Skip to main content

Dental Mesenchymal Stem/Progenitor Cells: A New Prospect in Regenerative Medicine

  • Chapter
  • First Online:
Stem Cells

Abstract

Dental mesenchymal stem/progenitor cells (MSCs) have unique biological criteria in terms of genes and protein expression. They possess the common characteristics of non-dental MSCs that include the self-renewal ability, differentiation potential into variable cell lineages, and immunomodulatory properties. In addition, they reveal superior regenerative potential as compared to MSCs derived from other body tissues. Being easily acquired with minimally invasive procedures, make them promising resources in tissue engineering and regenerative therapies. This chapter presents a brief review of different sources of dental stem/progenitor cells, the specific criteria of dental MSCs and their advantages over non-dental MSCs. Moreover, this chapter reviews the osteogenic, hepatogenic, neurogenic, immunomodulatory, and dental tissue regenerative potential of these cells. A comparison between dental stem/progenitor cells from different sources regarding their proliferative potential and regenerative potential is discussed. Furthermore, this chapter explores the growth factors and cytokines expressed or induced by these cells, the effect of these signaling molecules on the diversity of their differentiation and regeneration potential. Since maintaining the genetic integrity against DNA damage and other challenges concerning cell-based therapy hinder the utility of dental MSCs in clinical implementation, this chapter displays the major limitations concerning their clinical translation and suggests possible solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ABMSCs:

Alveolar bone proper-derived stem/progenitor cells

ARDS:

Acute respiratory distress syndrome

BM:

Bone marrow

BDNF:

Brain-derived neurotrophic factor

BMP-2:

Bone morphogenetic protein

BM-MSCs:

Bone marrow mesenchymal stem cells

CM:

Conditioned medium

CSF:

colony-stimulating factor

DFSCs:

Dental follicle stem/progenitor cells

DMP-1:

dentin matrix phosphoprotein 1

DMSCs:

Dental mesenchymal stem/progenitor cells

DPSCs:

Dental pulp stem cells

DSPP:

Dentin sialophosphoprotein

ESCs:

Embryonic stem cells

EGF:

Epidermal growth factor

FGF:

Fibroblast growth factor

FGF-2:

Fibroblast growth factor 2

FGF-R:

Fibroblast growth factor-receptor

GDNF:

Glial cell line-derived neurotrophic factor

GMCSF:

Granulocyte-macrophage colony stimulating factor

GMSCs:

Gingival mesenchymal stem/progenitor cells

HLA-DR:

Human Leukocyte Antigen – DR

HSCs:

Hematopoietic stem cells

IFNγ:

Interferon gamma

IGF-1:

Insulin-like growth factor-1

JNK:

c-Jun N-terminal kinase

LPL:

Lipoprotein lipase

LPS:

Lipopolysaccharide

MAP 2:

Microtubule-associated protein 2

MAPK:

Mitogen-activated protein kinase

MI:

Myocardial infarction

MSCs:

Mesenchymal stem/progenitor cells

NFKb:

Nuclear factor-kappa B pathway

NGF:

Neuronal growth factor

NF-M:

Neuronal specific intermediate filament

NT-3:

Neurotrophin-3

PDL:

Periodontal ligament

PDLSCs:

Periodontal Ligament Stem/progenitor Cells

PPARγ2:

Peroxisome proliferator-activated receptor γ2

Runx 2:

Runt-related transcription factor 2

Sca-1:

Stem cell antigen

SCAPs:

Stem/progenitor Cells from Apical Dental Papilla

SHEDs:

Stem cells from human exfoliated deciduous teeth

SSEA-4:

Stage-specific embryonic antigen 4

Oct4:

Octamer-binding transcription factor

TERM:

Tissue engineering and regenerative medicine

TGF-β:

Transforming growth factor β

TNF-α:

Tumor necrosis factor-α

TRA:

Tumor recognition antigens

VEGF:

Vascular endothelial growth factor

References

  • Abdal-Wahab M, Abdel Ghaffar KA, Ezzatt OM et al (2020) Regenerative potential of cultured gingival fibroblasts in treatment of periodontal intrabony defects (randomized clinical and biochemical trial). J Periodontal Res 55:441–452

    Article  CAS  PubMed  Google Scholar 

  • Abe S, Yamaguchi S, Amagasa T (2007) Multilineage cells from apical pulp of human tooth with immature apex. Oral Sci Int 4:45–58

    Article  Google Scholar 

  • Abe S, Yamaguchi S, Watanabe A et al (2008) Hard tissue regeneration capacity of apical pulp derived cells (APDCs) from human tooth with immature apex. Biochem Biophys Res Commun 371:90–93

    Article  CAS  PubMed  Google Scholar 

  • About I, Bottero M-J, De Denato P et al (2000) Human dentin production in vitro. Exp Cell Res 258:33–41

    Article  CAS  PubMed  Google Scholar 

  • Albarenque SM, Zwacka RM, Mohr A (2011) Both human and mouse mesenchymal stem cells promote breast cancer metastasis. Stem Cell Res 7:163–171

    Article  CAS  PubMed  Google Scholar 

  • Almeida PN, Do Nascimento Barboza D, Luna EB et al (2018) Increased extracellular matrix deposition during chondrogenic differentiation of dental pulp stem cells from individuals with neurofibromatosis type 1: an in vitro 2D and 3D study. Orphanet J Rare Dis 13:98

    Article  PubMed  PubMed Central  Google Scholar 

  • Alongi DJ, Yamaza T, Song Y et al (2010) Stem/progenitor cells from inflamed human dental pulp retain tissue regeneration potential. Regen Med 5:617–631

    Article  CAS  PubMed  Google Scholar 

  • Al-Qadhi G, Soliman M, Abou-Shady I et al (2020) Gingival mesenchymal stem cells as an alternative source to bone marrow mesenchymal stem cells in regeneration of bone defects: in vivo study. Tissue Cell

    Google Scholar 

  • Alraies A, Alaidaroos NY, Waddington RJ et al (2017) Variation in human dental pulp stem cell ageing profiles reflect contrasting proliferative and regenerative capabilities. BMC Cell Biol 18:12

    Article  PubMed  PubMed Central  Google Scholar 

  • Alsulaimani RS, Ajlan SA, Aldahmash AM et al (2016) Isolation of dental pulp stem cells from a single donor and characterization of their ability to differentiate after 2 years of cryopreservation. Saudi Med J 37:551

    Article  PubMed  PubMed Central  Google Scholar 

  • Amrollahi P, Shah B, Seifi A et al (2016) Recent advancements in regenerative dentistry: a review. Mater Sci Eng C 69:1383–1390

    Article  CAS  Google Scholar 

  • Annibali S, Cristalli M, Tonoli F et al (2014) Stem cells derived from human exfoliated deciduous teeth: a narrative synthesis of literature. Eur Rev. Med Pharmacol Sci 18:2863–2881

    CAS  Google Scholar 

  • Ansari S, Chen C, Xu X et al (2016) Muscle tissue engineering using gingival mesenchymal stem cells encapsulated in alginate hydrogels containing multiple growth factors. Ann Biomed Eng 44:1908–1920

    Article  PubMed  PubMed Central  Google Scholar 

  • Ansari S, Diniz IM, Chen C, et al (2017) Human periodontal ligament- and gingiva-derived mesenchymal stem cells promote nerve regeneration when encapsulated in alginate/hyaluronic acid 3D scaffold. Adv Healthc Mater 6. https://doi.org/10.1002/adhm.201700670

  • Aranha AM, Zhang Z, Neiva KG et al (2010) Hypoxia enhances the angiogenic potential of human dental pulp cells. J Endod 36:1633–1637

    Article  PubMed  Google Scholar 

  • Aurrekoetxea M, Garcia-Gallastegui P, Irastorza I et al (2015) Dental pulp stem cells as a multifaceted tool for bioengineering and the regeneration of craniomaxillofacial tissues. Front Physiol 6:289

    Article  PubMed  PubMed Central  Google Scholar 

  • Aydin S, Şahin F (2011) Stem cells derived from dental tissues. Int Endod J 44:800–806

    Article  Google Scholar 

  • Baglio SR, Pegtel DM, Baldini N (2012) Mesenchymal stem cell secreted vesicles provide novel opportunities in (stem) cell-free therapy. Front Physiol 3:359–359

    Article  PubMed  PubMed Central  Google Scholar 

  • Bakopoulou A, Leyhausen G, Volk J et al (2011) Comparative analysis of in vitro osteo/odontogenic differentiation potential of human dental pulp stem cells (DPSCs) and stem cells from the apical papilla (SCAP). Arch Oral Biol 56:709–721

    Article  CAS  PubMed  Google Scholar 

  • Bakopoulou A, Kritis A, Andreadis D et al (2015) Angiogenic potential and secretome of human apical papilla mesenchymal stem cells in various stress microenvironments. Stem Cells Dev 24:2496–2512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barbash IM, Chouraqui P, Baron J et al (2003) Systemic delivery of bone marrow–derived mesenchymal stem cells to the infarcted myocardium: feasibility, cell migration, and body distribution. Circulation 108:863–868

    Article  PubMed  Google Scholar 

  • Barros MA, Martins JFP, Maria DA et al (2015) Immature dental pulp stem cells showed renotropic and pericyte-like properties in acute renal failure in rats. Cell Med 7:95–108

    Article  PubMed  Google Scholar 

  • Behnia A, Haghighat A, Talebi A et al (2014) Transplantation of stem cells from human exfoliated deciduous teeth for bone regeneration in the dog mandibular defect. World J Stem Cells 6:505

    Article  PubMed  PubMed Central  Google Scholar 

  • Botero T, Son J, Vodopyanov D et al (2010) MAPK signaling is required for LPS-induced VEGF in pulp stem cells. J Dent Res 89:264–269

    Article  CAS  PubMed  Google Scholar 

  • Cardoso CR, Garlet GP, Moreira AP et al (2008) Characterization of CD4+ CD25+ natural regulatory T cells in the inflammatory infiltrate of human chronic periodontitis. J Leukoc Biol 84:311–318

    Article  CAS  PubMed  Google Scholar 

  • Carnevale G, Riccio M, Pisciotta A et al (2013) In vitro differentiation into insulin-producing β-cells of stem cells isolated from human amniotic fluid and dental pulp. Dig Liver Dis 45:669–676

    Article  CAS  PubMed  Google Scholar 

  • Casagrande L, Demarco F, Zhang Z et al (2010) Dentin-derived BMP-2 and odontoblast differentiation. J Dent Res 89:603–608

    Article  CAS  PubMed  Google Scholar 

  • Cavalcanti BN, Zeitlin BD, Nör JE (2013) A hydrogel scaffold that maintains viability and supports differentiation of dental pulp stem cells. Dent Mater 29:97–102

    Article  CAS  PubMed  Google Scholar 

  • Chai Y, Jiang X, Ito Y et al (2000) Fate of the mammalian cranial neural crest during tooth and mandibular morphogenesis. Development 127:1671–1679

    Article  CAS  PubMed  Google Scholar 

  • Chamieh F, Collignon A-M, Coyac BR et al (2016) Accelerated craniofacial bone regeneration through dense collagen gel scaffolds seeded with dental pulp stem cells. Sci Rep 6:38814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chang J, Zhang C, Tani-Ishii N et al (2005) NF-κB activation in human dental pulp stem cells by TNF and LPS. J Dent Res 84:994–998

    Article  CAS  PubMed  Google Scholar 

  • Chen S, Rani S, Wu Y et al (2005) Differential regulation of dentin sialophosphoprotein expression by Runx2 during odontoblast cytodifferentiation. J Biol Chem 280:29717–29,727

    Article  CAS  PubMed  Google Scholar 

  • Chen G, Chen J, Yang B et al (2015) Combination of aligned PLGA/Gelatin electrospun sheets, native dental pulp extracellular matrix and treated dentin matrix as substrates for tooth root regeneration. Biomaterials 52:56–70

    Article  CAS  PubMed  Google Scholar 

  • Chen F-M, Gao L-N, Tian B-M et al (2016) Treatment of periodontal intrabony defects using autologous periodontal ligament stem cells: a randomized clinical trial. Stem Cell Res Ther 7:33

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen X, Li S, Zeng Z et al (2017) Notch1 signalling inhibits apoptosis of human dental follicle stem cells via both the cytoplasmic mitochondrial pathway and nuclear transcription regulation. Int J Biochem Cell Biol 82:18–27

    Article  CAS  PubMed  Google Scholar 

  • Chen X, Yang B, Tian J et al (2018) Dental follicle stem cells ameliorate lipopolysaccharide-induced inflammation by secreting TGF-β3 and TSP-1 to elicit macrophage M2 polarization. Cell Physiol Biochem 51:2290–2308

    Article  CAS  PubMed  Google Scholar 

  • Coccè V, Farronato D, Brini AT et al (2017) Drug loaded gingival mesenchymal stromal cells (GinPa-MSCs) inhibit in vitro proliferation of oral squamous cell carcinoma. Sci Rep 7:9376

    Article  PubMed  PubMed Central  Google Scholar 

  • Cordeiro MM, Dong Z, Kaneko T et al (2008) Dental pulp tissue engineering with stem cells from exfoliated deciduous teeth. J Endod 34:962–969

    Article  PubMed  Google Scholar 

  • D’aquino R, Graziano A, Sampaolesi M et al (2007) Human postnatal dental pulp cells co-differentiate into osteoblasts and endotheliocytes: a pivotal synergy leading to adult bone tissue formation. Cell Death Differ 14:1162–1171

    Article  PubMed  Google Scholar 

  • Dai Y-Y, Ni S-Y, Ma K et al (2019) Stem cells from human exfoliated deciduous teeth correct the immune imbalance of allergic rhinitis via Treg cells in vivo and in vitro. Stem Cell Res 10:1–14

    Google Scholar 

  • Davies OG, Cooper PR, Shelton RM et al (2015) A comparison of the in vitro mineralisation and dentinogenic potential of mesenchymal stem cells derived from adipose tissue, bone marrow and dental pulp. J Bone Miner Metab 33:371–382

    Article  CAS  PubMed  Google Scholar 

  • De Almeida JFA, Chen P, Henry MA et al (2014) Stem cells of the apical papilla regulate trigeminal neurite outgrowth and targeting through a BDNF-dependent mechanism. Tissue Eng Part A 20:3089–3100

    Article  PubMed  PubMed Central  Google Scholar 

  • De Berdt P, Vanacker J, Ucakar B et al (2015) Dental apical papilla as therapy for spinal cord injury. J Dent Res 94:1575–1581

    Article  PubMed  Google Scholar 

  • De Berdt P, Bottemanne P, Bianco J et al (2018) Stem cells from human apical papilla decrease neuro-inflammation and stimulate oligodendrocyte progenitor differentiation via activin-A secretion. Cell Mol Life Sci 75:2843–2856

    Article  PubMed  Google Scholar 

  • Demirci S, Doğan A, Şahin F (2016) Dental stem cells vs. other mesenchymal stem cells: their pluripotency and role in regenerative medicine. Dental Stem Cells. Springer.

    Google Scholar 

  • Diao S, Yang H, Cao Y et al (2020) IGF2 enhanced the osteo−/dentinogenic and neurogenic differentiation potentials of stem cells from apical papilla. J Oral Rehabil 47:55–65

    Article  CAS  PubMed  Google Scholar 

  • Ding G, Liu Y, An Y et al (2010a) Suppression of T cell proliferation by root apical papilla stem cells in vitro. Cells Tissues Organs 191:357–364

    Article  PubMed  Google Scholar 

  • Ding G, Liu Y, Wang W et al (2010b) Allogeneic periodontal ligament stem cell therapy for periodontitis in swine. Stem Cells 28:1829–1838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Diomede F, Rajan TS, Gatta V et al (2017) Stemness maintenance properties in human oral stem cells after long-term passage. Stem Cells Int 2017

    Google Scholar 

  • Diomede F, D’aurora M, Gugliandolo A et al (2018a) A novel role in skeletal segment regeneration of extracellular vesicles released from periodontal-ligament stem cells. Int J Nanomedicine 13:3805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Diomede F, Gugliandolo A, Scionti D et al (2018b) Biotherapeutic effect of gingival stem cells conditioned medium in bone tissue restoration. Int J Mol Sci 19:329

    Article  PubMed Central  Google Scholar 

  • Dominici M, Le Blanc K, Mueller I et al (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8:315–317

    Article  CAS  PubMed  Google Scholar 

  • Dong R, Yao R, Du J et al (2013) Depletion of histone demethylase KDM2A enhanced the adipogenic and chondrogenic differentiation potentials of stem cells from apical papilla. Exp Cell Res 319:2874–2882

    Article  CAS  PubMed  Google Scholar 

  • Du L, Liang Q, Ge S et al (2019a) The growth inhibitory effect of human gingiva-derived mesenchymal stromal cells expressing interferon-β on tongue squamous cell carcinoma cells and xenograft model. Stem Cell Res Ther 10:224

    Article  PubMed  PubMed Central  Google Scholar 

  • Du ZH, Ding C, Zhang Q et al (2019b) Stem cells from exfoliated deciduous teeth alleviate hyposalivation caused by Sjögren syndrome. Oral Dis 25:1530–1544

