Skip to main content

Advertisement

Log in

Multipotent Differentiation of Human Dental Pulp Stem Cells: a Literature Review

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

The advent of regenerative medicine has brought us the opportunity to regenerate, modify and restore human organs function. Stem cells, a key resource in regenerative medicine, are defined as clonogenic, self-renewing, progenitor cells that can generate into one or more specialized cell types. Stem cells have been classified into three main groups: embryonic stem cells (ESCs), induced pluripotent stem cells (iPSCs) and adult/postnatal stem cells (ASCs). The present review focused the attention on ASCs, which have been identified in many perioral tissues such as dental pulp, periodontal ligament, follicle, gingival, alveolar bone and papilla. Human dental pulp stem cells (hDPSCs) are ectodermal-derived stem cells, originating from migrating neural crest cells and possess mesenchymal stem cell properties. During last decade, hDPSCs have received extensive attention in the field of tissue engineering and regenerative medicine due to their accessibility and ability to differentiate in several cell phenotypes. In this review, we have carefully described the potential of hDPSCs to differentiate into odontoblasts, osteocytes/osteoblasts, adipocytes, chondrocytes and neural cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Sedgley, C. M., & Botero, T. M. (2012). Dental stem cells and their sources. Dental Clinics of North America, 56(3), 549–561.

    Article  PubMed  Google Scholar 

  2. Rodriguez-Lozano, F. J., et al. (2011). Mesenchymal stem cells derived from dental tissues. International Endodontic Journal, 44(9), 800–806.

    Article  CAS  PubMed  Google Scholar 

  3. Moraleda, J. M., et al. (2006). Adult stem cell therapy: dream or reality? Transplant Immunology, 17(1), 74–77.

    Article  CAS  PubMed  Google Scholar 

  4. Suchanek, J., et al. (2007). Human dental pulp stem cells—isolation and long term cultivation. Acta Medica (Hradec Králové), 50(3), 195–201.

    Google Scholar 

  5. Berardi, A. C., et al. (1995). Functional isolation and characterization of human hematopoietic stem cells. Science, 267(5194), 104–108.

    Article  CAS  PubMed  Google Scholar 

  6. Jones, P. H., Harper, S., & Watt, F. M. (1995). Stem cell patterning and fate in human epidermis. Cell, 80(1), 83–93.

    Article  CAS  PubMed  Google Scholar 

  7. Owen, M. (1988). Marrow stromal stem cells. Journal of Cell Science. Supplement, 10, 63–76.

    Article  CAS  PubMed  Google Scholar 

  8. Bobis, S., Jarocha, D., & Majka, M. (2006). Mesenchymal stem cells: characteristics and clinical applications. Folia Histochemica et Cytobiologica, 44(4), 215–230.

    CAS  PubMed  Google Scholar 

  9. Rietze, R. L., & Reynolds, B. A. (2006). Neural stem cell isolation and characterization. Methods in Enzymology, 419, 3–23.

    Article  CAS  PubMed  Google Scholar 

  10. Tseng, S. C. (1989). Concept and application of limbal stem cells. Eye (London, England), 3(Pt 2), 141–157.

    Article  Google Scholar 

  11. Funderburgh, J.L., Funderburgh, M.L., & Du, Y. (2016). Stem cells in the Limbal Stroma. The Ocular Surface.

  12. Sell, S. (1994). Liver stem cells. Modern Pathology, 7(1), 105–112.

    CAS  PubMed  Google Scholar 

  13. Pittenger, M. F., et al. (1999). Multilineage potential of adult human mesenchymal stem cells. Science, 284(5411), 143–147.

    Article  CAS  PubMed  Google Scholar 

  14. Mareschi, K., et al. (2001). Isolation of human mesenchymal stem cells: bone marrow versus umbilical cord blood. Haematologica, 86(10), 1099–1100.

    CAS  PubMed  Google Scholar 

  15. Zuk, P. A., et al. (2001). Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Engineering, 7(2), 211–228.

    Article  CAS  PubMed  Google Scholar 

  16. Li, M., & Ikehara, S. (2013). Bone-marrow-derived mesenchymal stem cells for organ repair. Stem Cells International, 2013, 132642.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Otabe, K., et al. (2015). Transcription factor Mohawk controls tenogenic differentiation of bone marrow mesenchymal stem cells in vitro and in vivo. Journal of Orthopaedic Research, 33(1), 1–8.

