Skip to main content

Advertisement

Log in

A comparison of the in vitro mineralisation and dentinogenic potential of mesenchymal stem cells derived from adipose tissue, bone marrow and dental pulp

  • Original Article
  • Published:
Journal of Bone and Mineral Metabolism Aims and scope Submit manuscript

Abstract

Stem-cell-based therapies provide a biological basis for the regeneration of mineralised tissues. Stem cells isolated from adipose tissue (ADSCs), bone marrow (BMSCs) and dental pulp (DPSCs) have the capacity to form mineralised tissue. However, studies comparing the capacity of ADSCs with BMSCs and DPSCs for mineralised tissue engineering are lacking, and their ability to regenerate dental tissues has not been fully explored. Characterisation of the cells using fluorescence-activated cell sorting and semi-quantitative reverse transcription PCR for MSC markers indicated that they were immunophenotypically similar. Alizarin red (AR) staining and micro-computed tomography (µCT) analyses demonstrated that the osteogenic potential of DPSCs was significantly greater than that of BMSCs and ADSCs. Scanning electron microscopy and AR staining showed that the pattern of mineralisation in DPSC cultures differed from ADSCs and BMSCs, with DPSC cultures lacking defined mineralised nodules and instead forming a diffuse layer of low-density mineral. Dentine matrix components (DMCs) were used to promote dentinogenic differentiation. Their addition to cultures resulted in increased amounts of mineral deposited in all three cultures and significantly increased the density of mineral deposited in BMSC cultures, as determined by µCT analysis. Addition of DMCs also increased the relative gene expression levels of the dentinogenic markers dentine sialophosphoprotein and dentine matrix protein 1 in ADSC and BMSC cultures. In conclusion, DPSCs show the greatest potential to produce a comparatively high volume of mineralised matrix; however, both dentinogenesis and mineral volume was enhanced in ADSC and BMSC cultures by DMCs, suggesting that these cells show promise for regenerative dental therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Shi S, Bartold PM, Miura M, Seo BM, Robey PG, Gronthos S (2005) The efficacy of mesenchymal stem cells to regenerate and repair dental structures. Orthod Craniofac Res 8:191–199

    Article  CAS  PubMed  Google Scholar 

  2. Alfotawei R, Naudi KB, Lappin D, Barbenel J, Di Silvio L, Hunter K, McMahon J, Avoub A (2014) The use of TriCalcium phosphate (TCP) and stem cells for the regeneration of osteoperiosteal critical-size mandibular bony defects, an in vitro and preclinical study. J Craniomaxillofac Surg. doi:10.1016/j.jcms.2013.12.006

  3. Lin Y, Luo E, Chen X, Liu L, Qiao J, Yan Z, Li Z, Tang W, Zheng X, Tian W (2005) Molecular and cellular characterization during chondrogenic differentiation of adipose tissue-derived stromal cells in vitro and cartilage formation in vivo. J Cell Mol Med 9:929–939

    Article  CAS  PubMed  Google Scholar 

  4. Liu TM, Martina M, Hutmacher DW, Hui JH, Lee EH, Lim B (2007) Identification of common pathways mediating differentiation of bone marrow- and adipose tissue-derived human mesenchymal stem cells into three mesenchymal lineages. Stem Cells 25:750–760

    Article  PubMed  Google Scholar 

  5. Zuk PA, Zhu M, Mizuno H, Huang J, Futrell JW, Katz AJ (2001) Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng 7:211–228

    Article  CAS  PubMed  Google Scholar 

  6. Owen M, Friedenstein AJ (1988) Stromal stem cells: marrow-derived osteogenic precursors. Ciba Found Symp 136:42–60

    CAS  PubMed  Google Scholar 

  7. Gronthos S, Mankani M, Brahim J, Robey PG, Shi S (2000) Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proc Natl Acad Sci USA 97:13625–13630

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Nakashima M, Mizunuma K, Murakami T, Akamine A (2002) Induction of dental pulp stem cell differentiation into odontoblasts by electroporation-mediated gene delivery of growth/differentiation factor 11 (GDF11). Gene Ther 9:814–818