    Article  PubMed  Google Scholar 

  • El Alami M, Viña-Almunia J, Gambini J et al (2014) Activation of p38, p21, and NRF-2 mediates decreased proliferation of human dental pulp stem cells cultured under 21% O2. Stem Cell Rep 3:566–573

    Article  Google Scholar 

  • El Moshy S, Radwan IA, Rady D et al (2020) Dental stem cell-derived secretome/conditioned medium: the future for regenerative therapeutic applications. Stem Cells Int:2020

    Google Scholar 

  • Eleuterio E, Trubiani O, Sulpizio M et al (2013) Proteome of human stem cells from periodontal ligament and dental pulp. PLoS One 8:e71101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • El-Haibi CP, Bell GW, Zhang J et al (2012) Critical role for lysyl oxidase in mesenchymal stem cell-driven breast cancer malignancy. Proc Natl Acad Sci 109:17460–17465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eslami A, Gallant-Behm CL, Hart DA et al (2009) Expression of integrin alpha beta 6 and TGF-beta in scarless vs scar-forming wound healing. J Histochem Cytochem 57:543–557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fabre H, Ducret M, Degoul O, et al (2019) Characterization of different sources of human MSCs expanded in serum-free conditions with quantification of chondrogenic induction in 3D. Stem Cells Int 2019

    Google Scholar 

  • Fau HA, Park JC (2015) Dental stem cells and their applications. Chin J Dent Res 18:207–212

    Google Scholar 

  • Fawzy El-Sayed KM, Dorfer CE (2016) Gingival mesenchymal stem/progenitor cells: a unique tissue engineering gem. Stem Cells Int 2016:7154327

    Article  PubMed  PubMed Central  Google Scholar 

  • Fawzy El-Sayed KM, Paris S, Becker S et al (2012) Isolation and characterization of multipotent postnatal stem/progenitor cells from human alveolar bone proper. Craniomaxillofac Surg 40:735–742

    Article  Google Scholar 

  • Fawzy El-Sayed KM, Dorfer C, Ungefroren H et al (2014) Effect of Emdogain enamel matrix derivative and BMP-2 on the gene expression and mineralized nodule formation of alveolar bone proper-derived stem/progenitor cells. Craniomaxillofac Surg 42:568–576

    Article  Google Scholar 

  • Fawzy El-Sayed KM, Paris S, Graetz C et al (2015) Isolation and characterisation of human gingival margin-derived STRO-1/MACS(+) and MACS(−) cell populations. Int J Oral Sci 7:80–88

    Article  Google Scholar 

  • Fawzy El-Sayed KM, Mekhemar M, Adam-Klages S et al (2016) TlR expression profile of human gingival margin-derived stem progenitor cells. Med Oral Patol Oral Cir Bucal 21:e30–e38

    Article  PubMed  Google Scholar 

  • Fawzy El-Sayed KM, Boeckler J, Dorfer CE (2017) TLR expression profile of human alveolar bone proper-derived stem/progenitor cells and osteoblasts. Craniomaxillofac Surg 45:2054–2060

    Article  Google Scholar 

  • Fawzy El-Sayed KM, Hein D, Dorfer CE (2019a) Retinol/inflammation affect stemness and differentiation potential of gingival stem/progenitor cells via Wnt/beta-catenin. Periodontal Res 54:413–423

    Article  CAS  Google Scholar 

  • Fawzy El-Sayed KM, Elahmady M, Adawi Z et al (2019b) The periodontal stem/progenitor cell inflammatory-regenerative cross talk: a new perspective. J Periodontal Res 54:81–94

    Article  PubMed  Google Scholar 

  • Feng F, Akiyama K, Liu Y et al (2010) Utility of PDL progenitors for in vivo tissue regeneration: a report of 3 cases. Oral Dis 16:20–28

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • François S, Usunier B, Forgue-Lafitte ME et al (2019) Mesenchymal stem cell administration attenuates colon cancer progression by modulating the immune component within the colorectal tumor microenvironment. Stem Cells Transl Med 8:285–300

    Article  PubMed  Google Scholar 

  • Fujii S, Maeda H, Tomokiyo A et al (2010) Effects of TGF-β1 on the proliferation and differentiation of human periodontal ligament cells and a human periodontal ligament stem/progenitor cell line. Cell Tissue Res 342:233–242

    Article  CAS  PubMed  Google Scholar 

  • Fujii H, Matsubara K, Sakai K et al (2015) Dopaminergic differentiation of stem cells from human deciduous teeth and their therapeutic benefits for Parkinsonian rats. Brain Res 1613:59–72

    Article  CAS  PubMed  Google Scholar 

  • Furcht LT, Wendelschafer-Crabb G (1978) Trypsin-induced coordinate alterations in cell shape, cytoskeleton, and intrinsic membrane structure of contact-inhibited cells. Exp Cell Res 114:1–14

    Article  CAS  PubMed  Google Scholar 

  • Gan L, Liu Y, Cui D et al (2020) Dental tissue-derived human mesenchymal stem cells and their potential in therapeutic application. Stem Cells Int 2020:8864572

    Article  PubMed  PubMed Central  Google Scholar 

  • Gandia C, Arminan A, García-Verdugo JM et al (2008) Human dental pulp stem cells improve left ventricular function, induce angiogenesis, and reduce infarct size in rats with acute myocardial infarction. Stem Cells 26:638–645

    Article  PubMed  Google Scholar 

  • Gao X, Shen Z, Guan M et al (2018) Immunomodulatory role of stem cells from human exfoliated deciduous teeth on periodontal regeneration. Tissue Eng Part A 24:1341–1353

    Article  CAS  PubMed  Google Scholar 

  • Genç D, Zibandeh N, Nain E et al (2018) Dental follicle mesenchymal stem cells down-regulate Th2-mediated immune response in asthmatic patients mononuclear cells. Clin Exp Allergy 48:663–678

    Article  PubMed  Google Scholar 

  • Giuliani A, Manescu A, Langer M et al (2013) Three years after transplants in human mandibles, histological and in-line holotomography revealed that stem cells regenerated a compact rather than a spongy bone: biological and clinical implications. Stem Cells Transl Med 2:316–324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gomes JÁP, Monteiro BG, Melo GB et al (2010) Corneal reconstruction with tissue-engineered cell sheets composed of human immature dental pulp stem cells. Investig Ophthalmol Vis Sci 51:1408–1414

    Article  Google Scholar 

  • Goswami M, Kumar G, Sharma S-O (2020) “Dental Stem Cells”: awareness, knowledge, and attitude of dental professionals-a cross-sectional study. Spec Care Dentist 40:90–96

    Article  PubMed  Google Scholar 

  • Gronthos S, Mankani M, Brahim J et al (2000) Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proc Natl Acad Sci U S A 97:13625–13630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gronthos S, Brahim J, Li W et al (2002) Stem cell properties of human dental pulp stem cells. J Dent Res 81:531–535

    Article  CAS  PubMed  Google Scholar 

  • Guo W, Gong K, Shi H et al (2012) Dental follicle cells and treated dentin matrix scaffold for tissue engineering the tooth root. Biomaterials 33:1291–1302

    Article  CAS  PubMed  Google Scholar 

  • Guo L, Li J, Qiao X et al (2013) Comparison of odontogenic differentiation of human dental follicle cells and human dental papilla cells. PLoS One 8:e62332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hakki SS, Bozkurt B, Hakki EE et al (2014) Bone morphogenetic protein-2,-6, and-7 differently regulate osteogenic differentiation of human periodontal ligament stem cells. J Biomed Mater Res B Appl Biomater 102:119–130

    Article  PubMed  Google Scholar 

  • Han M-J, Seo Y-K, Yoon H-H et al (2008) Effect of mechanical tension on the human dental pulp cells. Biotechnol Bioprocess Eng 13:410–417

    Article  CAS  Google Scholar 

  • Han C, Yang Z, Zhou W et al (2010) Periapical follicle stem cell: a promising candidate for cementum/periodontal ligament regeneration and bio-root engineering. Stem Cells Dev 19:1405–1415

    Article  CAS  PubMed  Google Scholar 

  • Hattori Y, Kim H, Tsuboi N et al (2015) Therapeutic potential of stem cells from human exfoliated deciduous teeth in models of acute kidney injury. PLoS One 10:e0140121

    Article  PubMed  PubMed Central  Google Scholar 

  • Herold S, Gabrielli NM, Vadász I (2013) Novel concepts of acute lung injury and alveolar-capillary barrier dysfunction. Am J Physiol Lung Cell Mol 305:L665–L681

    Article  CAS  Google Scholar 

  • Hilkens P, Fanton Y, Martens W et al (2014) Pro-angiogenic impact of dental stem cells in vitro and in vivo. Stem Cell Res 12:778–790

    Article  CAS  PubMed  Google Scholar 

  • Holiel AA, Mahmoud EM, Abdel-Fattah WM, et al (2020) Histological evaluation of the regenerative potential of a novel treated dentin matrix hydrogel in direct pulp capping. Clin Oral Investig 1–12.

    Google Scholar 

  • Hossein-Khannazer N, Hashemi SM, Namaki S et al (2019) Study of the immunomodulatory effects of osteogenic differentiated human dental pulp stem cells. Life Sci 216:111–118

    Article  CAS  PubMed  Google Scholar 

  • Huang GTJ, Sonoyama W, Liu Y et al (2008) The hidden treasure in apical papilla: the potential role in pulp/dentin regeneration and bioroot engineering. J Endod 34:645–651

    Article  PubMed  PubMed Central  Google Scholar 

  • Huang G-J, Gronthos S, Shi S (2009) Mesenchymal stem cells derived from dental tissues vs. those from other sources: their biology and role in regenerative medicine. J Dent Res 88:792–806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ikeda E, Yagi K, Kojima M et al (2008) Multipotent cells from the human third molar: feasibility of cell-based therapy for liver disease. Differentiation 76:495–505

    Article  CAS  PubMed  Google Scholar 

  • Inoue T, Sugiyama M, Hattori H et al (2013) Stem cells from human exfoliated deciduous tooth-derived conditioned medium enhance recovery of focal cerebral ischemia in rats. Tissue Eng Part A 19:24–29

    Article  CAS  PubMed  Google Scholar 

  • Ishkitiev N, Yaegaki K, Calenic B et al (2010) Deciduous and permanent dental pulp mesenchymal cells acquire hepatic morphologic and functional features in vitro. J Endod 36:469–474

    Article  PubMed  Google Scholar 

  • Isobe Y, Koyama N, Nakao K et al (2016) Comparison of human mesenchymal stem cells derived from bone marrow, synovial fluid, adult dental pulp, and exfoliated deciduous tooth pulp. Int J Oral Maxillofac Surg 45:124–131

    Article  CAS  PubMed  Google Scholar 

  • Iwasaki K, Komaki M, Yokoyama N et al (2013) Periodontal ligament stem cells possess the characteristics of pericytes. J Periodontol 84:1425–1433

    Article  CAS  PubMed  Google Scholar 

  • Iwasaki K, Komaki M, Yokoyama N et al (2014) Periodontal regeneration using periodontal ligament stem cell-transferred amnion. Tissue Eng Part A 20:693–704

    CAS  PubMed  Google Scholar 

  • Iwata T, Yamato M, Washio K et al (2018) Periodontal regeneration with autologous periodontal ligament-derived cell sheets–a safety and efficacy study in ten patients. Regen Ther 9:38–44

    Article  PubMed  PubMed Central  Google Scholar 

  • Izumoto-Akita T, Tsunekawa S, Yamamoto A, et al (2015) Secreted factors from dental pulp stem cells improve glucose intolerance in streptozotocin-induced diabetic mice by increasing pancreatic β-cell function. BMJ Open Diabetes Res Care 3

    Google Scholar 

  • Jeon B-G, Kang E-J, Kumar BM et al (2011) Comparative analysis of telomere length, telomerase and reverse transcriptase activity in human dental stem cells. Cell Transplant 20:1693–1705

    Article  PubMed  Google Scholar 

  • Ji EH, Song JS, Kim S-O et al (2014) Viability of pulp stromal cells in cryopreserved deciduous teeth. Cell Tissue Bank 15:67–74

    Article  PubMed  Google Scholar 

  • Ji X, Zhang Z, Han Y et al (2016) Mesenchymal stem cells derived from normal gingival tissue inhibit the proliferation of oral cancer cells in vitro and in vivo. Int J Oncol 49:2011–2022

    Article  CAS  PubMed  Google Scholar 

  • Jo Y-Y, Lee H-J, Kook S-Y et al (2007) Isolation and characterization of postnatal stem cells from human dental tissues. Tissue Eng 13:767–773

    Article  CAS  PubMed  Google Scholar 

  • Kaku M, Komatsu Y, Mochida Y et al (2012) Identification and characterization of neural crest-derived cells in adult periodontal ligament of mice. Arch Oral Biol 57:1668–1675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kanafi MM, Rajeshwari YB, Gupta S et al (2013) Transplantation of islet-like cell clusters derived from human dental pulp stem cells restores normoglycemia in diabetic mice. Cytotherapy 15:1228–1236

    Article  CAS  PubMed  Google Scholar 

  • Kandalam U, Kawai T, Ravindran G, et al. (2020). Predifferentiated gingival stem cell-induced bone regeneration in rat alveolar bone defect model. Tissue Eng Part A Sep 18

    Google Scholar 

  • Kang Y-H, Lee H-J, Jang S-J et al (2015) Immunomodulatory properties and in vivo osteogenesis of human dental stem cells from fresh and cryopreserved dental follicles. Differentiation 90:48–58

    Article  CAS  PubMed  Google Scholar 

  • Kashyap R (2015) SHED-basic structure for stem cell research. JCDR 9:ZE07

    PubMed  PubMed Central  Google Scholar 

  • Kemoun P, Laurencin-Dalicieux S, Rue J et al (2007) Human dental follicle cells acquire cementoblast features under stimulation by BMP-2/−7 and enamel matrix derivatives (EMD) in vitro. Cell Tissue Res 329:283–294

    Article  CAS  PubMed  Google Scholar 

  • Kerkis I, Caplan AI (2012) Stem cells in dental pulp of deciduous teeth. Tissue Eng Part B Rev 18:129–138

    Article  CAS  PubMed  Google Scholar 

  • Kidd S, Spaeth E Fau - Dembinski JL, Dembinski Jl Fau - Dietrich M, et al. (2009) Direct evidence of mesenchymal stem cell tropism for tumor and wounding microenvironments using in vivo bioluminescent imaging. Stem Cells 27:2614–2623

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim S-H, Kim Y-S, Lee S-Y et al (2011) Gene expression profile in mesenchymal stem cells derived from dental tissues and bone marrow. J Periodontal Implant Sci 41:192–200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim K, Jeon M, Lee H-S et al (2016) Comparative analysis of secretory factors from permanent-and deciduous-teeth periodontal ligament cells. Arch Oral Biol 71:65–79

    Article  CAS  PubMed  Google Scholar 

  • Kim BC, Jun SM, Kim SY et al (2017) Engineering three dimensional micro nerve tissue using postnatal stem cells from human dental apical papilla. Biotechnol Bioeng 114:903–914

    Article  CAS  PubMed  Google Scholar 

  • Kinaia BM, Chogle SM, Kinaia AM et al (2012) Regenerative therapy: a periodontal-endodontic perspective. Dental Clinics 56:537–547

    PubMed  Google Scholar 

  • Király M, Kádár K, Horváthy DB et al (2011) Integration of neuronally predifferentiated human dental pulp stem cells into rat brain in vivo. Neurochem Int 59:371–381

    Article  PubMed  Google Scholar 

  • Kolar MK, Itte VN, Kingham PJ et al (2017) The neurotrophic effects of different human dental mesenchymal stem cells. Sci Rep 7:1–12

    Article  CAS  Google Scholar 

  • Kono K, Maeda H, Fujii S et al (2013) Exposure to transforming growth factor-β1 after basic fibroblast growth factor promotes the fibroblastic differentiation of human periodontal ligament stem/progenitor cell lines. Cell Tissue Res 352:249–263

    Article  CAS  PubMed  Google Scholar 

  • Kumar A, Kumar V, Rattan V et al (2017a) Secretome cues modulate the neurogenic potential of bone marrow and dental stem cells. Mol Neurobiol 54:4672–4682

    Article  CAS  PubMed  Google Scholar 

  • Kumar A, Kumar V, Rattan V et al (2017b) Molecular spectrum of secretome regulates the relative hepatogenic potential of mesenchymal stem cells from bone marrow and dental tissue. Sci Rep 7

    Google Scholar 

  • Kumar A, Kumar V, Rattan V et al (2018) Secretome proteins regulate comparative osteogenic and adipogenic potential in bone marrow and dental stem cells. Biochimie 155:129–139

    Article  CAS  PubMed  Google Scholar 

  • Kwack KH, Lee JM, Park SH et al (2017) Human dental pulp stem cells suppress alloantigen-induced immunity by stimulating T cells to release transforming growth factor beta. J Endod 43:100–108

