Skip to main content

Advertisement

Log in

Viability of pulp stromal cells in cryopreserved deciduous teeth

  • Original Paper
  • Published:
Cell and Tissue Banking Aims and scope Submit manuscript

Abstract

The cryopreservation of exfoliated deciduous teeth and harvesting of stem cells from them as required would reduce the costs and efforts associated with banking stem cells from primary teeth. The aim of this study was determine whether the viability of pulp stromal cells from deciduous teeth was influenced by the cryopreservation process itself or the period of cryopreservation. In total, 126 deciduous teeth were divided into three groups: (1) fresh, (2) cryopreserved for <3 months (cryo<3), and (3) cryopreserved for 3–9 months (cryo3–9). The viability of the pulp tissues was compared among the three groups by evaluating the outgrowth from pulp tissues and cell activity within those pulp tissues. In addition, the terminal deoxynucleotidyl transferase-mediated dUTP–biotin nick end labeling (TUNEL) assay was performed to compare cell apoptosis within fresh pulp tissue and pulp tissue that had been cryopreserved for 4 months. The outgrowth from and cell activity within the pulp tissues did not differ significantly between the fresh and cryo<3 pulp tissues. However, these parameters were significantly reduced in the cryo3–9 pulp tissue. In TUNEL assay, 4-month cryopreserved pulp tissues has more apoptotic cells than fresh group. In conclusion, it is possible to acquire pulp stromal cells from cryopreserved deciduous teeth. However, as the period of cryopreservation becomes longer, it is difficult to get pulp cells due to reduced cell viability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Arora V, Arora P, Munshi AK (2009) Banking stem cells from human exfoliated deciduous teeth (SHED): saving for the future. J Clin Pediatr Dent 33:289–294

    PubMed  Google Scholar 

  • Bakopoulou A, Leyhausen G, Volk J, Tsiftsoglou A, Garefis P, Koidis P et al (2011) Assessment of the impact of two different isolation methods on the osteo/odontogenic differentiation potential of human dental stem cells derived from deciduous teeth. Calcif Tissue Int 88:130–141

    Article  CAS  PubMed  Google Scholar 

  • Bruder SP, Jaiswal N, Haynesworth SE (1997) Growth kinetics, self-renewal, and the osteogenic potential of purified human mesenchymal stem cells during extensive subcultivation and following cryopreservation. J Cell Biochem 64:278–294

    Article  CAS  PubMed  Google Scholar 

  • Chen YK, Huang AH, Chan AW, Shieh TY, Lin LM (2011) Human dental pulp stem cells derived from different cryopreservation methods of human dental pulp tissues of diseased teeth. J Oral Pathol Med 40:793–800

    Article  PubMed  Google Scholar 

  • Day JG, Stacey G (2007) Cryopreservation and freeze-drying protocols, 2nd edn. Humana Press, Totowa, NJ

    Book  Google Scholar 

  • Domon T, Taniguchi Y, Inoue K, Ushijima N, Taishi Y, Hiramatsu A et al (2008) Apoptosis of odontoclasts under physiological root resorption of human deciduous teeth. Cell Tissue Res 331:423–433

    Article  PubMed  Google Scholar 

  • Fernandez-Aviles F, San Roman JA, Garcia-Frade J, Fernandez ME, Penarrubia MJ, de la Fuente L et al (2004) Experimental and clinical regenerative capability of human bone marrow cells after myocardial infarction. Circ Res 95:742–748

    Article  CAS  PubMed  Google Scholar 

  • Freshney RI (2005) Culture of animal cells: a manual of basic technique, 5th edn. Wiley-Liss, Hoboken, NJ

    Book  Google Scholar 

  • Gay IC, Chen S, MacDougall M (2007) Isolation and characterization of multipotent human periodontal ligament stem cells. Orthod Craniofac Res 10:149–160

    Article  CAS  PubMed  Google Scholar 

  • Gioventu S, Andriolo G, Bonino F, Frasca S, Lazzari L, Montelatici E et al (2012) A novel method for banking dental pulp stem cells. Transfus Apher Sci 47:199–206

    Article  PubMed  Google Scholar 

  • Han B, Bischof JC (2004) Direct cell injury associated with eutectic crystallization during freezing. Cryobiology 48:8–21

    Article  PubMed  Google Scholar 

  • Huang GT, Sonoyama W, Chen J, Park SH (2006) In vitro characterization of human dental pulp cells: various isolation methods and culturing environments. Cell Tissue Res 324:225–236