    Article  CAS  PubMed  Google Scholar 

  9. Wu L, Zhu F, Wu Y, Lin Y, Nie X, Jing W, Qiao J, Liu L, Tang W, Zheng X, Tian W (2008) Dentin sialophosphoprotein-promoted mineralisation and expression of odontogenic genes in adipose-derived stromal cells. Cells Tissues Organs 187:103–112

    Article  CAS  PubMed  Google Scholar 

  10. Prescott RS, Alsanea R, Fayad MI, Johnson BR, Wenckus CS, Hao J, John AS, George A (2008) In vivo generation of dental pulp-like tissue by using dental pulp stem cells, a collagen scaffold and dentine matrix protein 1 after subcutaneous transplantation in mice. J Endod 34:4216

    Article  Google Scholar 

  11. Lei G, Yu Y, Jiang Y, Wang S, Yan M, Smith AJ (2013) Differentiation of BMMSCs into odontoblast-like cells induced by natural dentine matrix. Arch Oral Biol 58:862–870

    Article  CAS  PubMed  Google Scholar 

  12. Smith AJ, Tobias RS, Plant CG, Browne RM, Lesot H, Ruch JV (1990) In vivo morphogenetic activity of dentine matrix proteins. J Biol Buccale 18:123–129

    CAS  PubMed  Google Scholar 

  13. Smith AJ, Tobias RS, Cassidy N, Plant CG, Browne RM, Begue-Kirn C, Ruch JV, Lesot H (1994) Odontoblast stimulation in ferrets by dentine matrix components. Arch Oral Biol 39:13–22

    Article  CAS  PubMed  Google Scholar 

  14. Smith AJ, Scheven BA, Takahashi Y, Ferracane JL, Shelton RM, Cooper PR (2012) Dentine as a bioactive extracellular matrix. Arch Oral Biol 57:109–121

    Article  CAS  PubMed  Google Scholar 

  15. Liu J, Jin T, Ritchie H, Smith AJ, Clarkson BH (2005) In vitro differentiation and mineralisation of human dental pulp cells induced by dentin extract. In Vitro Cell Dev Biol Anim 41:232–238

    Article  PubMed  Google Scholar 

  16. Chun SY, Lee HJ, Choi YA, Kim KM, Baek SH, Park HS, Kim JY, Ahn JM, Cho JY, Cho DW, Shin HI, Park EK (2011) Analysis of the soluble human tooth proteome and its ability to induce dentin/tooth regeneration. Tissue Eng Part A 17:181–191

    Article  CAS  PubMed  Google Scholar 

  17. Yu Y, Wang L, Yu J, Lei G, Yan M, Smith G, Cooper PR, Tang C, Zhang G, Smith AJ (2014) Dentin matrix proteins (DMPs) enhance differentiation of BMMSCs via ERK and p38 MAPK pathways. Cell Tissue Res 356(1):171–182. doi:10.1007/s00441-013-1790-8

  18. Schaffler A, Buchler C (2007) Concise review: adipose tissue-derived stromal cells–basic and clinical implications for novel cell-based therapies. Stem Cells 25:818–827

    Article  PubMed  Google Scholar 

  19. Patel M, Smith AJ, Sloan AJ, Smith G, Cooper PR (2009) Phenotype and behaviour of dental pulp cells during expansion culture. Arch Oral Biol 54:898–908

    Article  CAS  PubMed  Google Scholar 

  20. Clarke PR, Williams HI (1975) Ossification of extradural fat in Paget’s disease of the spine. Br J Surg 62:571–572

    Article  CAS  PubMed  Google Scholar 

  21. Shackelford GD, Barton LL, Mcalister WH (1975) Calcified subcutaneous fat necrosis in infancy. J Can Assoc Radiol 26:203–207

    CAS  PubMed  Google Scholar 

  22. Zaminy A, Ragerdi Kashani I, Barbarestani M, Hedayatpour A, Mahmoudi R, Farzaneh NEJADA (2008) Osteogenic differentiation of rat mesenchymal stem cells from adipose tissue in comparison with bone marrow mesenchymal stem cells: melatonin as a differentiation factor. Iran Biomed J 12:133–141

