Skip to main content

Abstract

The concept of optimal growth temperatures is a fundamental principle in biology. Since living organisms cannot control environmental temperature, they have evolved two major strategies for surviving extreme temperatures — they either avoid the stress, or tolerate it. The avoidance mechanism is most obvious in warm blooded animals that maintain their bodies at a constant temperature. With the exception of a few plants that generate heat by metabolism (Knutson 1974), plants must avoid seasonal extremes in temperature by other mechanisms. Although plants have developed strategies to tolerate the range of temperatures common to their habitant, injury may occur in a new environment, or when temperature extremes exceed the norm. Of course, modern agriculture and consumer preferences cause crop plants to be grown in regions where it is more economical to grow them, but where they may be only marginally adapted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Asare-Boamah, N.K. and Fletcher, R.A. 1986. Protection of bean seedlings against heat and chilling injury by triadimefon. Physiol. Plant 67: 353–8.

    Article  CAS  Google Scholar 

  • Bagnall, D.J., King, R.W. and Farquhar, G.D. 1988. Temperature dependent feed back inhibition of photosynthesis in peanut. Planta 175: 348–54.

    Article  Google Scholar 

  • Bell, M.J.N. 1993. Low Night Temperature Response in Peanut. (Arachis Hypogaea L.). Ph.D. Thesis, University of Guelph.

    Google Scholar 

  • Bilger, W. and Bjorkman, O. 1991. Temperature dependence of violaxanthin deepoxidation and non-photochemical fluorescence quenching in intact leaves of Gossypium hirsutum L. and Malva parvifkia L. Planta 184: 226–34.

    Article  CAS  Google Scholar 

  • Bishop, D.G. 1986. Chilling sensitivity in higher plants: The role of phosphatidylglycerol. Plant Cell Environ. 9: 613–6.

    Article  CAS  Google Scholar 

  • Chaplin, G.R. and Scott, K.J. 1980. Association of calcium in chilling injury susceptibility of stored avacadoes. Hort. Sci. 15: 514–5.

    CAS  Google Scholar 

  • Creencia, R.P. and Bramlage, W.J. 1971. Reversibility of chilling injury to corn seedlings. Plant Physiol. 47: 389–92.

    Article  PubMed  CAS  Google Scholar 

  • Crowe, J.H., Hoekstra, F.A. and Crowe, L.M. 1989. Membrane phase transitions are responsible for imbibitional damage in dry pollen. Proc. Natl. Acad. Sci. (USA) 86: 520–3.

    Article  CAS  Google Scholar 

  • Daie, J. and Campbell, W.F. 1981. Response of tomato plants to stressful temperatures: Increase in abscisic acid concentrations. Plant Physiol. 67: 26–9.

    Article  PubMed  CAS  Google Scholar 

  • Demmig-Adams, B. 1990. Carotenoids and photoprotection in plants: a role for the xanthophyll, zeaxanthin. Biochim. Biophys. Acta 1020: 1–24.

    CAS  Google Scholar 

  • Feierabend, J., Schaan, C. and Hertwig, B. 1992. Photoinactivation of catalase occurs under both high-and low-temperature stress conditions and accompanies photoinhibition of photosystem II. Plant Physiol. 100: 1554–61.

    Article  PubMed  CAS  Google Scholar 

  • Field, R.J. 1990. Influence of chilling stress on ethylene production. pp. 235–53. In: Ed.

    Google Scholar 

  • C.Y. Wang. Chilling Injury of Horticultural Crops. CRC Press, Boca Raton. Fletcher, R.A. and Hofstra, G. 1985. Triadimefon-a plant multi-protectant. Plant Cell Physiol. 26: 775–80.

    Google Scholar 

  • Forney, C.F. and Lipton, W.L. 1990. Influence of controlled atmosphere and packaging on chilling senstivity. pp. 257–67. In: Ed. C.Y. Wang. Chilling Injury of Horticultural Crops. CRC Press, Boca Raton.

    Google Scholar 

  • Gong, H. and Nilson, S. 1989. Effect of temperature on photoinhibition of photosynthesis, recovery and turnover of the 32KD chloroplast protein in Lemma gibba. J. Plant Physiol. 135: 9–14.

    Article  CAS  Google Scholar 

  • Gupta, A.S., Heinen, J.L., Holaday, A.S., Burke, J.J. and Allen, R.D. 1993. Increased resistance to oxidative stress in transgenic plants that overexpress Cu/Zn SOD dismutase. Proc. Nat. Acad. Sci. (USA) 90: 1629–33.

    Article  CAS  Google Scholar 

  • Guye, M.G. and Wilson, J.M. 1987. The effect of chilling and chill-hardening temperatures on stomatal behaviour in chill-sensitive species and cultures. Plant Physiol. Biochem. 25: 717–21.

