lucas, D. R.. 1965. Factors affecting the respiration and glycolysis of organ cultures. Exp. Cell Res. 40: 112–126.

    Article  PubMed  CAS  Google Scholar 

  70. Trowell, O. A.. 1959. The culture of mature organs in a synthetic medium. Exp. Cell Res. 16: 118–147.

    Article  PubMed  CAS  Google Scholar 

  71. Brinster, R. L.. 1965. Studies on the development of mouse embryosin vitro. I. The effect of osmolarity and hydrogen ion concentration. J. Exp. Zool. 158: 49–58.

    Article  PubMed  CAS  Google Scholar 

  72. Lockwood, A. P.M.. 1961. “Ringer” solutions and some notes on the physiological basis of their ionic composition. Comp. Biochem. Physiol. 2: 241–289.

    Article  PubMed  CAS  Google Scholar 

  73. Howard, E.. 1953. Some effects of NaCl concentration on the development of early chick blastoderms in culture. J. Cell. Comp. Physiol. 41: 237–259.

    Article  CAS  Google Scholar 

  74. Howard, E.. 1933. The milieu of germ cells and embryonic tissue as hypotonic to adult blood. Amer. J. Physiol. 105: 56.

    Google Scholar 

  75. Needham, J.. 1942.Biochemistry and Morphogenesis. Cambridge University Press, Cambridge.

    Google Scholar 

  76. Howard, E.. 1932. Osmotic relationships in the hen's egg, as determined by colligative properties of yolk and white. J. Gen. Physiol. 16: 107–123.

    Article  CAS  Google Scholar 

  77. Smith, A. J. M.. 1934. The relations between yolk and white in the hen's egg. VI. The equilibrium between ice and egg-yolk and the freezing-point difference between yolk and white. J. Exp. Biol. 11: 228–242.

    Google Scholar 

  78. Opie, E. L.. 1948. An osmotic system within the cytoplasm of cells. J. Exp. Med. 87: 425–444.

    Article  CAS  PubMed  Google Scholar 

  79. Opie, E. L.. 1949. Movement of water in tissues removed from the body and its relation to movement of water during life. J. Exp. Med. 89: 185–208.

    Article  CAS  PubMed  Google Scholar 

  80. Opie, E. L., and M. B. Rothbard. 1953. Osmotic homeostasis maintained by mammalian liver, kidney and other tissues. J. Exp. Med. 97: 483–497.

    Article  PubMed  CAS  Google Scholar 

  81. Opie, E. L.. 1956. Changes in the osmotic activity of liver and kidney tissue caused by passage of sodium chloride, urea, and some other substances into cells. J. Exp. Med. 103: 351–362.

    Article  PubMed  CAS  Google Scholar 

  82. Opie, E. L.. 1956. Changes caused by injurious agents in the permeability of surviving cells. J. Exp. Med. 104: 897–919.

    Article  PubMed  CAS  Google Scholar 

  83. Opie, E. L.. 1956. Osmotic activity in relation to the movement of water under normal and pathological conditions. Harvey Lect. (1954–55) 50: 292–315.

    Google Scholar 

  84. Bartley, W., R. E. Davies, and H. A. Krebs. 1954. Active transport in animal tissues and subcellular particles. Proc. Roy. Soc. (Lond.) 142(B): 187–196.

    CAS  Google Scholar 

  85. Robinson, J. R.. 1950. Osmoregulation in surviving slices from the kidneys of adult rats. Proc. Roy Soc. (Lond.) 137(B): 378–402.

    CAS  Google Scholar 

  86. Robinson, J. R.. 1952. Osmoregulation of surviving slices from livers of adult rats. Proc. Roy. Soc. (Lond.) 140(B): 135–144.

    CAS  Google Scholar 

  87. Robinson, J. R.. 1960. Metabolism of intracellular water. Physiol. Rev. 40: 112–149.

    PubMed  CAS  Google Scholar 

  88. Robinson, J. R., and R. A. McCance. 1952. Water metabolism. Ann. Rev. Physiol. 14: 115–142.

    Article  CAS  Google Scholar 

  89. Wilson, T. H.. 1954. Ionic permeability and osmotic swelling of cells. Science 120: 104–105.

    Article  PubMed  CAS  Google Scholar 

  90. Ling, G. N.. 1966. All-or-none absorption by living cells and model protein-water systems: discussion of the problem of “permease-induction” and determination of secondary and tertiary structures of proteins. Fed. Proc. 25: 958–970.

    PubMed  CAS  Google Scholar 

  91. Ling, G. N.. 1969. A new model for the living cell: a summary of the theory and recent experimental evidence in its support. Int. Rev. Cytol. 26: 1–61.

    Article  PubMed  CAS  Google Scholar 

  92. Yamada, M., K. Yaginuma, and K. Takano. 1956. Environmental osmotic hypertonicity for the HeLa strain cells in vitro. Jap. J. Med. Sci. Biol. 9: 243–249.

    PubMed  CAS  Google Scholar 

  93. Paul, J.. 1959. Environmental influences on the metabolism and composition of cultured cells. J. Exp. Zool. 142: 475–505.

    Article  PubMed  CAS  Google Scholar 

  94. Yamada, M., and K. Takano. 1956. Effect of osmotic hypertonicity on the growth in vitro of HeLa strain cells. Gann 47: 638–640.

    CAS  Google Scholar 

  95. Paul, J.. 1961.Cell and Tissue Culture. 2nd. ed. Livingstone, Edinburgh and London.

    Google Scholar 

  96. Stubblefield, E., and G. C. Mueller. 1960. Effects of sodium chloride concentration on growth, biochemical composition, and metabolism of HeLa cells. Cancer Res. 20: 1646–1655.