    CAS  PubMed  Google Scholar 

  23. Hayashi O, Katsubi Y, Hirose M, Ohgushi H, Ito H (2008) Comparison of osteogenic ability of rat mesenchymal stem cells from bone marrow, periosteum, and adipose tissue. Calcif Tissue Int 82:238–247

    Article  CAS  PubMed  Google Scholar 

  24. De Ugarte DA, Morizono K, Elbarbary A, Alfonso Z, Zuk PA, Zhu M (2003) Comparison of multi-lineage cells from human adipose tissue and bone marrow. Cells Tissues Organs 174:101–109

    Article  PubMed  Google Scholar 

  25. Izadpanah R, Trygg C, Patel B, Kriedt C, Dufour J, Gimble JM, Bunnell BA (2006) Biologic properties of mesenchymal stem cells derived from bone marrow and adipose tissue. J Cell Biochem 99:1285–1297

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Ferro F, Spelat R, Falini G, Gallelli A, D’Aurizio F, Puppato E, Ambesi-Impiombato FS, Curcio F (2011) Adipose tissue-derived stem cell in vitro differentiation in a three-dimensional dental bud structure. Am J Pathol 178:2299–2310

    Article  PubMed Central  PubMed  Google Scholar 

  27. Hung CN, Mar K, Chang HC, Chiang YL, Hu HY, Lai CC, Chu RM, Ma CM (2011) A comparison between adipose tissue and dental pulp as sources of MCSs for tooth regeneration. Biomaterials 32:6995–7005

    Article  CAS  PubMed  Google Scholar 

  28. Zuk PA, Zhu M, Ashjian P, De Ugarte DA, Huang JI, Mizuno H (2002) Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell 13:4279–4295

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Soleimani M, Nadri S (2009) A protocol for isolation and culture of mesenchymal stem cells from mouse bone marrow. Nat Protoc 4:102–106

    Article  CAS  PubMed  Google Scholar 

  30. Gronthos S, Li W, Fisher LW, Cherman N, Boyde A (2002) Stem cell properties of human dental pulp stem cells. J Dent Res 81:531–535

    Article  CAS  PubMed  Google Scholar 

  31. Chung MT, Liu C, Hyun JS, Lo DD, Montoro DT, Hasegawa M, Li S, Sorkin M, Rennert R, Keeney M, Yang F, Quarto N, Longaker MT, Wan DC (2013) CD90 (Thy-1)-positive selection enhances osteogenic capacity of human adipose-derived stromal cells. Tissue Eng Part A 19:989–997

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Gregory CA, Gunn WG, Peister A, Prockop DJ (2004) An alizarin red-based assay of mineralisation by adherent cells in culture: comparison with cetylpyridinium chloride extraction. Anal Biochem 1:77–84

    Article  Google Scholar 

  33. Holager J (1970) Thermogravimetric examination of enamel and dentin. J Dent Res 49:546–548

    Article  CAS  PubMed  Google Scholar 

  34. Lim JJ, Liboff AR (1972) Thermogravimetric analysis of dentin. J Dent Res 51:509–514

    Article  CAS  PubMed  Google Scholar 

  35. Chen X, Lam YM (1997) Technical note: CT determination of the mineral density of dry bone specimens using the dipotassium phosphate phantom. Am J Phys Anthropol 103:557–560

    Article  CAS  PubMed  Google Scholar 

  36. Nazarian A, Snyder BD, Zurakowski D, Muller R (2008) Quantitated micro-computed tomography: a non-invasive method to assess equivalent bone mineral density. Bone 43:302–311

    Article  PubMed  Google Scholar 

  37. Smith AJ, Leaver AG (1981) Distribution of the EDTA-soluble non-collagenous organic matrix components of rabbit incisor dentine. Arch Oral Biol 26:643–649

    Article  CAS  PubMed  Google Scholar 

  38. Smith AJ, Smith G (1984) Proteolytic activity of rabbit incisor dentine. Archs Oral Biol 29:1049–1050

    Article  CAS  Google Scholar 

  39. Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8:315–317

    Article  CAS  PubMed  Google Scholar 

  40. Bruder SP, Kurth AA, Shea M, Hayes WC, Jaiswal N, Kadiyala S (1998) Bone regeneration by implantation of purified, culture-expanded mesenchymal stem cells. J Orthop Res 16:155–162

    Article  CAS  PubMed  Google Scholar 

  41. Kim HP, Ji YH, Rhee SC, Dhong ES, Park SH, Yoon ES (2012) Enhancement of bone regeneration using osteogenic-induced adipose-derived stem cells combined with demineralised bone matrix in a rat critically-sized calvarial defect model. Curr Stem Cell Res Ther 7:165–172

    Article  CAS  PubMed  Google Scholar 

  42. Kanafi MM, Ramesh A, Gupta PK, Bhonde RR (2013) Dental pulp stem cells immobilized in alginate microspheres in bone tissue engineering. Int Endod J. doi:10.1111/iej.12205

  43. Caplan AI (2005) Mesenchymal stem cells: cell-based reconstructive therapy. Tissue Eng 11:7–8

    Article  Google Scholar 

  44. Boxall SA, Jones E (2012) Markers for characterisation of bone marrow multipotent stromal cells. Stem Cells Int. doi:10.1155/2012/975871

  45. Herbertson A, Aubin JE (1997) Cell sorting enriches osteogenic populations in rat bone marrow stromal cell cultures. Bone 21:491–500

    Article  CAS  PubMed  Google Scholar 

  46. Mollet M, Godoy-Silva R, Berdugo C, Chalmers JJ (2008) Computer simulations of the energy dissipation rate in a fluorescence-activated cell sorter: implications to cells. Biotechnol Bioeng 100:260–272

    Article  CAS  PubMed  Google Scholar 

  47. Harting M, Jimenez F, Pati S, Baumgartner J, Cox C (2008) Immunophenotype characterisation of rat mesenchymal stromal cells. Cytotherapy 10:243–253

    Article  CAS  PubMed  Google Scholar 

  48. Panchon-Pena G, Yu G, Tucker A, Wu X, Vendrell J, Bunnell BA, Gimble JM (2011) Stromal stem cells from adipose tissue and bone marrow of age-matched female donors display distinct immunophenotypic profiles. J Cello Physiol 226:843–851

    Article  Google Scholar 

  49. De Cuevas M, Matunis EL (2011) The stem cell niche: lessons from the Drosophila testis. Development 138:2861–2869

    Article  PubMed Central  PubMed  Google Scholar 

  50. Kern S, Eichler H, Stoeve J, Kluter H, Bieback K (2006) Comparative analysis of mesenchymal stem cells bone marrow, umbilical cord blood, or adipose tissue. Stem Cells 24:1294–1301

    Article  CAS  PubMed  Google Scholar 

  51. Strioga M, Viswanathan S, Darinskas A, Slaby O, Michalek J (2012) Same or not the same? Comparison of adipose tissue-derived versus bone marrow-derived mesenchymal stem and stromal cells. Stem Cells Dev 20:2724–2752

    Article  Google Scholar 

  52. Gough JE, Jones JR, Hench LL (2004) Nodule formation and mineralisation of human primary osteoblasts cultured on a porous bioactive glass scaffold. Biomaterials 25:2039–2046

    Article  CAS  PubMed  Google Scholar 

  53. Balic A, Mina M (2010) Characterization of progenitor cells in pulps of murine incisors. J Dent Res 89:1287–1292

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  54. Ito K, Yamada Y, Nakamura S, Ueda M (2011) Osteogenic potential of effective bone engineering using dental pulp stem cells, bone marrow stem cells and periosteal cells for osseointegration of dental implants. Int J Oral Maxillofac Implants 26:94754

    Google Scholar 

  55. Begue-Kirn C, Smith AJ, Ruch JV, Wozney JM, Purchio A, Hartmann D, Lesot H (1992) Effects of dentin proteins, transforming growth factor beta 1 (TGF beta 1) and bone morphogenetic protein 2 (BMP2) on the differentiation of odontoblasts in vitro. Int J Dev Biol 36:491–503

    CAS  PubMed  Google Scholar 

  56. Butler WT, Brunn JC, Qin C (2003) Dentin extracellular matrix (ECM) proteins: comparison to bone ECM and contribution to dynamics of dentinogenesis. Connect Tissue Res 44:171–178