    Article  CAS  PubMed  Google Scholar 

  18. Huang, G. T., Gronthos, S., & Shi, S. (2009). Mesenchymal stem cells derived from dental tissues vs. those from other sources: their biology and role in regenerative medicine. Journal of Dental Research, 88(9), 792–806.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Chatterjee, K. (2006). Essentials of oral histology. Jaypee Brothers, Medical Publishers Pvt. Limited.

  20. Ranganathan, K., & Lakshminarayanan, V. (2012). Stem cells of the dental pulp. Indian Journal of Dental Research, 23(4), 558.

    Article  CAS  PubMed  Google Scholar 

  21. Gronthos, S., et al. (2000). Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proceedings of the National Academy of Sciences of the United States of America, 97(25), 13625–13630.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Miura, M., et al. (2003). SHED: stem cells from human exfoliated deciduous teeth. Proceedings of the National Academy of Sciences of the United States of America, 100(10), 5807–5812.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Seo, B. M., et al. (2005). Recovery of stem cells from cryopreserved periodontal ligament. Journal of Dental Research, 84(10), 907–912.

    Article  PubMed  Google Scholar 

  24. Morsczeck, C., et al. (2005). Isolation of precursor cells (PCs) from human dental follicle of wisdom teeth. Matrix Biology, 24(2), 155–165.

    Article  CAS  PubMed  Google Scholar 

  25. Sonoyama, W., et al. (2006). Mesenchymal stem cell-mediated functional tooth regeneration in swine. PloS One, 1, e79.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Zhang, Q., et al. (2009). Mesenchymal stem cells derived from human gingiva are capable of immunomodulatory functions and ameliorate inflammation-related tissue destruction in experimental colitis. Journal of Immunology, 183(12), 7787–7798.

    Article  CAS  Google Scholar 

  27. Liu, J., et al. (2015). Concise reviews: characteristics and potential applications of human dental tissue-derived mesenchymal stem cells. Stem Cells, 33(3), 627–638.

    Article  CAS  PubMed  Google Scholar 

  28. Kumar, G.S. (2014). Orban’s oral histology & embryology. Elsevier Health Sciences APAC.

  29. Nanci, A. (2014). Ten Cate’s oral histology: development, structure, and function. Elsevier Health Sciences.

  30. Martens, W., et al. (2013). Dental stem cells and their promising role in neural regeneration: an update. Clinical Oral Investigations, 17(9), 1969–1983.

    Article  CAS  PubMed  Google Scholar 

  31. Fawzy El-Sayed, K. M., et al. (2013). Adult mesenchymal stem cells explored in the dental field. Advances in Biochemical Engineering and Biotechnology, 130, 89–103.

    CAS  Google Scholar 

  32. Alge, D. L., et al. (2010). Donor-matched comparison of dental pulp stem cells and bone marrow-derived mesenchymal stem cells in a rat model. Journal of Tissue Engineering and Regenerative Medicine, 4(1), 73–81.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Govindasamy, V., et al. (2011). Differentiation of dental pulp stem cells into islet-like aggregates. Journal of Dental Research, 90(5), 646–652.

    Article  CAS  PubMed  Google Scholar 

  34. Gandia, C., et al. (2008). Human dental pulp stem cells improve left ventricular function, induce angiogenesis, and reduce infarct size in rats with acute myocardial infarction. Stem Cells, 26(3), 638–645.

    Article  PubMed  Google Scholar 

  35. Monteiro, B. G., et al. (2009). Human immature dental pulp stem cells share key characteristic features with limbal stem cells. Cell Proliferation, 42(5), 587–594.

    Article  CAS  PubMed  Google Scholar 

  36. Gomes, J. A., et al. (2010). Corneal reconstruction with tissue-engineered cell sheets composed of human immature dental pulp stem cells. Investigative Ophthalmology & Visual Science, 51(3), 1408–1414.

    Article  Google Scholar 

  37. Shi, S., Robey, P. G., & Gronthos, S. (2001). Comparison of human dental pulp and bone marrow stromal stem cells by cDNA microarray analysis. Bone, 29(6), 532–539.

    Article  CAS  PubMed  Google Scholar 

  38. Huang, G. T., Shagramanova, K., & Chan, S. W. (2006). Formation of odontoblast-like cells from cultured human dental pulp cells on dentin in vitro. Journal of Endodontics, 32(11), 1066–1073.

