Skip to main content

Plant Adaptation to Environmental Stress: Drought, Chilling, Heat, and Salinity

  • Chapter
  • First Online:
Environment and Climate-smart Food Production

Abstract

Climatic change is often manifested as changes in the intensity, frequency, and extent of abnormally low or high thresholds of factors such as temperature, precipitation, radiation, and concentrations of atmospheric gases. These changes will eventually extend to a state where it will be difficult to ameliorate the impact of those factors in agricultural crop production. It is ideal for outlining adapting mechanisms of plants as that could be magnified via means of genetic improvement or gradual breeding for lines that can fairly adapt to the changing environmental conditions. This chapter aims to advance the understanding of the ability of plants to adapt to extreme conditions or to react to sudden changes in their environment. The chapter outlines the mechanisms used by plants to sense and signal abiotic stresses, morphological and physiological changes that take place in plants as they adapt to stressful conditions, and the associated alterations in metabolic and biological reactions. Findings demonstrated that the adaptation of plants to stressing environment results from complex biological reactions including changes in morphological characteristics (roots, leaves, reproductive and cellular structures), physiological processes (respiration, transpiration, and photosynthesis) and metabolism (production of metabolites such as proline, abscisic acid, sugars, stress-specific enzymes, and proteins). Plant breeding and genetic modification research fields currently have wide parameters to target for improving plant adaptation to stress conditions. However, the success in the introduction of adaptive commercial crops is likely suppressed by supplemental cultivation techniques that are usually used in optimal production for profits.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abebe, T., Guenzi, A. C., Martin, B., & Cushman, J. C. (2003). Tolerance of mannitol-accumulating transgenic wheat to water stress and salinity. Plant Physiology, 131(4), 1748–1755.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Agarwal, P. K., & Jha, B. (2010). Transcription factors in plants and ABA dependent and independent abiotic stress signaling. Biologia Plantarum, 54(2), 201–212.

    Article  CAS  Google Scholar 

  • Aharon, G. S., Apse, M. P., Duan, S., Hua, X., & Blumwald, E. (2003). Characterization of a family of vacuolar Na+/H+ antiporters in Arabidopsis thaliana. Plant and Soil, 253(1), 245–256.

    Article  CAS  Google Scholar 

  • Airaki, M., Leterrier, M., Mateos, R. M., Valderrama, R., Chaki, M., Barroso, J. B., Del Rio, L. A., Palma, J. M., & Corpas, F. J. (2012). Metabolism of reactive oxygen species and reactive nitrogen species in pepper (Capsicum annuum L.) plants under low temperature stress. Plant, Cell & Environment, 35(2), 281–295.

    Article  CAS  Google Scholar 

  • Akyurt, M., Zaki, G., & Habeebullah, B. (2002). Freezing phenomena in ice–water systems. Energy Conversion and Management, 43(14), 1773–1789.

    Article  CAS  Google Scholar 

  • Al-Kandari, M., Redha, A., & Suleman, P. (2009). Polyamine accumulation and osmotic adjustment as adaptive responses to water and salinity stress in Conocarpus lancifolius. Functional Plant Science and Biotechnology, 3(1), 42–48.

    Google Scholar 

  • Almeselmani, M., Deshmukh, P. S., & Chinnusamy, V. (2012). Effects of prolonged high temperature stress on respiration, photosynthesis and gene expression in wheat (Triticum aestivum L.) varieties differing in their thermotolerance. Plant Stress, 6(1), 25–32.

    Google Scholar 

  • Amthor, J. S. (2012). Respiration and crop productivity (pp. 105–137). Springer.

    Google Scholar 

  • Anh, T. P. T., Borrel-Flood, C., da Silva, J. V., Justin, A. M., & Mazliak, P. (1985). Effects of water stress on lipid metabolism in cotton leaves. Phytochemistry, 24(4), 723–727.

    Article  Google Scholar 

  • Ashraf, M. (2010). Inducing drought tolerance in plants: Recent advances. Biotechnology Advances, 28(1), 169–183.

    Article  CAS  PubMed  Google Scholar 

  • Ashraf, M., & Bashir, A. (2003). Salt stress induced changes in some organic metabolites and ionic relations in nodules and other plant parts of two crop legumes differing in salt tolerance. Flora, 198(6), 486.

    Article  Google Scholar 

  • Bailey-Serres, J., & Voesenek, L. A. C. J. (2008). Flooding stress: Acclimations and genetic diversity. Annual Review of Plant Biology, 59, 313–339.

    Article  CAS  PubMed  Google Scholar 

  • Barathi, P., Sundar, D., & Reddy, A. R. (2001). Changes in mulberry leaf metabolism in response to water stress. Biologia Plantarum, 44(1), 83–87.

    Article  CAS  Google Scholar 

  • Baxter, A., Mittler, R., & Suzuki, N. (2014). ROS as key players in plant stress signaling. Journal of Experimental Botany, 65(5), 1229–1240.

    Article  CAS  PubMed  Google Scholar 

  • Benjamin, J. G., & Nielsen, D. C. (2006). Water deficit effects on root distribution of soybean, field pea and chickpea. Field Crops Research, 97(2–3), 248–253.

    Article  Google Scholar 

  • Berthomieu, P., Conéjéro, G., Nublat, A., Brackenbury, W. J., Lambert, C., Savio, C., Uozumi, N., Oiki, S., Yamada, K., Cellier, F., & Gosti, F. (2003). Functional analysis of AtHKT1 in Arabidopsis shows that Na + recirculation by the phloem is crucial for salt tolerance. The EMBO Journal, 22(9), 2004–2014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bijanzadeh, E., & Emam, Y. (2012). Evaluation of assimilate remobilization and yield of wheat cultivars under different irrigation regimes in an arid climate. Archives of Agronomy and Soil Science, 58(11), 1243–1259.

    Article  Google Scholar 

  • Blum, A., & Sullivan, C. Y. (1997). The effect of plant size on wheat response to agents of drought stress I. Root drying. Functional Plant Biology, 24(1), 35–41.

    Article  Google Scholar 

  • Caldwell, M. M., Dawson, T. E., & Richards, J. H. (1998). Hydraulic lift: Consequences of water efflux from the roots of plants. Oecologia, 113(2), 151–161.

    Article  PubMed  Google Scholar 

  • Chaki, M., Valderrama, R., Fernández-Ocaña, A. M., Carreras, A., Gómez-Rodríguez, M. V., López-Jaramillo, J. A. V. I. E. R., Begara-Morales, J. C., Sánchez-Calvo, B. E. A. T. R. I. Z., Luque, F., Leterrier, M., & Corpas, F. J. (2011). High temperature triggers the metabolism of S-nitrosothiols in sunflower mediating a process of nitrosative stress which provokes the inhibition of ferredoxin–NADP reductase by tyrosine nitration. Plant, Cell & Environment, 34(11), 1803–1818.

    Article  CAS  Google Scholar 

  • Chaves, M. M., Costa, J. M., Zarrouk, O., Pinheiro, C., Lopes, C. M., & Pereira, J. S. (2016). Controlling stomatal aperture in semi-arid regions—The dilemma of saving water or being cool? Plant Science, 251, 54–64.

    Article  CAS  PubMed  Google Scholar 

  • Cheeseman, J. M. (1988). Mechanisms of salinity tolerance in plants. Plant Physiology, 87(3), 547–550.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chérel, I., Lefoulon, C., Boeglin, M., & Sentenac, H. (2014). Molecular mechanisms involved in plant adaptation to low K+ availability. Journal of Experimental Botany, 65(3), 833–848.

    Article  PubMed  CAS  Google Scholar 

  • Chinnusamy, V., & Zhu, J. K. (2009). Epigenetic regulation of stress responses in plants. Current Opinion in Plant Biology, 12(2), 133–139.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chu, T., Aspinall, D., & Paleg, L. G. (1974). Stress metabolism. VI.* Temperature stress and the accumulation of proline in barley and radish. Functional Plant Biology, 1(1), 87–97.

    Article  CAS  Google Scholar 

  • Crifò, T., Puglisi, I., Petrone, G., Recupero, G. R., & Piero, A. R. L. (2011). Expression analysis in response to low temperature stress in blood oranges: Implication of the flavonoid biosynthetic pathway. Gene, 476(1–2), 1–9.

    Article  PubMed  CAS  Google Scholar 

  • De Micco, V., & Aronne, G. (2012). Morpho-anatomical traits for plant adaptation to drought. In Plant responses to drought stress (pp. 37–61). Berlin/Heidelberg: Springer.

    Chapter  Google Scholar 

  • Downes, R. W. (1969). Differences in transpiration rates between tropical and temperate grasses under controlled conditions. Planta, 88(3), 261–273.

    Article  CAS  PubMed  Google Scholar 

  • Durand, M., & Lacan, D. (1994). Sodium partitioning within the shoot of soybean. Physiologia Plantarum, 91(1), 65–71.

    Article  CAS  Google Scholar 

  • Farooq, M., Bramley, H., Palta, J. A., & Siddique, K. H. (2011). Heat stress in wheat during reproductive and grain-filling phases. Critical Reviews in Plant Sciences, 30(6), 491–507.

    Article  Google Scholar 

  • Fathi, H., Imani, A., Amiri, M. E., Hajilou, J., & Nikbakht, J. (2017). Response of almond genotypes/cultivars grafted on GN15 ‘Garnem’ rootstock in deficit-irrigation Stress Conditions. Journal of Nuts, 8(02), 123–135.

    CAS  Google Scholar 

  • Fortmeier, R., & Schubert, S. (1995). Salt tolerance of maize (Zea mays L.): The role of sodium exclusion. Plant, Cell & Environment, 18(9), 1041–1047.

    Article  CAS  Google Scholar 

  • Ge, T. D., Sui, F. G., Bai, L. P., Lu, Y. Y., & Zhou, G. S. (2006). Effects of water stress on the protective enzyme activities and lipid peroxidation in roots and leaves of summer maize. Agricultural Sciences in China, 5(4), 291–298.

    Article  Google Scholar 

  • Ghassemi-Golezani, K., Ghanehpoor, S., & Dabbagh Mohammadi-Nasab, A. (2009). Effects of water limitation on growth and grain filling of faba bean cultivars. Journal of Food, Agriculture and Environment, 7(3), 442–447.

    Google Scholar 

  • Ghooshchi, F., Seilsepour, M., & Jafari, P. (2008). Effects of water stress on yield and some agronomic traits of maize (SC 301). American-Eurasian Journal of Agricultural and Environmental Sciences, 4(3), 302–305.

    Google Scholar 

  • Greaves, G. E., & Wang, Y. M. (2017). Yield response, water productivity, and seasonal water production functions for maize under deficit irrigation water management in southern Taiwan. Plant Production Science, 20(4), 353–365.

    Article  Google Scholar 

  • Guo, P., Baum, M., Grando, S., Ceccarelli, S., Bai, G., Li, R., Von Korff, M., Varshney, R. K., Graner, A., & Valkoun, J. (2009). Differentially expressed genes between drought-tolerant and drought-sensitive barley genotypes in response to drought stress during the reproductive stage. Journal of Experimental Botany, 60(12), 3531–3544.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo, R., Yang, Z., Li, F., Yan, C., Zhong, X., Liu, Q., Xia, X., Li, H., & Zhao, L. (2015). Comparative metabolic responses and adaptive strategies of wheat (Triticum aestivum) to salt and alkali stress. BMC Plant Biology, 15(1), 170.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gupta, A. K., & Kaur, N. (2005). Sugar signaling and gene expression in relation to carbohydrate metabolism under abiotic stresses in plants. Journal of Biosciences, 30(5), 761–776.

    Article  CAS  PubMed  Google Scholar 

  • Gutierrez, M., Sola, M., Pascual, L., Rodriguez-Garcia, M. I., & Vargas, A. M. (1992). Ultrastructural changes in cherimoya fruit injured by chilling. Food structure, 11(4), 4.

    Google Scholar 

  • Hasegawa, P. M. (2013). Sodium (Na+) homeostasis and salt tolerance of plants. Environmental and Experimental Botany, 92, 19–31.

    Article  CAS  Google Scholar 

  • Hays, D. B., Do, J. H., Mason, R. E., Morgan, G., & Finlayson, S. A. (2007). Heat stress induced ethylene production in developing wheat grains induces kernel abortion and increased maturation in a susceptible cultivar. Plant Science, 172(6), 1113–1123.

    Article  CAS  Google Scholar 

  • Heidari-Sharifabad, H., & Mirzaie-Nodoushan, H. (2006). Salinity-induced growth and some metabolic changes in three Salsola species. Journal of arid environments, 67(4), 715–720.

    Article  Google Scholar 

  • Hey, S. J., Byrne, E., & Halford, N. G. (2009). The interface between metabolic and stress signaling. Annals of Botany, 105(2), 197–203.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hoogenboom, G., Huck, M. G., & Peterson, C. M. (1987). Root growth rate of soybean as affected by drought stress 1. Agronomy Journal, 79(4), 607–614.