    Article  PubMed  Google Scholar 

  • Huang CY, Pelaez D, Dominguez-Bendala J, Garcia-Godoy F, Cheung HS (2009) Plasticity of stem cells derived from adult periodontal ligament. Regen Med 4:809–821

    Article  PubMed  Google Scholar 

  • Iohara K, Zheng L, Ito M, Tomokiyo A, Matsushita K, Nakashima M (2006) Side population cells isolated from porcine dental pulp tissue with self-renewal and multipotency for dentinogenesis, chondrogenesis, adipogenesis, and neurogenesis. Stem Cells 24:2493–2503

    Article  CAS  PubMed  Google Scholar 

  • Izumi N, Yoshizawa M, Ono Y, Kobayashi T, Hamamoto Y, Saito C (2007) Periodontal regeneration of transplanted rat teeth subcutaneously after cryopreservation. Int J Oral Maxillofac Surg 36:838–844

    Article  CAS  PubMed  Google Scholar 

  • Jomha NM, Lavoie G, Muldrew K, Schachar NS, McGann LE (2002) Cryopreservation of intact human articular cartilage. J Orthop Res 20:1253–1255

    Article  CAS  PubMed  Google Scholar 

  • Karaoz E, Dogan BN, Aksoy A, Gacar G, Akyuz S, Ayhan S et al (2010) Isolation and in vitro characterisation of dental pulp stem cells from natal teeth. Histochem Cell Biol 133:95–112

    Article  CAS  PubMed  Google Scholar 

  • Kawasaki N, Hamamoto Y, Nakajima T, Irie K, Ozawa H (2004) Periodontal regeneration of transplanted rat molars after cryopreservation. Arch Oral Biol 49:59–69

    Article  PubMed  Google Scholar 

  • Kobylka P, Ivanyi P, Breur-Vriesendorp BS (1998) Preservation of immunological and colony-forming capacities of long-term (15 years) cryopreserved cord blood cells. Transplantation 65:1275–1278

    Article  CAS  PubMed  Google Scholar 

  • Laureys W, Beele H, Cornelissen R, Dermaut L (2001) Revascularization after cryopreservation and autotransplantation of immature and mature apicoectomized teeth. Am J Orthod Dentofacial Orthop 119:346–352

    Article  CAS  PubMed  Google Scholar 

  • Lee SY, Chiang PC, Tsai YH, Tsai SY, Jeng JH, Kawata T et al (2010) Effects of cryopreservation of intact teeth on the isolated dental pulp stem cells. J Endod 36:1336–1340

    Article  PubMed  Google Scholar 

  • Lee SY, Sun CH, Kuo TF, Huang YH, Jeng JH, Yang JC et al (2012) Determination of cryoprotectant for magnetic cryopreservation of dental pulp tissue. Tissue Eng Part C Methods 18:397–407

    Article  CAS  PubMed  Google Scholar 

  • Liseth K, Ersvaer E, Abrahamsen JF, Nesthus I, Ryningen A, Bruserud O (2009) Long-term cryopreservation of autologous stem cell grafts: a clinical and experimental study of hematopoietic and immunocompetent cells. Transfusion 49:1709–1719

    Article  CAS  PubMed  Google Scholar 

  • Mazur P (1984) Freezing of living cells: mechanisms and implications. Am J Physiol 247:C125–C142

    CAS  PubMed  Google Scholar 

  • Min KS, Lee HW, Lee HS, Lee JH, Park SH (2010) Comparison of gene expression in human periodontal ligament cells cultured from teeth immediately after extraction and from teeth cryopreserved for 1 week. Cryobiology 60:326–330

    Article  CAS  PubMed  Google Scholar 

  • Miura M, Gronthos S, Zhao M, Lu B, Fisher LW, Robey PG et al (2003) SHED: stem cells from human exfoliated deciduous teeth. Proc Natl Acad Sci USA 100:5807–5812

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Miyamoto M, Balamurugan AN, Nozawa Y, Sakurai T, Xu B, Yoshimura S et al (2001) Development of a cryopreservation procedure employing a freezer bag for pancreatic islets using a newly developed cryoprotectant. Cell Transplant 10:363–371

    CAS  PubMed  Google Scholar 

  • Mugishima H, Harada K, Chin M, Suzuki T, Takagi K, Hayakawa S et al (1999) Effects of long-term cryopreservation on hematopoietic progenitor cells in umbilical cord blood. Bone Marrow Transplant 23:395–396

    Article  CAS  PubMed  Google Scholar 

  • Muldrew K, Novak K, Studholme C, Wohl G, Zernicke R, Schachar NS et al (2001) Transplantation of articular cartilage following a step-cooling cryopreservation protocol. Cryobiology 43:260–267

    Article  CAS  PubMed  Google Scholar 

  • Nakamura S, Yamada Y, Katagiri W, Sugito T, Ito K, Ueda M (2009) Stem cell proliferation pathways comparison between human exfoliated deciduous teeth and dental pulp stem cells by gene expression profile from promising dental pulp. J Endod 35:1536–1542

    Article  PubMed  Google Scholar 

  • Nishino Y, Yamada Y, Ebisawa K, Nakamura S, Okabe K, Umemura E et al (2011) Stem cells from human exfoliated deciduous teeth (SHED) enhance wound healing and the possibility of novel cell therapy. Cytotherapy 13:598–605

    Article  CAS  PubMed  Google Scholar 

  • Oh YH, Che ZM, Hong JC, Lee EJ, Lee SJ, Kim J (2005) Cryopreservation of human teeth for future organization of a tooth bank—a preliminary study. Cryobiology 51:322–329

    Article  CAS  PubMed  Google Scholar 

  • Perry BC, Zhou D, Wu X, Yang FC, Byers MA, Chu TM et al (2008) Collection, cryopreservation, and characterization of human dental pulp-derived mesenchymal stem cells for banking and clinical use. Tissue Eng Part C Methods 14:149–156

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Price PJ, Cserepfalvi M (1972) Pulp viability and the homotransplantation of frozen teeth. J Dent Res 51:39–43

    Article  CAS  PubMed  Google Scholar 

  • Rodrigues LV, Vasconcelos AC, Campos PA, Brant JM (2009) Apoptosis in pulp elimination during physiological root resorption in human primary teeth. Braz Dent J 20:179–185

    PubMed  Google Scholar 

  • Schwartz O (1986) Cryopreservation as long-term storage of teeth for transplantation or replantation. Int J Oral Maxillofac Surg 15:30–32

    Article  CAS  PubMed  Google Scholar 

  • Schwartz O, Rank CP (1986) Autotransplantation of cryopreserved tooth in connection with orthodontic treatment. Am J Orthod Dentofacial Orthop 90:67–72

    Article  CAS  PubMed  Google Scholar 

  • Schwartz O, Andreasen JO, Greve T (1985) Cryopreservation before replantation of mature teeth in monkeys. (II). Effect of preincubation, different freezing and equilibration rates and endodontic treatment upon periodontal healing. Int J Oral Surg 14:350–361

    Article  CAS  PubMed  Google Scholar 

  • Spath L, Rotilio V, Alessandrini M, Gambara G, De Angelis L, Mancini M et al (2010) Explant-derived human dental pulp stem cells enhance differentiation and proliferation potentials. J Cell Mol Med 14:1635–1644

    Article  CAS  PubMed  Google Scholar 

  • Temmerman L, Beele H, Dermaut LR, Van Maele G, De Pauw GA (2010) Influence of cryopreservation on the pulpal tissue of immature third molars in vitro. Cell Tissue Bank 11:281–289

    Article  PubMed  Google Scholar 

  • Woods EJ, Perry BC, Hockema JJ, Larson L, Zhou D, Goebel WS (2009) Optimized cryopreservation method for human dental pulp-derived stem cells and their tissues of origin for banking and clinical use. Cryobiology 59:150–157

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yang Y, Schumacher A, Liu J, Shi X, Hill WD, Hu TC (2011) Monitoring bone marrow-originated mesenchymal stem cell traffic to myocardial infarction sites using magnetic resonance imaging. Magn Reson Med 65:1430–1436

    Article  PubMed  Google Scholar 

  • Yao S, Pan F, Prpic V, Wise GE (2008) Differentiation of stem cells in the dental follicle. J Dent Res 87:767–771

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang W, Walboomers XF, Shi S, Fan M, Jansen JA (2006) Multilineage differentiation potential of stem cells derived from human dental pulp after cryopreservation. Tissue Eng 12:2813–2823

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by a faculty research grant of Yonsei University College of Dentistry for 2011 (No. 6-2011-0050). There were no competing financial interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jae Ho Lee.

Additional information

Eun Hye Ji and Je Seon Song equally contributed to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ji, E.H., Song, J.S., Kim, SO. et al. Viability of pulp stromal cells in cryopreserved deciduous teeth. Cell Tissue Bank 15, 67–74 (2014). https://doi.org/10.1007/s10561-013-9375-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10561-013-9375-z

Keywords

Navigation