    Article  PubMed  Google Scholar 

  39. Batouli, S., et al. (2003). Comparison of stem-cell-mediated osteogenesis and dentinogenesis. Journal of Dental Research, 82(12), 976–981.

    Article  CAS  PubMed  Google Scholar 

  40. Alongi, D. J., et al. (2010). Stem/progenitor cells from inflamed human dental pulp retain tissue regeneration potential. Regenerative Medicine, 5(4), 617–631.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Davies, O. G., et al. (2015). A comparison of the in vitro mineralisation and dentinogenic potential of mesenchymal stem cells derived from adipose tissue, bone marrow and dental pulp. Journal of Bone and Mineral Metabolism, 33(4), 371–382.

    Article  CAS  PubMed  Google Scholar 

  42. Galler, K. M., et al. (2011). Scaffolds for dental pulp tissue engineering. Advances in Dental Research, 23(3), 333–339.

    Article  CAS  PubMed  Google Scholar 

  43. Qu, T., et al. (2014). Magnesium-containing nanostructured hybrid scaffolds for enhanced dentin regeneration. Tissue Engineering Part A, 20(17–18), 2422–2433.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Wang, J., et al. (2010). The odontogenic differentiation of human dental pulp stem cells on nanofibrous poly(L-lactic acid) scaffolds in vitro and in vivo. Acta Biomaterialia, 6(10), 3856–3863.

    Article  CAS  PubMed  Google Scholar 

  45. Yang, X., et al. (2010). The performance of dental pulp stem cells on nanofibrous PCL/gelatin/nHA scaffolds. Journal of Biomedical Materials Research. Part A, 93(1), 247–257.

    PubMed  Google Scholar 

  46. Kwon, Y.S., et al. (2015). Behaviour of human dental pulp cells cultured in a collagen hydrogel scaffold crosslinked with cinnamaldehyde. International Endodontic Journal.

  47. Cavalcanti, B. N., Zeitlin, B. D., & Nor, J. E. (2013). A hydrogel scaffold that maintains viability and supports differentiation of dental pulp stem cells. Dental Materials, 29(1), 97–102.

    Article  CAS  PubMed  Google Scholar 

  48. Park, S. J., et al. (2013). Glycol chitin-based thermoresponsive hydrogel scaffold supplemented with enamel matrix derivative promotes odontogenic differentiation of human dental pulp cells. Journal of Endodontics, 39(8), 1001–1007.

    Article  PubMed  Google Scholar 

  49. Ferroni, L., et al. (2015). A hyaluronan-based scaffold for the in vitro construction of dental pulp-like tissue. International Journal of Molecular Sciences, 16(3), 4666–4681.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Jo, Y. Y., et al. (2007). Isolation and characterization of postnatal stem cells from human dental tissues. Tissue Engineering, 13(4), 767–773.

    Article  CAS  PubMed  Google Scholar 

  51. Gronthos, S., et al. (2002). Stem cell properties of human dental pulp stem cells. Journal of Dental Research, 81(8), 531–535.

    Article  CAS  PubMed  Google Scholar 

  52. Zhang, W., et al. (2006). Multilineage differentiation potential of stem cells derived from human dental pulp after cryopreservation. Tissue Engineering, 12(10), 2813–2823.

    Article  CAS  PubMed  Google Scholar 

  53. Navabazam, A. R., et al. (2013). Characterization of mesenchymal stem cells from human dental pulp, preapical follicle and periodontal ligament. Iran Journal of Reproductive Medicine, 11(3), 235–242.

    CAS  Google Scholar 

  54. Xing, J., et al. (2015). AGS3 is involved in TNF-alpha medicated osteogenic differentiation of human dental pulp stem cells. Differentiation, 89(5), 128–136.

    Article  CAS  PubMed  Google Scholar 

  55. Akpinar, G., et al. (2014). Phenotypic and proteomic characteristics of human dental pulp derived mesenchymal stem cells from a natal, an exfoliated deciduous, and an impacted third molar tooth. Stem Cells International, 2014, 457059.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Lei, M., et al. (2014). Mesenchymal stem cell characteristics of dental pulp and periodontal ligament stem cells after in vivo transplantation. Biomaterials, 35(24), 6332–6343.

    Article  CAS  PubMed  Google Scholar 

  57. d’Aquino, R., et al. (2009). Human mandible bone defect repair by the grafting of dental pulp stem/progenitor cells and collagen sponge biocomplexes. European Cells & Materials, 18, 75–83.