    Article  CAS  PubMed  Google Scholar 

  57. Goldberg M, Smith AJ (2004) Cells and extracellular matrices of dentin and pulp: a biological basis for repair and tissue engineering. Crit Rev Oral Biol Med 15:13–27

    Article  PubMed  Google Scholar 

  58. Henning T, Lorenz H, Thiel A, Goetzke K, Dickhut A, Gieger F, Richter W (2007) Reduced chondrogenic potential of adipose tissue derived stromal cells correlates with an altered TGFbeta receptor and BMP profile and is overcome by BMP-6. J Cell Physiol 211:682–691

    Article  Google Scholar 

  59. Kumar A, Ruan M, Clifton K, Syed F, Khosla S, Oursler MJ (2012) TGF-β mediates suppression of adipogenesis by estradiol through connective tissue growth factor induction. Endocrinology 153:254–263

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  60. Ruan H, Hacohen N, Golub TR, Van Parijs L, Lodish HF (2002) Tumor necrosis factor-alpha suppresses adipocyte-specific genes and activates expression of preadipocyte genes in 3T3-L1 adipocytes: nuclear factor-kappaB activation by TNF-alpha is obligatory. Diabetes 51:1319–1336

    Article  CAS  PubMed  Google Scholar 

  61. Suzawa M, Takada I, Yanagisawa J, Ohtake F, Ogawa S, Yamauchi T, Kadowaki T, Takeuchi Y, Shibuya H, Gotoh Y, Matsumoto K, Kato S (2003) Cytokines suppress adipogenesis and PPAR-gamma function through the TAK1/TAKB1/NIK cascade. Nat Cell Biol 5:224–230

    Article  CAS  PubMed  Google Scholar 

  62. Graham L, Cooper PR, Cassidy N, Nor JE, Sloan AJ, Smith AJ (2006) The effect of calcium hydroxide on solubilisation of bio-active dentine matrix components. Biomaterials 27:2865–2873

  63. Cooper PR, Takahashi Y, Graham LW, Simon S, Imazato S, Smith AJ (2010) Inflammation-regeneration interplay in the dentine-pulp complex. J Dent 38:687–697

    Article  CAS  PubMed  Google Scholar 

  64. Finkelman RD, Mohan S, Jennings JC, Taylor AK, Jepsen S, Baylink DJ (1990) Quantitation of growth factors IGF-I, SGF/IGF-II, and TGF-beta in human dentin. J Bone Miner Res 5:717–723

    Article  CAS  PubMed  Google Scholar 

  65. Roberts-Clark DJ, Smith AJ (2000) Angiogenic growth factors in human dentine matrix. Arch Oral Biol 45:1013–1016

    Article  CAS  PubMed  Google Scholar 

  66. Levi B, James AW, Wan DC, Glotzback JP, Commons GW, Longaker MT (2010) Regulation of human adipose-derived stromal cell osteogenic differentiation by insulin-like growth factor-1 and platelet-derived growth factor-alpha. Plast Reconstr Surg 126:41–52

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  67. Garcia JM, Martins MD, Jaeger RG, Marques MM (2003) Immunolocalisation of bone extracellular matrix proteins (type I collagen, osteonectin and bone sialoprotein) in human dental pulp and cultured pulp cells. Int Endod J 36:404–410

    Article  CAS  PubMed  Google Scholar 

  68. Qin C, D’Souza R, Feng JQ (2007) Dentin matrix protein 1 (DMP1): new and important roles for biomineralisation and phosphate homeostasis. J Dent Res 86:1134–1141

    Article  CAS  PubMed  Google Scholar 

  69. Tang SY, Allison T (2013) Regulation of postnatal bone homeostasis by TGFβ. Bonekey Rep 9:255

    Google Scholar 

Download references

Acknowledgments

This study was supported by a University of Birmingham PhD award (Mr O. Davies).

Conflict of interest

The authors have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. G. Davies.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Davies, O.G., Cooper, P.R., Shelton, R.M. et al. A comparison of the in vitro mineralisation and dentinogenic potential of mesenchymal stem cells derived from adipose tissue, bone marrow and dental pulp. J Bone Miner Metab 33, 371–382 (2015). https://doi.org/10.1007/s00774-014-0601-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00774-014-0601-y

Keywords

Navigation