    Article  PubMed  Google Scholar 

  • La Noce M, Paino F, Spina A et al (2014) Dental pulp stem cells: state of the art and suggestions for a true translation of research into therapy. J Dent 42:761–768

    Article  PubMed  Google Scholar 

  • Laino G, D’aquino R, Graziano A et al (2005) A new population of human adult dental pulp stem cells: a useful source of living autologous fibrous bone tissue (LAB). JBMR 20:1394–1402

    Article  Google Scholar 

  • Laino G, Graziano A, D’aquino R et al (2006) An approachable human adult stem cell source for hard-tissue engineering. J Cell Physiol 206:693–701

    Article  CAS  PubMed  Google Scholar 

  • Lee J-H, Um S, Jang J-H et al (2012) Effects of VEGF and FGF-2 on proliferation and differentiation of human periodontal ligament stem cells. Cell Tissue Res 348:475–484

    Article  CAS  PubMed  Google Scholar 

  • Lee JS, An SY, Kwon IK et al (2014) Transdifferentiation of human periodontal ligament stem cells into pancreatic cell lineage. Cell Biochem Funct 32:605–611

    Article  CAS  PubMed  Google Scholar 

  • Li N, Liu N, Zhou J et al (2013) Inflammatory environment induces gingival tissue-specific mesenchymal stem cells to differentiate towards a pro-fibrotic phenotype. Biol Cell 105:261–275

    Article  CAS  PubMed  Google Scholar 

  • Li B, Zhang Y, Wang Q et al (2014a) Periodontal ligament stem cells modulate root resorption of human primary teeth via Runx2 regulating RANKL/OPG system. Stem Cells Dev 23:2524–2534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li M, Guo K, Ikehara S (2014b) Stem cell treatment for Alzheimer’s disease. Int J Mol Sci 15:19226–19,238

    Article  PubMed  PubMed Central  Google Scholar 

  • Li Y, Zhao S, Nan X et al (2016) Repair of human periodontal bone defects by autologous grafting stem cells derived from inflammatory dental pulp tissues. Stem Cell Res Ther 7:1–9

    Article  Google Scholar 

  • Li Y, Yang Y-Y, Ren J-L et al (2017) Exosomes secreted by stem cells from human exfoliated deciduous teeth contribute to functional recovery after traumatic brain injury by shifting microglia M1/M2 polarization in rats. Stem Cell Res Ther 8:198

    Article  PubMed  PubMed Central  Google Scholar 

  • Li G, Han N, Zhang X et al (2018) Local injection of allogeneic stem cells from apical papilla enhanced periodontal tissue regeneration in minipig model of periodontitis. Biomed Res Int:2018

    Google Scholar 

  • Liu D, Xu J, Liu O et al (2012) Mesenchymal stem cells derived from inflamed periodontal ligaments exhibit impaired immunomodulation. J Clin Periodontol 39:1174–1182

    Article  CAS  PubMed  Google Scholar 

  • Liu O, Xu J, Ding G et al (2013) Periodontal ligament stem cells regulate B lymphocyte function via programmed cell death protein 1. Stem Cells 31:1371–1382

    Article  CAS  PubMed  Google Scholar 

  • Liu T, Zhu K, Ke C et al (2017) Mesenchymal stem cells inhibited development of lung cancer induced by chemical carcinogens in a rat model. Am J Transl Res 9:2891

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu X, Liu Y, Yu S et al (2019) Potential immunomodulatory effects of stem cells from the apical papilla on Treg conversion in tissue regeneration for regenerative endodontic treatment. Int Endod J 52:1758–1767

    Article  CAS  PubMed  Google Scholar 

  • Lucaciu O, Soriţău O, Gheban D et al (2015) Dental follicle stem cells in bone regeneration on titanium implants. BMC Biotechnol 15:1–18

    Article  Google Scholar 

  • Ma L, Makino Y, Yamaza H et al (2012) Cryopreserved dental pulp tissues of exfoliated deciduous teeth is a feasible stem cell resource for regenerative medicine. PLoS One 7:e51777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maegawa N, Kawamura K, Hirose M et al (2007) Enhancement of osteoblastic differentiation of mesenchymal stromal cells cultured by selective combination of bone morphogenetic protein-2 (BMP-2) and fibroblast growth factor-2 (FGF-2). J Tissue Eng Regen Med 1:306–313

    Article  CAS  PubMed  Google Scholar 

  • Malekfar A, Valli KS, Kanafi MM et al (2016) Isolation and characterization of human dental pulp stem cells from cryopreserved pulp tissues obtained from teeth with irreversible pulpitis. J Endod 42:76–81

    Article  PubMed  Google Scholar 

  • Mammana S, Gugliandolo A, Cavalli E et al (2019) Human gingival mesenchymal stem cells pretreated with vesicular moringin nanostructures as a new therapeutic approach in a mouse model of spinal cord injury. J Tissue Eng Regen Med 13:1109–1121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mao Q, Nguyen PD, Shanti RM et al (2019) Gingiva-derived mesenchymal stem cell-extracellular vesicles activate schwann cell repair phenotype and promote nerve regeneration. Tissue Eng Part A 25:887–900

    Article  CAS  PubMed  Google Scholar 

  • Marchionni C, Bonsi L, Alviano F et al (2009) Angiogenic potential of human dental pulp stromal (stem) cells. Int J Immunopathol Pharmacol 22:699–706

    Article  CAS  PubMed  Google Scholar 

  • Marrelli M, Paduano F, Tatullo M (2013) Cells isolated from human periapical cysts express mesenchymal stem cell-like properties. Int J Biol Sci 9:1070–1078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matsushita K, Motani R, Sakutal T et al (2000) The role of vascular endothelial growth factor in human dental pulp cells: induction of chemotaxis, proliferation, and differentiation and activation of the AP-1-dependent signaling pathway. J Dent Res 79:1596–1603

    Article  CAS  PubMed  Google Scholar 

  • Mita T, Furukawa-Hibi Y, Takeuchi H et al (2015) Conditioned medium from the stem cells of human dental pulp improves cognitive function in a mouse model of Alzheimer’s disease. Behav Brain Res 293:189–197

    Article  CAS  PubMed  Google Scholar 

  • Miura M, Gronthos S, Zhao M et al (2003) SHED: stem cells from human exfoliated deciduous teeth. Proc Natl Acad Sci U S A 100:5807–5812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mizuno N, Ozeki Y, Shiba H et al (2008) Humoral factors released from human periodontal ligament cells influence calcification and proliferation in human bone marrow mesenchymal stem cells. J Periodontol 79:2361–2370

    Article  CAS  PubMed  Google Scholar 

  • Morsczeck C, Götz W, Schierholz J et al (2005) Isolation of precursor cells (PCs) from human dental follicle of wisdom teeth. Matrix Biol 24:155–165

    Article  CAS  PubMed  Google Scholar 

  • Morsczeck C, Schmalz G, Reichert TE et al (2008) Somatic stem cells for regenerative dentistry. Clin Oral Investig 12:113–118

    Article  PubMed  Google Scholar 

  • Mortada I, Mortada R (2018) Dental pulp stem cells and osteogenesis: an update. Cytotechnology 70:1479–1486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moshaverinia A, Chen C, Xu X, Akiyama K et al (2014) Bone regeneration potential of stem cells derived from periodontal ligament or gingival tissue sources encapsulated in RGD-modified alginate scaffold. Tissue Eng Part A 20:611–621

    CAS  PubMed  Google Scholar 

  • Mrozik KM, Wada N, Marino V et al (2013) Regeneration of periodontal tissues using allogeneic periodontal ligament stem cells in an ovine model. Regen Med 8:711–723

    Article  CAS  PubMed  Google Scholar 

  • Murakami M, Hayashi Y, Iohara K et al (2015) Trophic effects and regenerative potential of mobilized mesenchymal stem cells from bone marrow and adipose tissue as alternative cell sources for pulp/dentin regeneration. Cell Transplant 24:1753–1765

    Article  PubMed  Google Scholar 

  • Na S, Zhang H, Huang F et al (2016) Regeneration of dental pulp/dentine complex with a three-dimensional and scaffold-free stem-cell sheet-derived pellet. J Tissue Eng Regen Med 10:261–270

    Article  CAS  PubMed  Google Scholar 

  • Nakamura S, Yamada Y, Katagiri W et al (2009) Stem cell proliferation pathways comparison between human exfoliated deciduous teeth and dental pulp stem cells by gene expression profile from promising dental pulp. J Endod 35:1536–1542

    Article  PubMed  Google Scholar 

  • Nakashima M (1994) Induction of dentin formation on canine amputated pulp by recombinant human bone morphogenetic proteins (BMP)-2 and-4. J Dent Res 73:1515–1522

    Article  CAS  PubMed  Google Scholar 

  • Nakashima M, Iohara K, Sugiyama M (2009) Human dental pulp stem cells with highly angiogenic and neurogenic potential for possible use in pulp regeneration. Cytokine Growth Factor Rev 20:435–440

    Article  CAS  PubMed  Google Scholar 

  • Nakashima M, Iohara K, Murakami M et al (2017) Pulp regeneration by transplantation of dental pulp stem cells in pulpitis: a pilot clinical study. Stem Cell Res Ther 8:61

    Article  PubMed  PubMed Central  Google Scholar 

  • Nanci A (2017) Ten Cate’s Oral Histology-e-book: development, structure, and function. Elsevier Health Sciences

    Google Scholar 

  • Ng TK, Yung JS, Choy KW et al (2015) Transdifferentiation of periodontal ligament-derived stem cells into retinal ganglion-like cells and its microRNA signature. Sci Rep 5:1–16

    Article  Google Scholar 

  • Nicola FDC, Rodrigues LP, Crestani T et al (2016) Human dental pulp stem cells transplantation combined with treadmill training in rats after traumatic spinal cord injury. BJMBR:49

    Google Scholar 

  • Nicola F, Marques MR, Odorcyk F et al (2019) Stem cells from human exfoliated deciduous teeth modulate early astrocyte response after spinal cord contusion. Mol Neurobiol 56:748–760

    Article  CAS  PubMed  Google Scholar 

  • Nourbakhsh N, Soleimani M, Taghipour Z et al (2011) Induced in vitro differentiation of neural-like cells from human exfoliated deciduous teeth-derived stem cells. Int J Dev Biol 55:189–195

    Article  CAS  PubMed  Google Scholar 

  • Nuti N, Corallo C, Chan B et al (2016) Multipotent differentiation of human dental pulp stem cells: a literature review. Stem Cell Rev. Rep 12:511–523

    Article  CAS  PubMed  Google Scholar 

  • Ohshima M, Yamaguchi Y, Micke P et al (2008) In vitro characterization of the cytokine profile of the epithelial cell rests of Malassez. J Periodontol 79:912–919

    Article  CAS  PubMed  Google Scholar 

  • Okubo N, Ishisaki A, Iizuka T et al (2010) Vascular cell-like potential of undifferentiated ligament fibroblasts to construct vascular cell-specific marker-positive blood vessel structures in a PI3K activation-dependent manner. J Vasc Res 47:369–383

    Article  CAS  PubMed  Google Scholar 

  • Omi M, Hata M, Nakamura N et al (2016) Transplantation of dental pulp stem cells suppressed inflammation in sciatic nerves by promoting macrophage polarization towards anti-inflammation phenotypes and ameliorated diabetic polyneuropathy. J Diabetes Investig 7:485–496

    Article  CAS  PubMed  Google Scholar 

  • Oortgiesen DA, Walboomers XF, Bronckers AL et al (2014) Periodontal regeneration using an injectable bone cement combined with BMP-2 or FGF-2. J Tissue Eng Regen Med 8:202–209

    Article  CAS  PubMed  Google Scholar 

  • Osathanon T, Manokawinchoke J, Nowwarote N et al (2013) Notch signaling is involved in neurogenic commitment of human periodontal ligament-derived mesenchymal stem cells. Stem Cells Dev 22:1220–1231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Özdemir AT, Özdemir RBÖ, Kırmaz C et al (2016) The paracrine immunomodulatory interactions between the human dental pulp derived mesenchymal stem cells and CD4 T cell subsets. Cell Immunol 310:108–115

    Article  PubMed  Google Scholar 

  • Paino F, Ricci G, De Rosa A et al (2010) Ecto-mesenchymal stem cells from dental pulp are committed to differentiate into active melanocytes. Eur Cells Mater 20:295–305

    Article  CAS  Google Scholar 

  • Palmer RM, Lubbock MJ (1995) The soft connective tissues of the gingiva and periodontal ligament: are they unique? Oral Dis 1:230–237

    Article  CAS  PubMed  Google Scholar 

  • Park B-W, Kang E-J, Byun J-H et al (2012a) In vitro and in vivo osteogenesis of human mesenchymal stem cells derived from skin, bone marrow and dental follicle tissues. Differentiation 83:249–259

    Article  CAS  PubMed  Google Scholar 

  • Park JC, Lee SM, Kim J et al (2012b) Effect of humoral factors from hPDLSCs on the biologic activity of hABCs. Oral Dis 18:537–547

    Article  PubMed  Google Scholar 

  • Park Y-T, Lee S-M, Kou X et al (2019) The role of interleukin 6 in osteogenic and neurogenic differentiation potentials of dental pulp stem cells. J Endod 45:1342–1348

    Article  PubMed  Google Scholar 

  • Patil R, Kumar BM, Lee W-J et al (2014) Multilineage potential and proteomic profiling of human dental stem cells derived from a single donor. Exp Cell Res 320:92–107

    Article  CAS  PubMed  Google Scholar 

  • Pelaez D, Torres ZA, Ng TK et al (2017) Cardiomyogenesis of periodontal ligament-derived stem cells by dynamic tensile strain. Cell Tissue Res 367:229–241

    Article  CAS  PubMed  Google Scholar 

  • Pierdomenico L, Bonsi L, Calvitti M et al (2005) Multipotent mesenchymal stem cells with immunosuppressive activity can be easily isolated from dental pulp. Transplantation 80:836–842

    Article  PubMed  Google Scholar 

  • Pisciotta A, Riccio M, Carnevale G et al (2015) Stem cells isolated from human dental pulp and amniotic fluid improve skeletal muscle histopathology in mdx/SCID mice. Stem Cell Res Ther 6:156

    Article  PubMed  PubMed Central  Google Scholar 

  • Pivoraitė U, Jarmalavičiūtė A, Tunaitis V et al (2015) Exosomes from human dental pulp stem cells suppress carrageenan-induced acute inflammation in mice. Inflammation 38:1933–1941

    Article  PubMed  Google Scholar 

  • Qian J, Jiayuan W, Wenkai J et al (2015) Basic fibroblastic growth factor affects the osteogenic differentiation of dental pulp stem cells in a treatment-dependent manner. Int Endod J 48:690–700

    Article  CAS  PubMed  Google Scholar 

  • Rady D, Abbass MMS, El-Rashidy AA et al (2020) Mesenchymal stem/progenitor cells: the prospect of human clinical translation. Stem Cells Int 2020:8837654

    Article  PubMed  PubMed Central  Google Scholar 

  • Rajan TS, Giacoppo S, Diomede F et al (2016) The secretome of periodontal ligament stem cells from MS patients protects against EAE. Sci Rep 6:38743

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rajan TS, Diomede F, Bramanti P et al (2017) Conditioned medium from human gingival mesenchymal stem cells protects motor-neuron-like NSC-34 cells against scratch-injury-induced cell death. Int J Immunopathol Pharmacol 30:383–394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ranganath SH, Levy O, Inamdar MS et al (2012) Harnessing the mesenchymal stem cell secretome for the treatment of cardiovascular disease. Cell Stem Cell 10:244–258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rao F, Zhang D, Fang T et al (2019) Exosomes from human gingiva-derived mesenchymal stem cells combined with biodegradable chitin conduits promote rat sciatic nerve regeneration. Stem Cells Int:2019

    Google Scholar 

  • Rezai-Rad M, Bova JF, Orooji M et al (2015) Evaluation of bone regeneration potential of dental follicle stem cells for treatment of craniofacial defects. Cytotherapy 17:1572–1581

    Article  CAS  PubMed  Google Scholar 

  • Rouabhia M (2015) Advantages and limitations of oral stem cell use for oral tissue replacement. Oral Bio 2:9–17

    Google Scholar 

  • Rubio D, Garcia S, Paz MF et al (2008) Molecular characterization of spontaneous mesenchymal stem cell transformation. PLoS One 3:e1398–e1398

    Article  PubMed  PubMed Central  Google Scholar 

  • Rufas P, Jeanneau C, Rombouts C et al (2016) Complement C3a mobilizes dental pulp stem cells and specifically guides pulp fibroblast recruitment. J Endod 42:1377–1384

    Article  PubMed  Google Scholar 

  • Saito MT, Silvério KG, Casati MZ et al (2015) Tooth-derived stem cells: update and perspectives. World J Stem Cells 7:399

    Article  PubMed  PubMed Central  Google Scholar 

  • Sakai K, Yamamoto A, Matsubara K et al (2012) Human dental pulp-derived stem cells promote locomotor recovery after complete transection of the rat spinal cord by multiple neuro-regenerative mechanisms. J Clin Investig 122:80–90

    CAS  PubMed  Google Scholar 

  • Scheller E, Chang J, Wang C (2008) Wnt/β-catenin inhibits dental pulp stem cell differentiation. J Dent Res 87:126–130

    Article  CAS  PubMed  Google Scholar 

  • Seo B-M, Miura M, Gronthos S et al (2004) Investigation of multipotent postnatal stem cells from human periodontal ligament. The Lancet 364:149–155

    Article  CAS  Google Scholar 

  • Seo B, Sonoyama W, Yamaza T et al (2008) SHED repair critical-size calvarial defects in mice. Oral Dis 14:428–434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shen W-C, Lai Y-C, Li L-H et al (2019) Methylation and PTEN activation in dental pulp mesenchymal stem cells promotes osteogenesis and reduces oncogenesis. Nat Commun 10:1–13

    Article  Google Scholar 

  • Shi Q, Qian Z, Liu D et al (2017) GMSC-derived exosomes combined with a chitosan/silk hydrogel sponge accelerates wound healing in a diabetic rat skin defect model. Front Physiol:8

    Google Scholar 

  • Shimojima C, Takeuchi H, Jin S et al (2016) Conditioned medium from the stem cells of human exfoliated deciduous teeth ameliorates experimental autoimmune encephalomyelitis. J Immunol 196:4164–4171

    Article  CAS  PubMed  Google Scholar 

  • Shinagawa-Ohama R, Mochizuki M, Tamaki Y et al (2017) Heterogeneous human periodontal ligament-committed progenitor and stem cell populations exhibit a unique cementogenic property under in vitro and in vivo conditions. Stem Cells Dev 26:632–645

    Article  CAS  PubMed  Google Scholar 

  • Siew Ching H, Luddin N, Ab Rahman I et al (2017) Expression of odontogenic and osteogenic markers in DPSCs and SHED: a review. Curr Stem Cell Res Ther 12:71–79

    Article  Google Scholar 

  • Solaroglu I, Cahill J, Jadhav V et al (2006) A novel neuroprotectant granulocyte-colony stimulating factor. Stroke 37:1123–1128

    Article  CAS  PubMed  Google Scholar 

  • Song JS, Kim S-O, Kim S-H et al (2012) In vitro and in vivo characteristics of stem cells derived from the periodontal ligament of human deciduous and permanent teeth. Tissue Eng Part A 18:2040–2051

    Article  CAS  PubMed  Google Scholar 

  • Song M, Lee J-H, Bae J, Bu Y, Kim E-C (2017) Human dental pulp stem cells are more effective than human bone marrow-derived mesenchymal stem cells in cerebral ischemic injury. Cell Transplant 26:1001–1016

    Article  PubMed  PubMed Central  Google Scholar 

  • Sonoyama W, Liu Y, Fang D et al (2006) Mesenchymal stem cell-mediated functional tooth regeneration in swine. PLoS One 1:e79

    Article  PubMed  PubMed Central  Google Scholar 

  • Sonoyama W, Liu Y, Yamaza T et al (2008) Characterization of the apical papilla and its residing stem cells from human immature permanent teeth: a pilot study. J Endod 34:166–171

    Article  PubMed  PubMed Central  Google Scholar 

  • Sotiropoulou PA, Perez SA, Salagianni M et al (2006) Characterization of the optimal culture conditions for clinical scale production of human mesenchymal stem cells. Stem Cells 24:462–471

    Article  PubMed  Google Scholar 

  • Stanko P, Altanerova U, Jakubechova J et al (2018) Dental mesenchymal stem/stromal cells and their exosomes. Stem Cells Int 2018

    Google Scholar 

  • Stefańska K, Mehr K, Wieczorkiewicz M et al (2020) Stemness potency of human gingival cells—application in anticancer therapies and clinical trials. Cells 9:1916–1916

    Article  PubMed Central  Google Scholar 

  • Stuepp RT, Delben PB, Modolo F et al (2019) Human dental pulp stem cells in rat mandibular bone defects. Cells Tissues Organs 207:138–148

    Article  CAS  PubMed  Google Scholar 

  • Suchánek J, Visek B, Soukup T et al (2010) Stem cells from human exfoliated deciduous teeth-isolation, long term cultivation and phenotypical analysis. Acta Medica Cordoba 53:93–99

    Google Scholar 

  • Sun W, Wang Z, Xu Q et al (2019) The treatment of systematically transplanted gingival mesenchymal stem cells in periodontitis in mice. Exp Ther Med 17:2199–2205

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sung I-Y, Son H-N, Ullah I et al (2016) Cardiomyogenic differentiation of human dental follicle-derived stem cells by suberoylanilide hydroxamic acid and their in vivo homing property. Int J Med Sci 13:841

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tamaki Y, Nakahara T, Ishikawa H et al (2013) In vitro analysis of mesenchymal stem cells derived from human teeth and bone marrow. Odontology 101:121–132

    Article  CAS  PubMed  Google Scholar 

  • Tang R, Wei F, Wei L et al (2014) Osteogenic differentiated periodontal ligament stem cells maintain their immunomodulatory capacity. J Tissue Eng Regen Med 8:226–232

    Article  CAS  PubMed  Google Scholar 

  • Tang HN, Xia Y, Yu Y et al (2016) Stem cells derived from “inflamed” and healthy periodontal ligament tissues and their sheet functionalities: a patient-matched comparison. J Clin Periodontol 43:72–84

    Article  CAS  PubMed  Google Scholar 

  • Tatullo M, Codispoti B, Pacifici A et al (2017) Potential use of human periapical cyst-mesenchymal stem cells (hPCy-MSCs) as a novel stem cell source for regenerative medicine applications. Front Cell Dev Biol 5

    Google Scholar 

  • Tomar GB, Srivastava RK, Gupta N, Barhanpurkar AP, Pote ST, Jhaveri HM, Mishra GC, Wani MR (2010) Human gingiva-derived mesenchymal stem cells are superior to bone marrow-derived mesenchymal stem cells for cell therapy in regenerative medicine. Biochem Biophys Res Commun:393

    Google Scholar 

  • Tóth F, Gáll JM, Tőzsér J et al (2020) Effect of inducible bone morphogenetic protein 2 expression on the osteogenic differentiation of dental pulp stem cells in vitro. Bone 132:115214

    Article  PubMed  Google Scholar 

  • Tran-Hung L, Mathieu S, About I (2006) Role of human pulp fibroblasts in angiogenesis. J Dent Res 85:819–823

    Article  CAS  PubMed  Google Scholar 

  • Trubiani O, Isgro A, Zini N et al (2008) Functional interleukin-7/interleukin-7Rα, and SDF-1α/CXCR4 are expressed by human periodontal ligament derived mesenchymal stem cells. J Cell Physiol 214:706–713

    Article  CAS  PubMed  Google Scholar 

  • Trubiani O, Piattelli A, Gatta V et al (2015) Assessment of an efficient xeno-free culture system of human periodontal ligament stem cells. Tissue Eng Part C Methods 21:52–64

    Article  CAS  PubMed  Google Scholar 

  • Trubiani O, Pizzicannella J, Caputi S et al (2019) Periodontal ligament stem cells: current knowledge and future perspectives. Stem Cells Dev 28:995–1003

    Article  PubMed  Google Scholar 

  • Ulusoy C, Zibandeh N, Yıldırım S et al (2015) Dental follicle mesenchymal stem cell administration ameliorates muscle weakness in MuSK-immunized mice. J Neuroinflammation 12:1–12

    Article  Google Scholar 

  • Vishwanath VR, Nadig RR, Nadig R et al (2013) Differentiation of isolated and characterized human dental pulp stem cells and stem cells from human exfoliated deciduous teeth: an in vitro study. JCD 16:423

    PubMed  PubMed Central  Google Scholar 

  • Wakayama H, Hashimoto N, Matsushita Y et al (2015) Factors secreted from dental pulp stem cells show multifaceted benefits for treating acute lung injury in mice. Cytotherapy 17:1119–1129

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Wang X, Sun Z et al (2010) Stem cells from human-exfoliated deciduous teeth can differentiate into dopaminergic neuron-like cells. Stem Cells Dev 19:1375–1383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang F, Yu M, Yan X, Wen Y, Zeng Q, Yue W, Yang P, Pei X (2011a) Gingiva-derived mesenchymal stem cell-mediated therapeutic approach for bone tissue regeneration. Stem Cells Dev:20

    Google Scholar 

  • Wang L, Shen H, Zheng W et al (2011b) Characterization of stem cells from alveolar periodontal ligament. Tissue Eng Part A 17:1015–1026

    Article  CAS  PubMed  Google Scholar 

  • Wang W, Dang M, Zhang Z et al (2016) Dentin regeneration by stem cells of apical papilla on injectable nanofibrous microspheres and stimulated by controlled BMP-2 release. Acta Biomater 36:63–72

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Werle SB, Lindemann D, Steffens D et al (2016) Carious deciduous teeth are a potential source for dental pulp stem cells. Clin Oral Investig 20:75–81

    Article  PubMed  Google Scholar 

  • Xia L, Peng R, Leng W et al (2015) TRAIL-expressing gingival-derived mesenchymal stem cells inhibit tumorigenesis of tongue squamous cell carcinoma. J Dent Res 94:219–228

    Article  CAS  PubMed  Google Scholar 

  • Xing J, Lian M, Shen Q et al (2015) AGS3 is involved in TNF-α medicated osteogenic differentiation of human dental pulp stem cells. Differentiation 89:128–136

    Article  CAS  PubMed  Google Scholar 

  • Xu X, Chen C, Akiyama K et al (2013) Gingivae contain neural-crest- and mesoderm-derived mesenchymal stem cells. J Dent Res 92:825–832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu Q-C, Wang Z-G, Ji Q-X et al (2014) Systemically transplanted human gingiva-derived mesenchymal stem cells contributing to bone tissue regeneration. Int J Clin Exp Pathol 7:4922–4929

    PubMed  PubMed Central  Google Scholar 

  • Xu Q, Furuhashi A, Zhang Q et al (2017) Induction of salivary gland–like cells from dental follicle epithelial cells. J Dent Res 96:1035–1043

    Article  CAS  PubMed  Google Scholar 

  • Xuan K, Li B, Guo H et al (2018) Deciduous autologous tooth stem cells regenerate dental pulp after implantation into injured teeth. Sci Transl Med:10

    Google Scholar 

  • Yamada Y, Nakamura S, Ito K et al (2010) A feasibility of useful cell-based therapy by bone regeneration with deciduous tooth stem cells, dental pulp stem cells, or bone-marrow-derived mesenchymal stem cells for clinical study using tissue engineering technology. Tissue Eng Part A 16:1891–1900

    Article  CAS  PubMed  Google Scholar 

  • Yamada Y, Nakamura-Yamada S, Konoki R et al (2020) Promising advances in clinical trials of dental tissue-derived cell-based regenerative medicine. Stem Cell Res Ther 11:1–10

    Article  Google Scholar 

  • Yamagata M, Yamamoto A, Kako E et al (2013) Human dental pulp-derived stem cells protect against hypoxic-ischemic brain injury in neonatal mice. Stroke 44:551–554

    Article  PubMed  Google Scholar 

  • Yamamura Y, Yamada H, Sakurai T et al (2013) Treatment of salivary gland hypofunction by transplantation with dental pulp cells. Arch Oral Biol 58:935–942

    Article  CAS  PubMed  Google Scholar 

  • Yamaza T, Kentaro A, Chen C et al (2010) Immunomodulatory properties of stem cells from human exfoliated deciduous teeth. Stem Cell Res Ther 1:5

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang B, Chen G, Li J et al (2012) Tooth root regeneration using dental follicle cell sheets in combination with a dentin matrix-based scaffold. Biomaterials 33:2449–2461

    Article  CAS  PubMed  Google Scholar 

  • Yang C, Li X, Sun L et al (2017a) Potential of human dental stem cells in repairing the complete transection of rat spinal cord. J Neural Eng 14:026005

    Article  PubMed  Google Scholar 

  • Yang H, Li J, Sun J et al (2017b) Cells isolated from cryopreserved dental follicle display similar characteristics to cryopreserved dental follicle cells. Cryobiology 78:47–55

    Article  CAS  PubMed  Google Scholar 

  • Yazid FB, Gnanasegaran N, Kunasekaran W, Govindasamy V, Musa S (2014) Comparison of immunodulatory properties of dental pulp stem cells derived from healthy and inflamed teeth. Clin Oral Investig 18:2103–2112

    Article  PubMed  Google Scholar 

  • Ye Q, Wang H, Xia X et al (2020) Safety and efficacy assessment of allogeneic human dental pulp stem cells to treat patients with severe COVID-19: structured summary of a study protocol for a randomized controlled trial (Phase I/II). Trials 21:1–4

    Article  Google Scholar 

  • Yeo RWY, Lai RC, Zhang B et al (2013) Mesenchymal stem cell: an efficient mass producer of exosomes for drug delivery. Adv Drug Del Rev 65:336–341

    Article  CAS  Google Scholar 

  • Yu J, Wang Y, Deng Z et al (2007) Odontogenic capability: bone marrow stromal stem cells versus dental pulp stem cells. Biol Cell 99:465–474

    Article  CAS  PubMed  Google Scholar 

  • Yu S, Zhao Y, Ma Y et al (2016) Profiling the secretome of human stem cells from dental apical papilla. Stem Cells Dev 25:499–508

    Article  CAS  PubMed  Google Scholar 

  • Yuda A, Maeda H, Fujii S et al (2015) Effect of CTGF/CCN2 on osteo/cementoblastic and fibroblastic differentiation of a human periodontal ligament stem/progenitor cell line. J Cell Physiol 230:150–159

    Article  CAS  PubMed  Google Scholar 

  • Zhang W, Walboomers XF, Shi S et al (2006) Multilineage differentiation potential of stem cells derived from human dental pulp after cryopreservation. Tissue Eng 12:2813–2823

    Article  CAS  PubMed  Google Scholar 

  • Zhang Q, Shi S, Liu Y et al (2009) Mesenchymal stem cells derived from human gingiva are capable of immunomodulatory functions and ameliorate inflammation-related tissue destruction in experimental colitis. J Immunol (Baltimore, Md: 1950) 183:7787–7798

    Article  CAS  Google Scholar 

  • Zhang QZ, Su WR, Shi SH, Wilder‐Smith P et al (2010) Human gingiva-derived mesenchymal stem cells elicit polarization of m2 macrophages and enhance cutaneous wound healing. Stem Cells 28:1856–1868

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Q, Nguyen AL, Shi S et al (2011) Three-dimensional spheroid culture of human gingiva-derived mesenchymal stem cells enhances mitigation of chemotherapy-induced oral mucositis. Stem Cells Dev 21:937–947

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang J, Li Z-G, Si Y-M et al (2014) The difference on the osteogenic differentiation between periodontal ligament stem cells and bone marrow mesenchymal stem cells under inflammatory microenviroments. Differentiation 88:97–105

    Article  PubMed  Google Scholar 

  • Zhang J, Lian M, Cao P et al (2017) Effects of nerve growth factor and basic fibroblast growth factor promote human dental pulp stem cells to neural differentiation. Neurochem Res 42:1015–1025

    Article  CAS  PubMed  Google Scholar 

  • Zhang Q, Nguyen PD, Shi S et al (2018) 3D bio-printed scaffold-free nerve constructs with human gingiva-derived mesenchymal stem cells promote rat facial nerve regeneration. Sci Rep 8:6634

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhao Y, Wang L, Jin Y et al (2012) Fas ligand regulates the immunomodulatory properties of dental pulp stem cells. J Dent Res 91:948–954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng Y, Liu Y, Zhang C et al (2009) Stem cells from deciduous tooth repair mandibular defect in swine. J Dent Res 88:249–254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng Y, Wang X, Wang Y et al (2012) Dentin regeneration using deciduous pulp stem/progenitor cells. J Dent Res 91:676–682

    Article  CAS  PubMed  Google Scholar 

  • Zhong T-Y, Zhang Z-C, Gao Y-N et al (2019) Loss of Wnt4 expression inhibits the odontogenic potential of dental pulp stem cells through JNK signaling in pulpitis. Am J Transl Res 11:1819

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou L-L, Liu W, Wu Y-M et al (2020) Oral Mesenchymal Stem/Progenitor Cells: The Immunomodulatory Masters. Stem Cells Int 2020:1327405

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhu W, Liang M (2015) Periodontal ligament stem cells: current status, concerns, and future prospects. Stem Cells Int 2015

    Google Scholar 

  • Zhu W, Tan Y, Qiu Q et al (2013) Comparison of the properties of human CD146+ and CD146− periodontal ligament cells in response to stimulation with tumour necrosis factor α. Arch Oral Biol 58:1791–1803

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

El-Rashidy, A.A. et al. (2021). Dental Mesenchymal Stem/Progenitor Cells: A New Prospect in Regenerative Medicine. In: Haider, K.H. (eds) Stem Cells. Springer, Cham. https://doi.org/10.1007/978-3-030-77052-5_9

Download citation

Publish with us

Policies and ethics