    Google Scholar 

  58. Salgado, A. J., et al. (2006). Adult stem cells in bone and cartilage tissue engineering. Current Stem Cell Research & Therapy, 1(3), 345–364.

    Article  CAS  Google Scholar 

  59. Kim, B. C., et al. (2012). Osteoblastic/cementoblastic and neural differentiation of dental stem cells and their applications to tissue engineering and regenerative medicine. Tissue Engineering. Part B, Reviews, 18(3), 235–244.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Laino, G., et al. (2005). A new population of human adult dental pulp stem cells: a useful source of living autologous fibrous bone tissue (LAB). Journal of Bone and Mineral Research, 20(8), 1394–1402.

    Article  PubMed  Google Scholar 

  61. Papaccio, G., et al. (2006). Long-term cryopreservation of dental pulp stem cells (SBP-DPSCs) and their differentiated osteoblasts: a cell source for tissue repair. Journal of Cellular Physiology, 208(2), 319–325.

    Article  CAS  PubMed  Google Scholar 

  62. Bonnamain, V., et al. (2013). Human dental pulp stem cells cultured in serum-free supplemented medium. Frontiers in Physiology, 4, 357.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Kanafi, M. M., et al. (2014). Dental pulp stem cells immobilized in alginate microspheres for applications in bone tissue engineering. International Endodontic Journal, 47(7), 687–697.

    Article  CAS  PubMed  Google Scholar 

  64. Venezia, E., Goldstein, M., & Schwartz Z. The use of enamel matrix derivative in periodontal therapy]. Refuat Hapeh Vehashinayim (1993), 2002. 19(3): p. 19–34, 88.

  65. Hammarstrom, L., Heijl, L., & Gestrelius, S. (1997). Periodontal regeneration in a buccal dehiscence model in monkeys after application of enamel matrix proteins. Journal of Clinical Periodontology, 24(9 Pt 2), 669–677.

    Article  CAS  PubMed  Google Scholar 

  66. Heldin, C. H., & Westermark, B. (1999). Mechanism of action and in vivo role of platelet-derived growth factor. Physiological Reviews, 79(4), 1283–1316.

    CAS  PubMed  Google Scholar 

  67. Lynch, S. E., et al. (1991). The effects of short-term application of a combination of platelet-derived and insulin-like growth factors on periodontal wound healing. Journal of Periodontology, 62(7), 458–467.

    Article  CAS  PubMed  Google Scholar 

  68. Camilleri, J., & Pitt Ford, T. R. (2006). Mineral trioxide aggregate: a review of the constituents and biological properties of the material. International Endodontic Journal, 39(10), 747–754.

    Article  CAS  PubMed  Google Scholar 

  69. Katsamakis, S., et al. (2013). Histological responses of the periodontium to MTA: a systematic review. Journal of Clinical Periodontology, 40(4), 334–344.

    Article  PubMed  Google Scholar 

  70. Ajlan, S.A., et al. (2015). Osteogenic differentiation of dental pulp stem cells under the influence of three different materials. BMC Oral Health, 15(1).

  71. Yasui, T., et al. (2015). Purified human dental pulp stem cells promote osteogenic regeneration. Journal of Dental Research.

  72. de Mendonca Costa, A., et al. (2008). Reconstruction of large cranial defects in nonimmunosuppressed experimental design with human dental pulp stem cells. The Journal of Craniofacial Surgery, 19(1), 204–210.

    Article  PubMed  Google Scholar 

  73. Petridis, X., et al. (2015). Bone regeneration in critical-size calvarial defects using human dental pulp cells in an extracellular matrix-based scaffold. Journal of Cranio-Maxillo-Facial Surgery, 43(4), 483–490.

    Article  PubMed  Google Scholar 

  74. Kuo, T. F., et al. (2015). An in vivo swine study for xeno-grafts of calcium sulfate-based bone grafts with human dental pulp stem cells (hDPSCs). Materials Science & Engineering, C: Materials for Biological Applications, 50, 19–23.

    Article  CAS  Google Scholar 

  75. Kwon, D. Y., et al. (2015). A computer-designed scaffold for bone regeneration within cranial defect using human dental pulp stem cells. Science Reports, 5, 12721.

    Article  CAS  Google Scholar 

  76. Wei, X., et al. (2007). Expression of mineralization markers in dental pulp cells. Journal of Endodontics, 33(6), 703–708.