    CAS  Google Scholar 

  97. Eagle, H.. 1956. The salt requirements of mammalian cells in tissue culture. Arch. Biochem. Biophys. 61: 356–366.

    Article  PubMed  CAS  Google Scholar 

  98. Hay, R. J., and J. Paul. 1967. Factors influencing glucose flux and the effect of insulin in cultured human cells. J. Gen. Physiol. 50: 1663–1680.

    Article  PubMed  CAS  Google Scholar 

  99. Rixon, R. H., and J. A. F. Stevenson. 1956. The water and electrolyte metabolism of rat diaphragm in vitro. Canad. J. Biochem. Physiol. 34: 1069–1083.

    PubMed  CAS  Google Scholar 

  100. Nitowsky, H. M., F. Herz, and S. Geller. 1963. Induction of alkaline phosphatase in dispersed cell cultures by changes in osmolarity. Biochem. Biophys. Res. Commun. 12: 293–299.

    Article  PubMed  CAS  Google Scholar 

  101. Mudge, G. H.. 1953. Electrolyte metabolism of rabbit-kidney slices: Studies with radioactive potassium and sodium. Amer. J. Physiol. 173: 511–522.

    PubMed  CAS  Google Scholar 

  102. Rixon, R. H., and J. A. F. Stevenson. 1957. The effect of tonicity and metabolism on the electrolytes and water of rat diphragmin vitro. Quart. J. Exp. Physiol. 42: 346–356.

    PubMed  CAS  Google Scholar 

  103. Kitos, P. A., R. Sinclair, and C. Waymouth. 1962. Glutamine metabolism by animal cells growing in a synthetic medium. Exp. Cell Res. 27: 307–316.

    Article  PubMed  CAS  Google Scholar 

  104. Van Rossum, G. D. V.. 1963. Net sodium and potassium movements in liver slices prepared from rats of different foetal and postnatal ages. Biochim. Biophys. Acta 74: 1–14.

    Article  PubMed  CAS  Google Scholar 

  105. Waymouth, C. 1970. Unpublished.

  106. Waymouth, C., 1965. The cultivation of cells in chemically defined media and the malignant transformation of cells in vitro. In: C. M. Ramakrishnan (ed.),Tissue Culture. W. Junk, The Hague, pp. 168–179.

    Google Scholar 

  107. Flink, E. B., A. B. Hastings, and J. K. Lowry. 1950. Changes in potassium and sodium concentrations in liver slices accompanying incubation in vitro. Amer. J. Physiol. 163: 598–604.

    PubMed  CAS  Google Scholar 

  108. Borle, A. B., and J. Loveday. 1968. Effects of temperature, potassium, and calcium on the electrical potential difference in HeLa cells. Cancer Res. 28:2401–2405.

    PubMed  CAS  Google Scholar 

  109. Riggs, T. R., L. M. Walker, and H. N. Christensen. 1958. Potassium migration and amino acid transport. J. Biol. Chem. 233: 1479–1484.

    PubMed  CAS  Google Scholar 

  110. Harris, J. E., and L. Friedman. 1967. Study of membrane function by observation of change in rate of transcellular migration of amino acids. Biochemistry 6: 2814–2819.

    Article  PubMed  CAS  Google Scholar 

  111. Kuchler, R. J., 1967. The role of Na+ and K+ in regulating amino acid accumulation and protein synthesis in LM-strain mouse fibroblasts. Biochim. Biophys. Acta 136: 473–483.

    PubMed  CAS  Google Scholar 

  112. Zuckerman, S., A. Palmer, and D. A. Hanson. 1950. The effect of steroid hormones on the water content of tissues. J. Endocrinol. 6: 261–276.

    Article  PubMed  CAS  Google Scholar 

  113. Wilson, D. L., 1957. Direct effects of adrenal cortical steroids on the electrolyte content of rabbit leucocytes. Amer. J. Physiol. 190: 104–108.

    PubMed  CAS  Google Scholar 

  114. Stolkowski, J., and A. Reinberg. 1956. Recherches sur le méchanisme de l'action de quelques hormones corticosteroides sur le potassium cellulaire. I. Influence du glucose et de l'acide adenosine triphosphorique (ATP) sur les mouvements du K cellulaire. Ann. Endocrinol. 17: 137–139.

    CAS  Google Scholar 

  115. Stolkowski, J., 1960. Action des corticosteroides sur le potassium cellulaire en fonction de la constitution du milieu. Acta Endocrinol. 35 (Suppl. 51): 805.

    Google Scholar 

  116. Christensen, H. N.. 1962.Biological Transport. Benjamin, N.Y.

    Google Scholar 

  117. Waymouth, C., 1956. A rapid quantitative hematocrit method for measuring increase in cell population of strain L (Earle) cells cultivated in serum-free nutrient solutions. J. Nat. Cancer Inst. 17: 305–313.

    PubMed  CAS  Google Scholar 

  118. Howard, E., 1944. Cryoscopic evidence that the embryonic milieu is hypotonic to the adult. J. Cell. Comp. Physiol. 24: 201–220.

    Article  CAS  Google Scholar 

  119. Tuttle, W. W., and B. A. Schottelius. 1965.Textbook of Physiology. (15th ed.) Mosby, St. Louis.

    Google Scholar 

  120. Wolf, A. V., and M. G. Brown. 1965-66.In:Handbook of Physics and Chemistry, 46th Ed. pp. D127 ff. Chemical Rubber Co., Cleveland, Ohio.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This work was supported by a grant from the John A. Hartford Foundation, Inc.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Waymouth, C. Osmolality of mammalian blood and of media for culture of mammalian cells. In Vitro 6, 109–127 (1970). https://doi.org/10.1007/BF02616113

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02616113

Keywords

Navigation