    Article  Google Scholar 

  • Jalkanen, K. J., Elstner, M., & Suhai, S. (2004). Amino acids and small peptides as building blocks for proteins: Comparative theoretical and spectroscopic studies. Journal of Molecular Structure: THEOCHEM, 675(1–3), 61–77.

    Article  CAS  Google Scholar 

  • Jayakannan, M., Bose, J., Babourina, O., Rengel, Z., & Shabala, S. (2015). Salicylic acid in plant salinity stress signaling and tolerance. Plant Growth Regulation, 76(1), 25–40.

    Article  CAS  Google Scholar 

  • Jiang, Y., & Huang, B. (2001). Drought and heat stress injury to two cool-season turfgrasses in relation to antioxidant metabolism and lipid peroxidation. Crop Science, 41(2), 436–442.

    Article  CAS  Google Scholar 

  • Jiang, Y., & Huang, B. (2002). Protein alterations in tall fescue in response to drought stress and abscisic acid. Crop Science, 42(1), 202–207.

    Article  CAS  PubMed  Google Scholar 

  • Jiang, Y., Lahlali, R., Karunakaran, C., Kumar, S., Davis, A. R., & Bueckert, R. A. (2015). Seed set, pollen morphology and pollen surface composition response to heat stress in field pea. Plant, Cell & Environment, 38(11), 2387–2397.

    Article  CAS  Google Scholar 

  • Jouve, L., Hoffmann, L., & Hausman, J. F. (2004). Polyamine, carbohydrate, and proline content changes during salt stress exposure of aspen (Populus tremula L.): Involvement of oxidation and osmoregulation metabolism. Plant Biology, 7(01), 74–80.

    Google Scholar 

  • Jumrani, K., & Bhatia, V. S. (2014). Impact of elevated temperatures on growth and yield of chickpea (Cicer arietinum L.). Field Crops Research, 164, 90–97.

    Article  Google Scholar 

  • Kadioglu, A., & Terzi, R. (2007). A dehydration avoidance mechanism: Leaf rolling. The Botanical Review, 73(4), 290–302.

    Article  Google Scholar 

  • Kerepesi, I., & Galiba, G. (2000). Osmotic and salt stress-induced alteration in soluble carbohydrate content in wheat seedlings. Crop Science, 40(2), 482–487.

    Article  CAS  Google Scholar 

  • Kim, K. S., Park, S. H., & Jenks, M. A. (2007). Changes in leaf cuticular waxes of sesame (Sesamum indicum L.) plants exposed to water deficit. Journal of Plant Physiology, 164(9), 1134–1143.

    Article  CAS  PubMed  Google Scholar 

  • Landrum, J. V. (2002). Four succulent families and 40 million years of evolution and adaptation to xeric environments: What can stem and leaf anatomical characters tell us about their phylogeny? Taxon, 51(3), 463–473.

    Article  Google Scholar 

  • Lecourieux, D., Ranjeva, R., & Pugin, A. (2006). Calcium in plant defence-signaling pathways. New Phytologist, 171(2), 249–269.

    Article  CAS  Google Scholar 

  • Liu, F., Jensen, C. R., & Andersen, M. N. (2004). Drought stress effect on carbohydrate concentration in soybean leaves and pods during early reproductive development: Its implication in altering pod set. Field Crops Research, 86(1), 1–13.

    Article  CAS  Google Scholar 

  • Liu, G. T., Ma, L., Duan, W., Wang, B. C., Li, J. H., Xu, H. G., Yan, X. Q., Yan, B. F., Li, S. H., & Wang, L. J. (2014). Differential proteomic analysis of grapevine leaves by iTRAQ reveals responses to heat stress and subsequent recovery. BMC Plant Biology, 14(1), 110.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Luchi, S., Kobayashi, M., Yamaguchi-Shinozaki, K., & Shinozaki, K. (2000). A stress-inducible gene for 9-cis-epoxycarotenoid dioxygenase involved in abscisic acid biosynthesis under water stress in drought-tolerant cowpea. Plant Physiology, 123(2), 553–562.

    Article  Google Scholar 

  • Martínez-Alcántara, B., Martínez-Cuenca, M. R., Quinones, A., Iglesias, D. J., Primo-Millo, E., & Forner-Giner, M. A. (2015). Comparative expression of candidate genes involved in sodium transport and compartmentation in citrus. Environmental and Experimental Botany, 111, 52–62.

    Article  CAS  Google Scholar 

  • Mäser, P., Eckelman, B., Vaidyanathan, R., Horie, T., Fairbairn, D. J., Kubo, M., Yamagami, M., Yamaguchi, K., Nishimura, M., & Uozumi, N. (2002). Altered shoot/root Na1 distribution and bifurcating salt sensitivity in Arabidopsis by genetic disruption of the Na1 transporter AtHKT1. FEBS Lett, 531, 157–161.

    Article  PubMed  Google Scholar 

  • Maul, P., McCOLLUM, G. T., Popp, M., Guy, C. L., & Porat, R. O. N. (2008). Transcriptome profiling of grapefruit flavedo following exposure to low temperature and conditioning treatments uncovers principal molecular components involved in chilling tolerance and susceptibility. Plant, Cell & Environment, 31(6), 752–768.

    Article  CAS  Google Scholar 

  • Mckersie, B. D., & Ya’acov, Y. L. (1994). Chilling stress. In Stress and stress coping in cultivated plants (pp. 79–103). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Mercado, J. A., Reid, M. S., Valpuesta, V., & Quesada, M. A. (1997). Metabolic changes and susceptibility to chilling stress in Capsicum annuum plants grown at suboptimal temperature. Functional Plant Biology, 24(6), 759–767.

    Article  CAS  Google Scholar 

  • Mohammadkhani, N., & Heidari, R. (2008). Effects of drought stress on soluble proteins in two maize varieties. Turkish Journal of Biology, 32(1), 23–30.

    CAS  Google Scholar 

  • Mohanty, P., Kreslavski, V. D., Klimov, V. V., Los, D. A., Mimuro, M., Carpentier, R., & Allakhverdiev, S. I. (2012). Heat stress: Susceptibility, recovery and regulation. In Photosynthesis (pp. 251–274). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Molnár, I., Gáspár, L., Sárvári, É., Dulai, S., Hoffmann, B., Molnár-Láng, M., & Galiba, G. (2004). Physiological and morphological responses to water stress in Aegilops biuncialis and Triticum aestivum genotypes with differing tolerance to drought. Functional Plant Biology, 31(12), 1149–1159.

    Article  PubMed  Google Scholar 

  • Monneveux, P., & Belhassen, E. (1996). The diversity of drought adaptation in the wide. In Drought tolerance in higher plants: Genetical, physiological and molecular biological analysis (pp. 7–14). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Mundree, S. G., Baker, B., Mowla, S., Peters, S., Marais, S., Vander Willigen, C., Govender, K., Maredza, A., Muyanga, S., Farrant, J. M., & Thomson, J. A. (2002). Physiological and molecular insights into drought tolerance. African Journal of Biotechnology, 1(2), 28–38.

    Article  CAS  Google Scholar 

  • Munné-Bosch, S., & Alegre, L. (2004). Die and let live: Leaf senescence contributes to plant survival under drought stress. Functional Plant Biology, 31(3), 203–216.

    Article  PubMed  Google Scholar 

  • Murata, N., & Los, D. A. (1997). Membrane fluidity and temperature perception. Plant Physiology, 115(3), 875.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Musser, R. L., Thomas, S. A., Wise, R. R., Peeler, T. C., & Naylor, A. W. (1984). Chloroplast ultrastructure, chlorophyll fluorescence, and pigment composition in chilling-stressed soybeans. Plant Physiology, 74(4), 749–754.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nadeem, S. M., Ahmad, M., Zahir, Z. A., Javaid, A., & Ashraf, M. (2014). The role of mycorrhizae and plant growth promoting rhizobacteria (PGPR) in improving crop productivity under stressful environments. Biotechnology Advances, 32(2), 429–448.

    Article  PubMed  Google Scholar 

  • Nagesh Babu, R., & Devaraj, V. R. (2008). High temperature and salt stress response in French bean (Phaseolus vulgaris). Australian Journal of Crop Science, 2(2), 40–48.

    Google Scholar 

  • Naidu, S. L., Moose, S. P., Al-Shoaibi, A. K., Raines, C. A., & Long, S. P. (2003). Cold tolerance of C4 photosynthesis in Miscanthus × giganteus: Adaptation in amounts and sequence of C4 photosynthetic enzymes. Plant Physiology, 132(3), 1688–1697.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Naji, K. M., & Devaraj, V. R. (2011). Antioxidant and other biochemical defense responses of Macrotyloma uniflorum (Lam.) Verdc. (Horse gram) induced by high temperature and salt stress. Brazilian Journal of Plant Physiology, 23(3), 187–195.

    Article  CAS  Google Scholar 

  • Nejad, T. S., Bakhshande, A., Nasab, S. B., & Payande, K. (2010). Effect of drought stress on corn root growth. Report and Opinion, 2(2), 47–53.

    Google Scholar 

  • Oren, R., & Pataki, D. E. (2001). Transpiration in response to variation in microclimate and soil moisture in southeastern deciduous forests. Oecologia, 127(4), 549–559.

    Article  PubMed  Google Scholar 

  • Osmond, C. B., Austin, M. P., Berry, J. A., Billings, W. D., Boyer, J. S., Dacey, J. W. H., Nobel, P. S., Smith, S. D., & Winner, W. E. (1987). Stress physiology and the distribution of plants. Bioscience, 37(1), 38–48.

    Article  Google Scholar 

  • Palma, F., Carvajal, F., Lluch, C., Jamilena, M., & Garrido, D. (2014). Changes in carbohydrate content in zucchini fruit (Cucurbita pepo L.) under low temperature stress. Plant Science, 217, 78–86.

    Article  PubMed  CAS  Google Scholar 

  • Palmgren, M. G., Bækgaard, L., López-Marqués, R. L., & Fuglsang, A. T. (2011). Plasma membrane ATPases. In The plant plasma membrane (pp. 177–192). Berlin/Heidelberg: Springer.

    Chapter  Google Scholar 

  • Parida, A. K., Dagaonkar, V. S., Phalak, M. S., Umalkar, G. V., & Aurangabadkar, L. P. (2007). Alterations in photosynthetic pigments, protein and osmotic components in cotton genotypes subjected to short-term drought stress followed by recovery. Plant Biotechnology Reports, 1(1), 37–48.

    Article  Google Scholar 

  • Parkin, K. L., Marangoni, A., Jackman, R. L., Yada, R. Y., & Stanley, D. W. (1989). Chilling injury. A review of possible mechanisms. Journal of Food Biochemistry, 13(2), 127–153.

    Article  CAS  Google Scholar 

  • Parsell, D. A., Kowal, A. S., Singer, M. A., & Lindquist, S. (1994). Protein disaggregation mediated by heat-shock protein Hspl04. Nature, 372(6505), 475–478.

    Article  CAS  PubMed  Google Scholar 

  • Paulsen, G. M. (1994). High temperature responses of crop plants. Physiology and Determination of Crop Yield, pp. 365–389.

    Google Scholar 

  • Pfeffer, P. E., Rolin, D. B., Schmidt, J. H., Tu, S. I., Kumosinski, T. F., & Douds, D. D., Jr. (1992). Ion transport and sub-cellular compartmentation in maize root tissue as examined by in vivo 133Cs nmr spectroscopy. Journal of Plant Nutrition, 15(6–7), 913–927.

    Article  CAS  Google Scholar 

  • Piette, A. S., Derua, R., Waelkens, E., Boutry, M., & Duby, G. (2011). A phosphorylation in the C-terminal auto-inhibitory domain of the plant plasma membrane H+-ATPase activates the enzyme with no requirement for regulatory 14–3-3 proteins. Journal of Biological Chemistry, 286(21), 18474–18,482.

    Article  CAS  Google Scholar 

  • Plaut, Z., Meinzer, F. C., & Federman, E. (2000). Leaf development, transpiration and ion uptake and distribution in sugarcane cultivars grown under salinity. Plant and Soil, 218(1–2), 59–69.

    Article  CAS  Google Scholar 

  • Pressman, E., Peet, M. M., & Pharr, D. M. (2002). The effect of heat stress on tomato pollen characteristics is associated with changes in carbohydrate concentration in the developing anthers. Annals of Botany, 90(5), 631–636.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qados, A. M. A. (2011). Effect of salt stress on plant growth and metabolism of bean plant Vicia faba (L.). Journal of the Saudi Society of Agricultural Sciences, 10(1), 7–15.

    Article  CAS  Google Scholar 

  • Razzaghi, F., Ahmadi, S. H., Adolf, V. I., Jensen, C. R., Jacobsen, S. E., & Andersen, M. N. (2011). Water relations and transpiration of quinoa (Chenopodium quinoa Willd.) under salinity and soil drying. Journal of Agronomy and Crop Science, 197(5), 348–360.

    Article  Google Scholar 

  • Rengel, Z. (1992). The role of calcium in salt toxicity. Plant, Cell & Environment, 15(6), 625–632.

    Article  CAS  Google Scholar 

  • Rivero, R. M., Ruiz, J. M., Garcıa, P. C., Lopez-Lefebre, L. R., Sánchez, E., & Romero, L. (2001). Resistance to cold and heat stress: Accumulation of phenolic compounds in tomato and watermelon plants. Plant Science, 160(2), 315–321.

    Article  CAS  PubMed  Google Scholar 

  • Rolland, F., Baena-Gonzalez, E., & Sheen, J. (2006). Sugar sensing and signaling in plants: Conserved and novel mechanisms. Annual Reviews in Plant Biology, 57, 675–709.

    Article  CAS  Google Scholar 

  • Samarah, N. H., Mullen, R. E., Cianzio, S. R., & Scott, P. (2006). Dehydrin-like proteins in soybean seeds in response to drought stress during seed filling. Crop Science, 46(5), 2141–2150.

    Article  CAS  Google Scholar 

  • Schachtman, D. P., & Goodger, J. Q. (2008). Chemical root to shoot signaling under drought. Trends in Plant Science, 13(6), 281–287.

    Article  CAS  PubMed  Google Scholar 

  • Schwartzkopf, C. A. R. L. (2018) Potassium, calcium, magnesium—how they relate to plant growth. Available online: http://gsrpdf.lib.msu.edu/ticpdf.py?file=/1970s/1972/721101.pdf. Accessed 11 Feb 2020.

  • Seki, M., Umezawa, T., Urano, K., & Shinozaki, K. (2007). Regulatory metabolic networks in drought stress responses. Current Opinion in Plant Biology, 10(3), 296–302.

    Article  CAS  PubMed  Google Scholar 

  • Shavrukov, Y., Kurishbayev, A., Jatayev, S., Shvidchenko, V., Zotova, L., Koekemoer, F., de Groot, S., Soole, K., & Langridge, P. (2017). Early flowering as a drought escape mechanism in plants: How can it aid wheat production? Frontiers in Plant Science, 8, 1950.

    Article  PubMed  PubMed Central  Google Scholar 

  • Smith, W. K. (1978). Temperatures of desert plants: Another perspective on the adaptability of leaf size. Science, 201(4356), 614–616.

    Article  CAS  PubMed  Google Scholar 

  • Souza, R. P., Machado, E. C., Silva, J. A. B., Lagôa, A. M. M. A., & Silveira, J. A. G. (2004). Photosynthetic gas exchange, chlorophyll fluorescence and some associated metabolic changes in cowpea (Vigna unguiculata) during water stress and recovery. Environmental and Experimental Botany, 51(1), 45–56.

    Article  CAS  Google Scholar 

  • Srivastava, J. P., Gangey, S. K., & Shahi, J. P. (2007). Waterlogging resistance in maize in relation to growth, mineral composition and some biochemical parameters. Indian Journal of Plant Physiology, 12(1), 28.

    CAS  Google Scholar 

  • Swamy, P. M., & Smith, B. N. (1999). Role of abscisic acid in plant stress tolerance. Current Science, 76, 1220–1227.

    CAS  Google Scholar 

  • Urban, J., Ingwers, M., McGuire, M. A., & Teskey, R. O. (2017). Stomatal conductance increases with rising temperature. Plant Signaling & Behavior, 12(8), e1356534.

    Article  CAS  Google Scholar 

  • Van Foreest, A., Sippel, M., Gülhan, A., Esser, B., Ambrosius, B. A. C., & Sudmeijer, K. (2009). Transpiration cooling using liquid water. Journal of Thermophysics and Heat Transfer, 23(4), 693–702.

    Article  CAS  Google Scholar 

  • Veerasamy, M., He, Y., & Huang, B. (2007). Leaf senescence and protein metabolism in creeping bentgrass exposed to heat stress and treated with cytokinins. Journal of the American Society for Horticultural Science, 132(4), 467–472.

    Article  CAS  Google Scholar 

  • Velikova, V., Sharkey, T. D., & Loreto, F. (2012). Stabilization of thylakoid membranes in isoprene-emitting plants reduces formation of reactive oxygen species. Plant Signaling & Behavior, 7(1), 139–141.

    Article  Google Scholar 

  • Visser, E. J. W., & Voesenek, L. A. C. J. (2005). Acclimation to soil flooding-sensing and signal-transduction. Plant and Soil, 274, 197–214.

    Article  CAS  Google Scholar 

  • Voesenek, L. A. C. J., & Sasidharan, R. (2013). Ethylene–and oxygen signaling–drive plant survival during flooding. Plant Biology, 15(3), 426–435.

    Article  CAS  PubMed  Google Scholar 

  • Walton, D. C., Harrison, M. A., & Cotê, P. (1976). The effects of water stress on abscisic-acid levels and metabolism in roots of Phaseolus vulgaris L. and other plants. Planta, 131(2), 141–144.

    Article  CAS  PubMed  Google Scholar 

  • Wang, H. Z., Zhang, L. H., Jun, M. A., Li, X. Y., Yan, L. I., Zhang, R. P., & Wang, R. Q. (2010). Effects of water stress on reactive oxygen species generation and protection system in rice during grain-filling stage. Agricultural Sciences in China, 9(5), 633–641.

    Article  Google Scholar 

  • Webb, M. A., & Newcomb, E. H. (1987). Cellular compartmentation of ureide biogenesis in root nodules of cowpea (Vigna unguiculata (L.) Walp.). Planta, 172(2), 162–175.

    Article  CAS  PubMed  Google Scholar 

  • Wind, J., Smeekens, S., & Hanson, J. (2010). Sucrose: Metabolite and signaling molecule. Phytochemistry, 71(14–15), 1610–1614.

    Article  CAS  PubMed  Google Scholar 

  • Wu, H., Shabala, L., Barry, K., Zhou, M., & Shabala, S. (2013). Ability of leaf mesophyll to retain potassium correlates with salinity tolerance in wheat and barley. Physiologia Plantarum, 149(4), 515–527.

    Article  CAS  PubMed  Google Scholar 

  • Xu, Z. Z., & Zhou, G. S. (2005). Effects of water stress on photosynthesis and nitrogen metabolism in vegetative and reproductive shoots of Leymus chinensis. Photosynthetica, 43(1), 29–35.

    Article  CAS  Google Scholar 

  • Xu, Z. Z., & Zhou, G. S. (2006). Combined effects of water stress and high temperature on photosynthesis, nitrogen metabolism and lipid peroxidation of a perennial grass Leymus chinensis. Planta, 224(5), 1080–1090.

    Article  CAS  PubMed  Google Scholar 

  • Yadollahi, A., Arzani, K., Ebadi, A., Wirthensohn, M., & Karimi, S. (2011). The response of different almond genotypes to moderate and severe water stress in order to screen for drought tolerance. Scientia Horticulturae, 129(3), 403–413.

    Article  Google Scholar 

  • Ying, J., Lee, E. A., & Tollenaar, M. (2000). Response of maize leaf photosynthesis to low temperature during the grain-filling period. Field Crops Research, 68(2), 87–96.

    Article  Google Scholar 

  • Zahed Chakovari, S., Enteshari, S., & Qasimov, N. (2016). Effect of salinity stress on biochemical parameters and growth of borage (Borago officinalis L.). Plant Physiology, 6(2), 1673–1689.

    Google Scholar 

  • Zhang, H. X., & Blumwald, E. (2001). Transgenic salt-tolerant tomato plants accumulate salt in foliage but not in fruit. Nature Biotechnology, 19(8), 765–768.

    Article  CAS  PubMed  Google Scholar 

  • Zhou, R., Hyldgaard, B., Yu, X., Rosenqvist, E., Ugarte, R. M., Yu, S., Wu, Z., Ottosen, C. O., & Zhao, T. (2018). Phenotyping of faba beans (Vicia faba L.) under cold and heat stresses using chlorophyll fluorescence. Euphytica, 214(4), 68.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khayelihle Ncama .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ncama, K., Aremu, O.A., Sithole, N.J. (2022). Plant Adaptation to Environmental Stress: Drought, Chilling, Heat, and Salinity. In: Galanakis, C.M. (eds) Environment and Climate-smart Food Production . Springer, Cham. https://doi.org/10.1007/978-3-030-71571-7_5

Download citation

Publish with us

Policies and ethics