    Article  PubMed  Google Scholar 

  77. Dai, J., et al. (2012). The effect of co-culturing costal chondrocytes and dental pulp stem cells combined with exogenous FGF9 protein on chondrogenesis and ossification in engineered cartilage. Biomaterials, 33(31), 7699–7711.

    Article  CAS  PubMed  Google Scholar 

  78. Vasandan, A. B., et al. (2014). Functional differences in mesenchymal stromal cells from human dental pulp and periodontal ligament. Journal of Cellular and Molecular Medicine, 18(2), 344–354.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Werle, S.B., et al. (2015). Carious deciduous teeth are a potential source for dental pulp stem cells. Clinical Oral Investigations.

  80. Nemeth, C. L., et al. (2014). Enhanced chondrogenic differentiation of dental pulp stem cells using nanopatterned PEG-GelMA-HA hydrogels. Tissue Engineering Part A, 20(21–22), 2817–2829.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Ibarretxe, G., et al. (2012). Neural crest stem cells from dental tissues: a new hope for dental and neural regeneration. Stem Cells International, 2012, 103503.

    PubMed  PubMed Central  Google Scholar 

  82. Ross, J. J., & Verfaillie, C. M. (2008). Evaluation of neural plasticity in adult stem cells. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 363(1489), 199–205.

    Article  CAS  PubMed  Google Scholar 

  83. Palmer, T. D., et al. (2001). Cell culture. Progenitor cells from human brain after death. Nature, 411(6833), 42–43.

    Article  CAS  PubMed  Google Scholar 

  84. Janebodin, K., et al. (2011). Isolation and characterization of neural crest-derived stem cells from dental pulp of neonatal mice. PloS One, 6(11), e27526.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Sakai, K., et al. (2012). Human dental pulp-derived stem cells promote locomotor recovery after complete transection of the rat spinal cord by multiple neuro-regenerative mechanisms. Journal of Clinical Investigation, 122(1), 80–90.

    CAS  PubMed  Google Scholar 

  86. Nosrat, I. V., et al. (2004). Dental pulp cells provide neurotrophic support for dopaminergic neurons and differentiate into neurons in vitro; implications for tissue engineering and repair in the nervous system. European Journal of Neuroscience, 19(9), 2388–2398.

    Article  PubMed  Google Scholar 

  87. Govindasamy, V., et al. (2010). Inherent differential propensity of dental pulp stem cells derived from human deciduous and permanent teeth. Journal of Endodontics, 36(9), 1504–1515.

    Article  PubMed  Google Scholar 

  88. Osathanon, T., Nowwarote, N., & Pavasant, P. (2011). Basic fibroblast growth factor inhibits mineralization but induces neuronal differentiation by human dental pulp stem cells through a FGFR and PLCgamma signaling pathway. Journal of Cellular Biochemistry, 112(7), 1807–1816.

    Article  CAS  PubMed  Google Scholar 

  89. Kiraly, M., et al. (2009). Simultaneous PKC and cAMP activation induces differentiation of human dental pulp stem cells into functionally active neurons. Neurochemistry International, 55(5), 323–332.

    Article  CAS  PubMed  Google Scholar 

  90. Aanismaa, R., et al. (2012). Human dental pulp stem cells differentiate into neural precursors but not into mature functional neurons. Stem Cell Discovery, 02(03), 85–91.

    Article  CAS  Google Scholar 

  91. Chang, C. C., et al. (2014). Neurogenic differentiation of dental pulp stem cells to neuron-like cells in dopaminergic and motor neuronal inductive media. Journal of the Formosan Medical Association, 113(12), 956–965.

    Article  CAS  PubMed  Google Scholar 

  92. Feng, X., et al. (2013). Age-dependent impaired neurogenic differentiation capacity of dental stem cell is associated with Wnt/beta-catenin signaling. Cellular and Molecular Neurobiology, 33(8), 1023–1031.

    Article  CAS  PubMed  Google Scholar 

  93. Kanafi, M., et al. (2014). Midbrain cues dictate differentiation of human dental pulp stem cells towards functional dopaminergic neurons. Journal of Cellular Physiology, 229(10), 1369–1377.

    Article  CAS  PubMed  Google Scholar 

  94. Feng, X., et al. (2014). 3D porous chitosan scaffolds suit survival and neural differentiation of dental pulp stem cells. Cellular and Molecular Neurobiology, 34(6), 859–870.