    Google Scholar 

  • Hällgren, J.E. and Oquist, G. 1990. Adaptations to low temperatures. pp. 265–93. In: Eds. R.G. Alscher and J.R. Cumming. Stress Responses in Plants: Adaptation and Acclimation Mechanisms. Wiley-Liss Inc., New York.

    Google Scholar 

  • Herner, R.C. 1990. The effects of chilling temperatures during seed germination and early seedling growth. pp. 51–69. In: Ed. C.Y. Wang. Chilling Injury of Horticultural Crops. CRC Press, Boca Raton.

    Google Scholar 

  • Holmberg, S.A. 1973. Soybeans for cool temperate climates. Agrihortique Genetica 31: 1–20.

    Google Scholar 

  • Hume, D.J. and Jackson, A.K.H. 1981. Pod formation in soybeans at low temperature. Crop Sci. 21: 933–7.

    Article  Google Scholar 

  • Kendrick, J.R. and Bishop, D.G. 1986. The fatty acid composition of phosphatidylglycerol and sulfoquinovosyldiacylglycerol of higher plants in relation to chilling sensitivity. Plant Physiol. 81: 946–9.

    Article  Google Scholar 

  • King A.L., Reid, M.S. and Patterson, B.D. 1982. Diurnal changes in the chilling sensitivity of seedlings. Plant Physiol. 70: 211–4.

    Article  PubMed  CAS  Google Scholar 

  • Knutson, R.M. 1974. Heat production and temperature regulation in eastern skunk cabbage. Science 186: 746–7.

    Article  PubMed  CAS  Google Scholar 

  • Krause, G.H. and Weis, E. 1991. Chlorophyll fluorescence and photosynthesis: the basics. Ann. Rev. Plant Physiol. Plant Mol. Biol. 42: 313–49.

    Article  CAS  Google Scholar 

  • Lawn, R.J. and Hume, D.J. 1985. Response of tropical and temperate soybean genotypes to temperatures during early reproductive growth. Crop Sci. 25: 137–42.

    Article  Google Scholar 

  • Leshem, Y.Y. and Kadish, D. 1993. Membrane related effects of chilling stress on ethylene production in green peppers stored at 4 °C as compared to 17 °C (shelf temperature). Res. Report, U.S.-Israel, BARD Foundation. pp. 1–23.

    Google Scholar 

  • Lyons, J.M. 1973. Chilling injury in plants. Ann. Rev. Plant Physiol. 24: 445–66.

    Article  CAS  Google Scholar 

  • Lyons, J.M. and Breidenbach, R.W. 1990. Relation of chilling stress to respiration. pp. 223–33. In: Ed. C.Y. Wang. Chilling Injury of Horticultural Crops. CRC Press, Boca Raton.

    Google Scholar 

  • Lyons, J.M. and Raison, J.K. 1970. Oxidative activity of mitochondria isolated from plant tissues sensitive and resistant to chilling injury. Plant Physiol. 45: 386–9.

    Article  PubMed  CAS  Google Scholar 

  • MacKay, C., Senaratna, T., McKersie, B.D. and Fletcher, R.A. 1987. Ozone induced injury to cellular membranes in Triticum aestivum and protection by the triazole S3307. Plant Cell Physiol. 28: 1271–8.

    CAS  Google Scholar 

  • McWilliam, J.R. Kramer, P.J. and Musser, R.L. 1982. Temperature induced water stress in chilling sensitive plants. Aust. J. Plant Physiol. 9: 343–52.

    Article  Google Scholar 

  • Miedema, P. 1982. The effects of low temperature on Zea mays. Adv. Agron. 35: 93–128.

    Article  Google Scholar 

  • Murata, N. 1983. Molecular species composition of phosphatidylglycerols from chilling-sensitive and chilling-resistant plants. Plant Cell Physiol. 25: 1241–5.

    Google Scholar 

  • Murata, N., Ishibaki-Nishizawa, O., Higashi, S., Hayashi, H., Tasaka, Y. and Nishida, I. 1992. Genetically engineered alteration in the chilling sensitivity of plants. Nature 356: 710–3.

    Article  CAS  Google Scholar 

  • Parkin, K.L., Marangoni, A., Jackman, R., Yada, R. and Stanley, D. 1989. Chilling injury. A review of possible mechanisms. J. Food Biochem. 13: 127–53.

    Article  CAS  Google Scholar 

  • Paull, R.E. 1990. Chilling injury of crops of tropical and subtropical origin. pp. 17–36. In: Ed. C.Y. Wang. Chilling Injury of Horticultural Crops. CRC Press, Boca Raton.

    Google Scholar 

  • Raison, J.K. and Lyons, J.M. 1986. Chilling injury: a plea for uniform terminology. Plant Cell Environ. 9: 685.

    Article  Google Scholar 

  • Raison, J.K., Chapman, E.A., Wright, L.C. and Jacobs, S.W.L. 1979. Membrane lipid transitions: their correlation with the climactic distribution of plants. pp. 177–86. In: Eds. J.M. Lyons, D. Graham and J.K. Lyons. Low Temperature Stress in Crop Plants. The Role of the Membrane. Academic Press, New York.