    Article  PubMed  Google Scholar 

  95. Martens, W., et al. (2014). Human dental pulp stem cells can differentiate into Schwann cells and promote and guide neurite outgrowth in an aligned tissue-engineered collagen construct in vitro. FASEB Journal, 28(4), 1634–1643.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Kumar, A., Bhattacharyya, S., & Rattan, V. (2015). Effect of uncontrolled freezing on biological characteristics of human dental pulp stem cells. Cell Tissue Bank.

  97. Arthur, A., et al. (2008). Adult human dental pulp stem cells differentiate toward functionally active neurons under appropriate environmental cues. Stem Cells, 26(7), 1787–1795.

    Article  CAS  PubMed  Google Scholar 

  98. Arthur, A., et al. (2009). Implanted adult human dental pulp stem cells induce endogenous axon guidance. Stem Cells, 27(9), 2229–2237.

    Article  CAS  PubMed  Google Scholar 

  99. Karaoz, E., et al. (2011). Human dental pulp stem cells demonstrate better neural and epithelial stem cell properties than bone marrow-derived mesenchymal stem cells. Histochemistry and Cell Biology, 136(4), 455–473.

    Article  PubMed  Google Scholar 

  100. Nesti, C., et al. (2011). Human dental pulp stem cells protect mouse dopaminergic neurons against MPP+ or rotenone. Brain Research, 1367, 94–102.

    Article  CAS  PubMed  Google Scholar 

  101. Dai, J. W., et al. (2013). p75 neurotrophin receptor positive dental pulp stem cells: new hope for patients with neurodegenerative disease and neural injury. Shanghai Kou Qiang Yi Xue, 22(4), 469–472.

    PubMed  Google Scholar 

  102. Sun, H. H., et al. (2014). Investigation of dental pulp stem cells isolated from discarded human teeth extracted due to aggressive periodontitis. Biomaterials, 35(35), 9459–9472.

    Article  CAS  PubMed  Google Scholar 

  103. Favero, M., et al. (2015). Early knee osteoarthritis. RMD Open, 1(Suppl 1), e000062.

    Article  PubMed  PubMed Central  Google Scholar 

  104. Sharma, L. (2016). Osteoarthritis year in review 2015: clinical. Osteoarthritis and Cartilage, 24(1), 36–48.

    Article  CAS  PubMed  Google Scholar 

  105. Khanna, A., Shin, S., & Rao, M. S. (2008). Stem cells for the treatment of neurological disorders. CNS & Neurological Disorders: Drug Targets, 7(1), 98–109.

    Article  CAS  Google Scholar 

  106. Kerkis, I., et al. (2015). Neural and mesenchymal stem cells in animal models of Huntington’s disease: past experiences and future challenges. Stem Cell Research & Therapy, 6, 232.

    Article  Google Scholar 

  107. Yao, Y., et al. (2015). Combined MSC secreted factors and neural stem cell transplantation promote functional recovery of PD rats. Cell Transplantation.

  108. Li, X., et al. (2015). A therapeutic strategy for spinal cord defect: human dental follicle cells combined with aligned PCL/PLGA electrospun material. BioMed Research International, 2015, 197183.

    PubMed  PubMed Central  Google Scholar 

  109. Young, F., Sloan, A., & Song, B. (2013). Dental pulp stem cells and their potential roles in central nervous system regeneration and repair. Journal of Neuroscience Research, 91(11), 1383–1393.

    Article  CAS  PubMed  Google Scholar 

  110. Zhang, R., et al. (2015). Preparation of bionic collagen-heparin sulfate spinal cord scaffold with three-dimensional print technology. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi, 29(8), 1022–1027.

    CAS  PubMed  Google Scholar 

  111. Wust, S., et al. (2014). Tunable hydrogel composite with two-step processing in combination with innovative hardware upgrade for cell-based three-dimensional bioprinting. Acta Biomaterialia, 10(2), 630–640.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Jonathan Garlick and his laboratory members from the Tufts University, School of Dental Medicine.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Corallo.

Ethics declarations

Conflict of Interest

The authors declare no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nuti, N., Corallo, C., Chan, B.M.F. et al. Multipotent Differentiation of Human Dental Pulp Stem Cells: a Literature Review. Stem Cell Rev and Rep 12, 511–523 (2016). https://doi.org/10.1007/s12015-016-9661-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-016-9661-9

Keywords

Navigation