    Google Scholar 

  • Richter, M., Rühle, W. and Wild, A. 1990. Studies on the mechanism of photo system II photoinhibition. II. The involvement of toxic oxygen species. Photosyn. Res. 24: 237–43.

    Article  CAS  Google Scholar 

  • Rikin, A., Atsmon, D. and Gitler, C. 1979. Chilling injury in cotton (Gossypium hirsutum L.): prevention by abscisic acid. Plant Cell Physiol. 20: 1537–46.

    CAS  Google Scholar 

  • Sachs, J. 1864. Über die obere Tempertatur-Grenze der Vegetation. Flora 22: 5.

    Google Scholar 

  • Saltveit, M.E. Jr. and Moris, L.L. 1990. Overview of chilling injury of horticultural crops. pp. 3–15. In: Ed. C.Y. Wang. Chilling Injury of Horticultural Crops. CRC Press, Boca Raton.

    Google Scholar 

  • Sassenrath, G.F., Ort, D.R. and Portis, A.R. 1990. Impaired reductive activation of stromal biphosphatases in tomato leaves following low temperature exposure at high light. Arch. Biochem. Biophys. 282: 302–8.

    Article  PubMed  CAS  Google Scholar 

  • Senaratna, T., MacKay, C.E., McKersie, B.D. and Fletcher, R.A. 1988. Uniconizoleinduced chilling tolerance in tomato and its relationship to antioxidant content. J. Plant Physiol. 133: 56–61.

    Article  CAS  Google Scholar 

  • Shewfelt, R.L. and Erickson, M.E. 1991. Role of lipid peroxidation in the mechanism of membrane-associated disorders in edible plant tissue. Trends in Food Sci. Technol. 2: 152–4.

    Article  CAS  Google Scholar 

  • Somersalo, S. and Krause, G.H. 1990. Reversible photoinhibition of unhardened and cold acclimated spinach leaves at chilling temperatures. Planta 180: 181–7.

    Article  CAS  Google Scholar 

  • Tseng, M.J. and Li, P.H. 1984. Mefluidide protection of severely chilled crop plants. Plant Physiol. 75: 249–50.

    Article  PubMed  CAS  Google Scholar 

  • Walker, M.A. and McKersie, B.D. 1993. Role of the ascorbate-glutathione antioxidant system in chilling resistance of tomato. J. Plant Physiol. 141: 234–9.

    Article  CAS  Google Scholar 

  • Walker, M.A., McKersie, B.D. and Pauls, K.P. 1991. Effects of chilling on the biochemical and functional properties of thylakoid membranes. Plant Physiol. 97: 663–9.

    Article  PubMed  CAS  Google Scholar 

  • Walker, M.A., Smith, D.M., Pauls, K.P. and McKersie, B.D. 1990. Development of a chlorophyll fluorescence screening test to evaluate chilling tolerance in tomato. HortSci. 25: 334–9.

    Google Scholar 

  • Wang, C.Y. 1985. Modification of chilling susceptibility in seedlings of cucumber and zucchini squash by the bioregulator pactobutrazol. Sci. Hort. 26: 293–8.

    Article  CAS  Google Scholar 

  • Wang, C.Y. 1990. Alleviation of chilling injury of horticultural crops. pp. 281–301. In:

    Google Scholar 

  • Ed. C.Y. Wang. Chilling Injury of Horticultural Crops. CRC Press, Boca Raton. Wang, C.Y. and Adams, D.O. 1982. Chilling-induced ethylene production in cucumbers (Cucumis sativa L.). Plant Physiol. 69: 424–7.

    Google Scholar 

  • Wang, C.Y. and Baker, J.E. 1979. Effects of two free radical scavengers and intermittent warming on chilling injury and polar lipid composition of cucumber and sweet pepper fruits. Plant Cell Physiol. 20: 243–51.

    CAS  Google Scholar 

  • Wilson, J.M. 1984. The economic importance of chilling injury. Outlook Agric. 14: 197–203.

    Google Scholar 

  • Wise, R.R. and Naylor, A.W. 1987a. Chilling-Enhanced Photooxidation. The peroxidative destruction of lipids during chilling injury to photosynthesis and ultrastructure. Plant Physiol. 83: 272–7.

    Article  PubMed  CAS  Google Scholar 

  • Wise, R.R. and Naylor, A.W. 1987b. Chilling-Enhanced Photooxidation. Evidence for the role of singlet oxygen and superoxide in the breakdown of pigments and endogenous antioxidants. Plant Physiol. 83: 278–82.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Mckersie, B.D., Leshem, Y.Y. (1994). Chilling stress. In: Stress and Stress Coping in Cultivated Plants. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-3093-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-3093-8_4

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-4400-6

  • Online ISBN: 978-94-017-3093-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics