Skip to main content

Biotechnological Approaches for Enhancing Stress Tolerance in Legumes

  • Chapter
  • First Online:
Sustainable Agriculture Reviews 51

Abstract

Legumes are the major sources of protein, dietary fibre, high-quality food & feed. In the world crop production, legumes occupy third place only after cereals and oilseeds. Leguminous crops are known to fix the atmospheric nitrogen for their growth through bacterial association and can be grown in low fertile soils. The requirement of synthetic nitrogenous fertilizers for leguminous crops is far lesser than the other crops, there by reduces the emission of greenhouse gases. Because of these qualities, legumes are considered as potential crops for sustainable agriculture. Due to continuous change in climatic conditions and modern agriculture systems, leguminous crops are frequently exposed to biotic and abiotic stresses. These stresses are considered as major constraints which mainly affects the physiology, metabolism and finally the cultivation and yield of leguminous crops. The yield losses in leguminous crops were accounted for 30–100% based on the magnitude and severity of biological and physical stresses. Hence, it’s required to improve productivities of leguminous plants to harness the potential nutritional values. Developing stress tolerant varieties is one of the strategies to overcome this. So far, traditional breeding approaches have been exploited to develop stress tolerant varieties, however, these are laborious and time consuming. The recent establishments of biotechnological tools in model leguminous crops such as Medicago truncatula and Lotus japonicas, have helped in understanding the regulation and mechanism of action of stress related genes. In the current book chapter, we have discussed about the major biotic and abiotic stresses and the application of various biotechnological tools in developing stress tolerant leguminous plants for improved productivity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abrol IP (1986) Salt-affected soils: an overview. In: Chopra VL, Paroda SL (eds) Approaches for incorporating drought and salinity resistance in crop plants. IBH Publishing Company, New Delhi/Oxford, pp 1–23

    Google Scholar 

  • Acharjee S, Sarmah BK, Kumar PA, Olsen K, Mahon R, Moar WJ, Moore A, Higgins T (2010) Transgenic chickpeas (Cicer arietinum L.) expressing a sequence-modified cry2Aa gene. Plant Sci 178:333–339

    Article  CAS  Google Scholar 

  • Afouda L, Wolf G, Wydra K (2009) Development of a sensitive serological method for specific detection of latent infection of Macrophomina phaseolina in cowpea. J Phytopathol 157:15–23

    Article  CAS  Google Scholar 

  • Aghaei K, Ehsanpour AA, Shah AH, Komatsu S (2008) Proteome analysis of soybean hypocotyl and root under salt stress. Amino Acids 36:91–98

    Article  PubMed  CAS  Google Scholar 

  • Agrell J, Anderson P, Oleszek W, Stochmal A, Agrell C (2004) Combined effects of elevated CO2 and herbivore damage on alfalfa and cotton. J Chem Ecol 30:2309–2324

    Article  CAS  PubMed  Google Scholar 

  • Akhtar KP, Dickinson M, Hodgetts J, Abbas G, Asghar MJ, Shah TM, Atta B, Ahmad M, Haq MA (2010) The phytoplasma disease ‘mung bean phyllody’ is now present in Pakistan. Plant Pathol 59:399

    Article  Google Scholar 

  • Alegbejo MD, Kashina BD (2001) Status of legume viruses in Nigeria. J Sustain Agric 18:55–69

    Article  Google Scholar 

  • Amarante L, Sodek L (2006) Waterlogging effect on xylem sap glutamine of nodulated soybean. Biol Plant 50:405–410

    Article  CAS  Google Scholar 

  • An J, Cheng C, Hu Z, Chen H, Cai W, Yu B (2018) The Panax ginseng PgTIP1 gene confers enhanced salt and drought tolerance to transgenic soybean plants by maintaining homeostasis of water, salt ions and ROS. Environ Exp Bot 155:45–55

    Article  CAS  Google Scholar 

  • Anbazhagan K, Bhatnagar-Mathur P, Vadez V, Dumbala SR, Kishor PK, Sharma KK (2014) DREB1A overexpression in transgenic chickpea alters key traits influencing plant water budget across water regimes. Plant Cell Rep 34:199–210

    Article  PubMed  CAS  Google Scholar 

  • Anderson JP, Thatcher LF, Singh KB (2005) Plant defence responses: conservation between models and crops. Funct Plant Biol 32:21–34

    Article  CAS  PubMed  Google Scholar 

  • Andrews M, Hodge S (2010) Climate change, a challenge for cool season grain legume crop production. In: Yadav S, Redden R (eds) Climate change and management of cool season grain legume crops. Springer, Dordrecht, pp 1–9

    Google Scholar 

  • Aragao FJL, Vianna GR, Albino MMC, Rech EL (2002) Transgenic dry bean tolerant to the herbicide glufosinate ammonium. Crop Sci 42:1298–1302

    Article  CAS  Google Scholar 

  • Arnold DL, Lovell HC, Jackson RW, Mansfield JW (2011) Pseudomonas syringae pv. phaseolicola: from “has bean” to supermodel. Mol Plant Pathol 12:617–627

    Article  PubMed  PubMed Central  Google Scholar 

  • Arshad M, Feyissa BA, Amyot L, Aung B, Hannoufa A (2017) MicroRNA156 improves drought stress tolerance in alfalfa (Medicago sativa L.) by silencing SPL13. Plant Sci 258:122–136

    Article  CAS  PubMed  Google Scholar 

  • Arumugam N, Mukhopadhyay A, Gupta V, Sodhi YS, Verma JK, Pental D, Pradhan AK (2002) Synthesis of somatic hybrids (RCBB) by fusing heat-tolerant Raphanus sativus (RR) and Brassica oleracea (CC) with Brassica nigra (BB). Plant Breed 121:168–170

    Article  Google Scholar 

  • Asai T, Tena G, Plotnikova J, Willmann MR, Chiu WL, Gomez-Gomez L, Boller T, Ausubel FM, Sheen J (2002) MAP kinase signalling cascade in Arabidopsis innate immunity. Nature 415:977–983

    Article  CAS  PubMed  Google Scholar 

  • Asamizu E, Nakamura Y, Sato S, Tabata S (2004) Characteristics of the lotus japonicus gene repertoire deduced from large-scale expressed sequence tag (EST) analysis. Plant Mol Biol 54:405–414

    Article  PubMed  Google Scholar 

  • Ashfield T, Ong LE, Nobuta K, Schneider CM, Innes RW (2004) Convergent evolution of disease resistance gene specificity in two flowering plant families. Plant Cell 16:309–318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ashraf M (2004) Some important physiological selection criteria for salt tolerance in plants. Flora 199:361–376

    Article  Google Scholar 

  • Avnioktem H, Eyidogan F, Selçuk F, Tufanoz M, da Silva JAT, Yucel M (2008) Revealing response of plants to biotic and abiotic stresses with microarray technology. Genes Genomes Genomics 2:14–48

    Google Scholar 

  • Azeem F, Bilal A, Rana M, Muhammad AA, Habibullah N, Sabir H, Sumaira R, Hamid M, Usama A, Muhammad A (2019) Drought affects aquaporins gene expression in important pulse legume chickpea (Cicer arietinum L.). Pak J Bot 51:81–88

    Article  CAS  Google Scholar 

  • Babu RM, Sajeena A, Seetharaman K, Reddy MS (2003) Advances in genetically engineered (transgenic) plants in pest management – an over view. Crop Prot 22:1071–1086

    Google Scholar 

  • Baloda A, Madanpotra S, Aiwal PK (2017) Transformation of mung bean plants for salt and drought tolerance by introducing a gene for an osmo-protectant glycine betaine. J Plant Stress Physiol 3:5

    Article  Google Scholar 

  • Bantignies B, Seguin J, Muzac I, Dedalde champ F, Gulick P, Ibrahim R (2000) Direct evidence for ribonucleolytic activity of a PR-10-like protein from white lupin roots. Plant Mol Biol 42:871–881

    Article  CAS  PubMed  Google Scholar 

  • Bao AK, Wang SM, Wu GQ, Xi JJ, Zhang JL, Wang CM (2009) Overexpression of the Arabidopsis H+-PPase enhanced resistance to salt and drought stress in transgenic alfalfa (Medicago sativa L.). Plant Sci 176:232–240

    Article  CAS  Google Scholar 

  • Barba-Espin G, Clemente-Moreno MJ, Alvarez S, García-Legaz MF, Hernández JA, Díaz-Vivancos P (2011) Salicylic acid negatively affects the response to salt stress in pea plants: effects on PR1b and MAPK expression. Plant Biol 13:909–917

    Article  CAS  PubMed  Google Scholar 

  • Barilli Cobos MJ, Carrillo E, Kilian A, Carling J, Rubiales D (2018) A high-density integrated DArTseq SNP-based genetic map of Pisum fulvum and identification of QTLs controlling rust resistance. Front Plant Sci 9:167

    Article  PubMed  Google Scholar 

  • Barilli E, Satovic Z, Sillero JC, Rubiales D, Torres AM (2011) Phylogenetic analysis of Uromyces species infecting grain and forage legumes by sequence analysis of nuclear ribosomal internal transcribed spacer region. J Phytopathol 159:137–145

    Article  CAS  Google Scholar 

  • Baulcombe DC (2000) Unwinding RNA silencing. Science 290:1108

    Article  CAS  PubMed  Google Scholar 

  • Bayliss KL, Wroth JM, Cowling WA (2004) Pro-embryos of Lupinus spp. Produced from isolated microspore culture. Aust J Agric Res 55:589–593

    Article  Google Scholar 

  • Bell CJ, Dixon RA, Farmer AD, Flores R, Inman J, Gonzales RA, Harrison MJ, Paiva NL, Scott AD, Weller JW, May GD (2001) The Medicago Genome Initiative: a model legume database. Nucleic Acids Res 29:114–117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bengough AG, McKenzie BM, Hallett PD, Valentine TA (2011) Root elongation, water stress, and mechanical impedance: a review of limiting stresses and beneficial root tip traits. J Exp Bot 62:59–68

    Article  CAS  PubMed  Google Scholar 

  • Bertaccini A, Franova J, Botti S, Tabanelli D (2005) Molecular characterization of phytoplasmas in lilies with fasciation in the Czech Republic. FEMS Microbiol Lett 249:79–85

    Article  CAS  PubMed  Google Scholar 

  • Bhagwat B, Duncan EJ (1998) Mutation breeding of banana cv. Highgate (Musa spp., AAA Group) for tolerance to Fusarium oxysporum f. sp. cubense using chemical mutagens. Sci Hortic 73:11–22

    Article  CAS  Google Scholar 

  • Bhatnagar MP, Devi MJ, Reddy DS, Lavanya M, Vadez V, Serraj RK (2007) Stress inducible expression of AtDREB1A in transgenic peanut (Arachis hypogaea L.) increases transpiration efficiency under water-limiting conditions. Plant Cell Rep 26:2071–2082

    Article  CAS  Google Scholar 

  • Bianco C, Defez R (2009) Medicago truncatula improves salt tolerance when nodulated by an indole-3-acetic acid-overproducing Sinorhizobium meliloti strain. J Exp Bot 60:3097–3107

    Article  CAS  PubMed  Google Scholar 

  • Boisson-Dernier A, Chabaud M, Garcia F, Becard G, Rosenberg C, Barker DG (2001) Agrobacterium rhizogenes-transformed roots of Medicago truncatula for the study of nitrogen-fixing and endomycorrhizal symbiotic associations. Mol Plant-Microbe Interact 14:695–700

    Article  CAS  PubMed  Google Scholar 

  • Bolhuis GG, De Groot W (1959) Observations on the effect of varying temperatures on the flowering and fruit set in three varieties of groundnut. Neth J Agric Sci 7:317–326

    Google Scholar 

  • Bray EA, Bailey SJ, Weretilnyk E (2000) Responses to abiotic stresses. In: Gruissem W, Buchannan B, Jones R (eds) Biochemistry and molecular biology of plants. American Society of Plant Physiologists, Rockville, pp 1158–1203

    Google Scholar 

  • Britt AB, May GD (2003) Re-engineering plant gene targeting. Trends Plant Sci 8:90–95

    Article  CAS  PubMed  Google Scholar 

  • Buchwaldt L, Anderson KL, Morrall RAA, Gossen BD, Bernier CC (2004) Identification of lentil germ plasm resistant to Colletotrichum truncatum and characterization of two pathogen races. Phytopathology 94:236–243

    Article  CAS  PubMed  Google Scholar 

  • Burrows M (2012) Diseases of cool season legumes (Pulse Crops: dry pea, lentil and chickpea). Montana State University Extension. EB0207, p 10

    Google Scholar 

  • Cabello JV, Giacomelli JI, Gómez MC, Chan RL (2017) The sunflower transcription factor HaHB11 confers tolerance to water deficit and salinity to transgenic Arabidopsis and alfalfa plants. J Biotechnol 257:35–46

    Article  CAS  PubMed  Google Scholar 

  • Canovas F, Dumas-Gaudot E, Recorbet G, Jorrin J, Mock HP, Rossignol M (2004) Plant proteome analysis. Proteomics 4:285–298

    Article  CAS  PubMed  Google Scholar 

  • Carmona MA, Gally ME, Lopez SE (2005) Asian soybean rust: incidence, severity, and morphological characterization of Phakopsora pachyrhizi (uredinia and telia) in Argentina. Plant Dis 89:109–109

    Article  CAS  PubMed  Google Scholar 

  • Castillo P, Navas-Cortés JA, Gomar-Tinoco D, Di Vito M, Jiménez-Díaz RM (2003) Interactions between Meloidogyne artiellia, the cereal and legume root-knot nematode, and Fusarium oxysporum f. sp. ciceris race 5 in chickpea. Phytopathology 93:1513–1523

    Article  PubMed  Google Scholar 

  • Castillo P, Navas-Cortés JA, Landa BB, Jiménez-Díaz RM, Vovlas N (2008) Plant-parasitic nematodes attacking chickpea and their in planta interactions with rhizobia and phytopathogenic fungi. Plant Dis 92:840–853

    Google Scholar 

  • Chadha P, Das RH (2006) A pathogenesis related protein, AhPR10 from peanut: an insight of its mode of antifungal activity. Planta 225:213–222

    Google Scholar 

  • Chandra A, Pental D (2003) Regeneration and genetic transformation of grain legumes: an overview. Curr Sci 84:381–387

    Google Scholar 

  • Chandrashekar N, Guptha O, Yelshetty S, Sharma OP, Bhagat S, Chattopadhay C, Sehgal M, Kumari A, Amerasan N, Sushil SN, Sinha AK, Asre R, Kapoor KS, Sathyagopal K, Jeyakumar P (2014) Integrated pest management for chickpea. National Centre for Integrated Pest Management, New Delhi, p 43

    Google Scholar 

  • Chaves MM, Flexas J, Pinheiro C (2009) Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell. Ann Bot 103:551–560

    Article  CAS  PubMed  Google Scholar 

  • Chen WQ, Singh KB (1999) The auxin, hydrogen peroxide and salicylic acid induced expression of the Arabidopsis GST6 promoter is mediated in part by an ocs element. Plant J 19:667–677

    Article  CAS  PubMed  Google Scholar 

  • Chen HM, Liu CA, Kuo CG, Chien CM, Sun HC, Huang CC (2007) Development of a molecular marker for a bruchid (Callosobruchus chinensis L.) resistance gene in mung bean. Euphytica 157:113–122

    Article  CAS  Google Scholar 

  • Chen JR, Lu JJ, Liu R, Xiong XY, Wang TX, Chen SY (2010) DREB1C from Medicago truncatula enhances freezing tolerance in transgenic M. truncatula and China rose (Rosa chinensis Jacq.). Plant Growth Regul 60:199–211

    Article  CAS  Google Scholar 

  • Chen W, Sharma HC, Muehlbauer FJ (2011) Compendium of chickpea and lentil diseases and pests. APS Press, St Paul

    Google Scholar 

  • Chen Y, Chi Y, Meng Q, Wang YD (2018) GmSK1, an SKP1 homologue in soybean, is involved in the tolerance to salt and drought. Plant Physiol Biochem 127:25–31

    Article  CAS  PubMed  Google Scholar 

  • Chinnusamy V, Schumaker K, Zhu JK (2004) Molecular genetics perspectives on cross-talk and specificity in abiotic stress signalling in plants. J Exp Bot 55:225–236

    Article  CAS  PubMed  Google Scholar 

  • Chintapalli PL, Moss JP, Sharma KK, Bhalla JK (1997) In vitro culture provides additional variation for pigeon pea Cajanus cajan (L) Millsp crop improvement. In Vitro Cell Dev Biol Plant 33:30–37

    Article  Google Scholar 

  • Cho SH, Muehlbauer FJ (2004) Genetic effect of differentially regulated fungal response genes on resistance to necrotrophic fungal pathogens in chickpea (Cicer arietinum L.). Physiol Mol Plant Pathol 64:57–66

    Article  CAS  Google Scholar 

  • Choudhary K, Singh M, Rathore MS, Shekhawat NS (2009) Somatic embryogenesis and in vitro plant regeneration in moth bean [Vigna aconitifolia (Jacq.) Marechal]: a recalcitrant grain legume. Plant Biotechnol Rep 3:205–211

    Article  Google Scholar 

  • Ciarmiello LF, Woodrow P, Fuggi A, Pontecorvo G, Carillo P (2011) Plant genes for abiotic stress. IntechOpen. https://doi.org/10.5772/22465

  • Conde A, Chaves MM, Geros H (2011) Membrane transport, sensing and signaling in plant adaptation to environmental stress. Plant Cell Physiol 52:1583–1602

    Article  CAS  PubMed  Google Scholar 

  • Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339:819–823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Constantin GD, Krath BN, MacFarlane SA, Nicolaisen M, Johansen IE, Lund OS (2004) Virus-induced gene silencing as a tool for functional genomics in a legume species. Plant J 40:622–631

    Article  CAS  PubMed  Google Scholar 

  • Constantin EC, Cleenwerck I, Maes M, Baeyen S, Van Malderghem C, De Vos P, Cottyn B (2016) Genetic characterization of strains named as Xanthomonas axonopodis pv. dieffenbachiae leads to a taxonomic revision of the X. axonopodis species complex. Plant Pathol 65:792–806

    Article  CAS  Google Scholar 

  • Cook DR (1999) Medicago truncatula – a model in the making! Commentary. Curr Opin Plant Biol 2:301–304

    Article  CAS  PubMed  Google Scholar 

  • Cormack MW, Moffatt JE (1956) Occurrence of the bacterial wilt organism in alfalfa seed. Phytopathology 46:407–409

    Google Scholar 

  • Cornelious B, Chen P, Chen Y, de Leon N, Shannon JG, Wang D (2005) Identification of QTLs underlying water-logging tolerance in soybean. Mol Breed 16:103–112

    Article  Google Scholar 

  • Cui XH, Hao FS, Chen H, Chen J, Wang XC (2008) Expression of the Vicia faba VfPIP1 gene in Arabidopsis thaliana plants improves their drought resistance. J Plant Res 121:207–214

    Article  CAS  PubMed  Google Scholar 

  • Curtin SJ, Xiong Y, Michno JM, Campbell BW, Stec AO, Cermak T (2018) CRISPR/Cas9 and TALENs generate heritable mutations for genes involved in small RNA processing of Glycine max and Medicago truncatula. Plant Biotechnol J 16:1125–1137

    Article  CAS  PubMed  Google Scholar 

  • Dabuxilatu MI, Ikeda M (2005) Distribution of K, Na and Cl in root and leaf cells of soybean and cucumber plants grown under salinity conditions. Soil Sci Plant Nutr 51:1053–1057

    Article  CAS  Google Scholar 

  • Daryanto S, Wang L, Jacinthe PA (2015) Global synthesis of drought effects on food legume production. PLoS One 10(6):e0127401

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Das TK (2008) Weed Science: Basics and applications. Jain Brothers, New Delhi, pp 666–679

    Google Scholar 

  • Davidson JA, Pande S, Bretag TW, Lindbeck KD, Krishna-Kishore G (2004) Biology and management of Botrytis spp. in legume crops. In: Elad Y, Williamson B, Tudzynski P, Denle N (eds) Botrytis: biology, pathology and control. Kluwer Academic Publishers, Dordrecht, pp 295–318

    Google Scholar 

  • De Clercq J, Zambre M, Van Montagu M, Dillen W, Angenon G (2002) An optimized Agrobacterium-mediated transformation procedure for Phaseolus acutifolius A. Gray. Plant Cell Rep 21:333–340

    Article  CAS  Google Scholar 

  • De Coninck B, Timmermans P, Vos C, Cammue BP, Kazan K (2015) What lies beneath: belowground defense strategies in plants. Trends Plant Sci 20:91–101

    Article  PubMed  CAS  Google Scholar 

  • Del Rio D, Stewart AJ, Pellegrini N (2005) A review of recent studies on malondialdehyde as toxic molecule and biological marker of oxidative stress. Nutr Metab Cardiovasc 15:316–328

    Article  Google Scholar 

  • Den Herder G, Van Isterdael G, Beeckman T, De Smet I (2010) The roots of a new green revolution. Trends Plant Sci 15:600–607

    Article  CAS  Google Scholar 

  • Deokar AA, Kondawar V, Jain PK, Karuppayil SM, Raju NL, Vadez V (2011) Comparative analysis of expressed sequence tags (ESTs) between drought-tolerant and -susceptible genotypes of chickpea under terminal drought stress. BMC Plant Biol 11:70

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Desbrosses GG, Kopka J, Udvardi MK (2005) Lotus japonicus metabolic profiling. Development of gas chromatography-mass spectrometry resources for the study of plant16 microbe interactions. Plant Physiol 137:1302–1318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dhandaydham M, Charles L, Zhu H, Starr JL, Huguet T, Cook DR, Prosperi JM, Opperman C (2008) Characterization of root-knot nematode resistance in Medicago truncatula. J Nematol 40:46–54

    PubMed  PubMed Central  Google Scholar 

  • Diatchenko L, Lau YFC, Campbell AP, Chenchik A, Moqadam F, Huang B, Lukyanov S, Lukyanov K, Gurskaya N, Sverdlov ED, Siebert PD (1996) Suppression subtractive hybridization: a method for generating differentially regulated or tissue. Proc Natl Acad Sci U S A 93:6025–6030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Diers B (2004) Soybean genetic improvement through conventional and molecular based strategies. In: 5th European Conference on Grain Legumes, Djion, France, 7–11 June, 2004. AEP, 147–14

    Google Scholar 

  • Dixon RA (2001) Natural products and plant disease resistance. Nature 411: 843-847

    Google Scholar 

  • Dixon RA, Sumner LW (2003) Legume natural products: understanding and manipulating complex pathways for human and animal health. Plant Physiol 131:878–885

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dudal R (1976) Inventory of major soils of the world with special reference to mineral stress. In: Wright MJ (ed) Plant adaption to mineral stress in problem soils. Cornell University Agricultural Experiement Station, Ithaca, pp 3–23

    Google Scholar 

  • Dunwell JM (2000) Crop genomics: progress and prospects. J Chem Technol Biotechnol 75:913–918

    Article  CAS  Google Scholar 

  • Duque AS, Almeida A, Silva AB, Silva JM, Farinha AP, Santos D, Fevereiro P, Araujo SS (2013) Abiotic stress responses in plants: unraveling the complexity of genes and networks to survive. In: Vahdati K, Leslie C (eds) Abiotic stress: plant responses and applications in agriculture. InTech, New York

    Google Scholar 

  • Edwards O, Singh KB (2006) Resistance to insect pests: what do legumes have to offer? Euphytica 147:273–385

    Article  Google Scholar 

  • Eichenlaub R, Gartemann KH (2011) The Clavibacter michiganensis subspecies: molecular investigation of gram-positive bacterial plant pathogens. Ann Rev Phytopathol 49:445–464

    Google Scholar 

  • Elmaghrabi AM, Ochatt S, Rogers HJ, Francis D (2013) Enhanced tolerance to salinity following cellular acclimation to increasing NaCl levels in Medicago truncatula. Plant Cell Tissue Organ Cult 114:61–70

    Article  CAS  Google Scholar 

  • Emeran AA, Sillero JC, Niks RE, Rubiales D (2005) Infection structures of host-specialized isolates of Uromyces viciae-fabae and of other species of Uromyces infecting leguminous crops. Plant Dis 89:17–22

    Article  CAS  PubMed  Google Scholar 

  • Emeran AA, Román B, Sillero JC, Satovic Z, Rubiales D (2008) Genetic variation among and within Uromyces species infecting legumes. J Phytopathol 156:419–424

    Article  CAS  Google Scholar 

  • Eulgem T (2005) Regulation of the Arabidopsis defense transcriptome. Trends Plant Sci 10:71–78

    Article  CAS  PubMed  Google Scholar 

  • Falloon RE, Viljanen-Rollinson SLH (2001) Powdery mildew. In: Kraft JM, Plfleger FL (eds) Compendium of pea diseases and pests. American Phytopathological Society, St. Paul, pp 28–29

    Google Scholar 

  • Fan WH, Dong XN (2002) In vivo interaction between NPR1 and transcription factor TGA2 leads to salicylic acid-mediated gene activation in Arabidopsis. Plant Cell 14:1377–1389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fang Y, Tyler BM (2016) Efficient disruption and replacement of an effector gene in the oomycete Phytophthora sojae using CRISPR/Cas9. Mol Plant Pathol 17:127–139

    Article  CAS  PubMed  Google Scholar 

  • Fininsa C, Tefera T (2001) Effect of primary inoculum sources of bean common bacterial blight on early epidemics, seed yield and quality aspects. Int J Pest Manag 47:221–225

    Article  Google Scholar 

  • Flowers TJ (2004) Improving crop salt tolerance. J Exp Bot 55:307–319

    Article  CAS  PubMed  Google Scholar 

  • Flowers TJ, Yeo AR (1989) Effects of salinity on plant growth and crop yields. In: Cherry JH (ed) Environmental stress in plants, North Atlantic Treaty Organization Advanced Science Institutes Series vol G19. pp 101–119

    Google Scholar 

  • Flowers TJ, Yeo AR (1995) Breeding for salinity resistance in crop plants – where next. Aust J Plant Physiol 22:875–884

    Google Scholar 

  • Foolad MR (2004) Recent advances in genetics of salt tolerance in tomato. Plant Cell Tissue Organ Cult 76:101–119

    Article  CAS  Google Scholar 

  • Foster-Hartnett D, Danesh D, Penuela S, Sharopova N, Endre G, Vanden BKA, Young ND, Samac DA (2007) Molecular and cytological responses of Medicago truncatula to Erysiphe pisi. Mol Plant Pathol 8:307–319

    Article  CAS  PubMed  Google Scholar 

  • France RA, Abawi GS (1994) Interaction between Meloidogyne incognita and Fusarium oxysporum f. sp. phaseoli on selected bean genotypes. J Nematol 26:467–474

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fu Q, Yu D (2010) Expression profiles of AtWRKY25, AtWRKY26 and AtWRKY33 under abiotic stresses. Yi chuan Hereditas 32:848–856

    Article  CAS  PubMed  Google Scholar 

  • Fuller MP, Eed MHI (2003) The development of multiple stress-resistant cauliflower using mutagenesis in conjunction with a micro shoot tissue culture technique. In: XXVI international horticultural congress: environmental stress and horticulture crops, Toronto, Canada, 2003. Ed I.A. Horticulturae

    Google Scholar 

  • Gao H, Narayanan NN, Ellison L, Bhattacharyya MK (2005) Two classes of highly similar coiled coil-nucleotide binding-leucine rich repeat genes isolated from the Rps1-k locus encode Phytophthora resistance in soybean. Mol Plant-Microbe Interact 18:1035–1045

    Article  CAS  PubMed  Google Scholar 

  • Garza R, Cardona C, Singh SP (1996) Inheritance of resistance to the bean-pod weevil (Apion godmani Wagner) in common beans from Mexico. Theor Appl Genet 92:357–362

    Article  CAS  PubMed  Google Scholar 

  • Gibberd M, Gray JD, Cocks PS, Colmer TD (2001) Waterlogging tolerance among a diverse range of Trifolium accessions is related to root porosity, lateral root formation and ‘aerotropic rooting’. Ann Bot 88:579–589

    Article  Google Scholar 

  • Gidoni D, Brosio P, Bond-Nutter D, Bedbrook J, Dunsmuir P (1989) Novel cis-acting elements in petunia Cab gene promoters. Mol Gen Genet 215:337–344

    Article  CAS  PubMed  Google Scholar 

  • Gillard CL, Conner RL, Howard RJ, Pauls KP, Shaw L, Taran B (2009) The performance of dry bean cultivars with and without common bacterial blight resistance in field studies across Canada. Can J Plant Sci 89:405–410

    Article  Google Scholar 

  • Githiri SM, Watanabe S, Harada K, Takahashi R (2006) QTL analysis of flooding tolerance in soybean at anearly vegetative growth stage. Plant Breed 125:613–618

    Article  CAS  Google Scholar 

  • Giuliano G, Pichersky E, Malik VS, Timko MP, Scolnic PA, Cashmore AR (1988) An evolutionarily conserved protein binding sequence upstream of a plant light-regulated gene. Proc Natl Acad Sci U S A 85:7089–7093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Glazebrook J (2005) Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annu Rev Phytopathol 43:205–227

    Article  CAS  PubMed  Google Scholar 

  • Graham MA, Ramırez M, Valdes-Lopez O, Lara M, Tesfaye M, Vance CP, Hernandez G (2006) Identification of candidate phosphorus stress induced genes in Phaseolus vulgaris L. through clustering analysis across several plant species. Funct Plant Biol 33:789–797

    Article  CAS  PubMed  Google Scholar 

  • Griga M, Stejskal J, Beber K (1995) Analysis of tissue culture-derived variation in pea (Pisum sativum L). Preliminary results. Euphytica 85:335–339

    Article  Google Scholar 

  • Guenther JF, Chanmanivone N, Galetovic MP, Wallace IS, Cobb JA, Roberts DM (2003) Phosphorylation of soybean nodulin 26 on serine 262 enhances water permeability and is regulated developmentally and by osmotic signals. Plant Cell 15:981–991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gulati A, Schryer P, McHughen A (2002) Production of fertile transgenic lentil (Lens culinaris Medik) plants using particle bombardment. In Vitro Cell Dev Biol Plant 38:316–324

    Article  CAS  Google Scholar 

  • Guptha AK, Hasan W, Singh D (2014) Integrated management of major pests and diseases in pigeonpea. Krishi Sewa e Publication, 20 Sept 2014

    Google Scholar 

  • Gygi SP, Aebersold R (2000) Mass spectrometry and proteomics. Curr Opin Chem Biol:489–494

    Google Scholar 

  • Hammer GL, Dong ZS, McLean G, Doherty A, Messina C, Schusler J, Zinselmeier C, Paszkiewicz S, Cooper M (2009) Can changes in canopy and/or root system architecture explain historical maize yield trends in the US corn belt? Crop Sci 49:299–312

    Article  Google Scholar 

  • Hammett KRW, Murray BG, Markham KR, Hallett IC (1994) Interspecific hybridization between Lathyrus odoratus and L. belinensis. Int J Plant Sci 155:763–771

    Article  Google Scholar 

  • Hamwieh A, Udupa SM, Choumane W, Sarker A, Dreyer F, Jung C, Baum M (2005) A genetic linkage map of Lens sp based on microsatellite and AFLP markers and the localization of fusarium vascular wilt resistance. Theor Appl Genet 110:669–677

    Article  CAS  PubMed  Google Scholar 

  • Handberg K, Stiller J, Thykjær T, Stougaard J (1994) Transgenic plants: Agrobacterium mediated transformation of the diploid model legume Lotus japonicus. In: Cells JE (eds) Cell biology: a laboratory handbook. Academic Press

    Google Scholar 

  • Hannon G (2002) Mechanisms and application of RNA interference. Biol Reprod 66:70

    Google Scholar 

  • Hao X, Li P, Feng Y, Han X, Gao J, Lin E, Han Y (2013) Effects of fully open-air (CO2) elevation on leaf photosynthesis and ultrastructure of Isatis indigotica Fort. PLoS ONE 8:e74600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He XZ, Dixon RA (2000) Genetic manipulation of isoflavone 7-O-methyltransferase enhances biosynthesis of 4′-O-methylated iso flavonoid phytoalexins and disease resistance in alfalfa. Plant Cell 12:1689–1702

    CAS  PubMed  PubMed Central  Google Scholar 

  • He SY, Jin Q (2003) The Hrp pilus: learning from flagella. Curr Opin Microbiol 6:15–19

    Article  CAS  PubMed  Google Scholar 

  • Henshaw TL, Gilbert RA, Scholberg JMS, Sinclair TR (2007) Soya bean (Glycine max L. Merr.) genotype response to early-season flooding: I. Root and nodule development. J Agron Crop Sci 193:177–188

    Google Scholar 

  • Higgins TJV, Gollasch S, Molvig L, Moore A, Popelka C, Armstrong J, Mahon R, Ehlers J, Huesing J, Margam V, Shade R, Murdock L (2012) Insect-protected cowpeas using gene technology. In: Boukar OC, Fatokun CA, Lopez K, Tamo M (eds) Innovative research along the cowpea value chain. Proceedings of the fifth world cowpea conference, Saly, Senegal, pp 131–137

    Google Scholar 

  • Hiremath PJ, Farmer A, Cannon SB, Woodward J, Kudapa H, Tuteja R, Kumar A, Bhanuprakash A, Mulaosmanovic B, Gujaria N (2011) Large-scale transcriptome analysis in chickpea (Cicer arietinum L.), an orphan legume crop of the semi-arid tropics of Asia and Africa. Plant Biotechnol J 9:922–931

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hogenhout SA, Ammar ED, Whitfield AE, Redinbaugh MG (2008) Insect vector interactions with persistently transmitted viruses. Annu Rev Phytopathol 46:327–359

    Article  CAS  PubMed  Google Scholar 

  • Hu HH, Dai MQ, Yao JL, Xiao BZ, Li XH, Zhang QF (2006) Overexpressing aNAM, ATAE and CUC (NAC) transcription factor enhances drought resistance and salt tolerance in rice. Proc Natl Acad Sci U S A 103:12987–12992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Infantino A, Kharrat M, Riccioni L, Coyne CJ, McPhee KE, Grunwald NJ (2006) Screening techniques and sources of resistance to root diseases in cool season food legumes. Euphytica 147:201–221

    Article  Google Scholar 

  • International Committee on Taxonomy of Viruses (ICTV) (2012) USA 109: 1011–1018

    Google Scholar 

  • Iqbal MJ, Yaegashi S, Ahsan R, Shopinski KL, Lightfoot DA (2005) Root response to Fusarium solani f. sp. glycines: temporal accumulation of transcripts in partially resistant and susceptible soybean. Theor Appl Genet 110:1429–1438

    Article  CAS  PubMed  Google Scholar 

  • Jackson MB, Ram PC (2003) Physiological and molecular basis of susceptibility and tolerance of rice plants to complete submergence. Ann Bot 91:227–241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jagtap GP, Dhopte SB, Dey U (2012) Bio-efficacy of different antibacterial antibiotic, plant extracts and bioagents against bacterial blight of soybean caused by Pseudomonas syringae pv. glycinea. Sci J Microbiol 1:1–9

    Google Scholar 

  • Jiang H, Liao B, Ren X, Lei Y, Mace E, Fu T, Crouch JH (2007) Comparative assessment of genetic diversity of peanut (Arachis hypogaea L.) genotypes with various levels of resistance to bacterial wilt through SSR and AFLP analyses. J Genet Genomics 34:544–554

    Article  CAS  PubMed  Google Scholar 

  • Jiang W, Zhou H, Bi H, Fromm M, Yang B, Weeks DP (2013) Demonstration of CRISPR/Cas9/sgRNA-mediated targeted gene modification in Arabidopsis, tobacco, sorghum and rice. Nucleic Acids Res 41:e188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiao Y, Lau OS, Wang DX (2007) Light-regulated transcriptional networks in higher plants. Nat Rev Genet 8:217

    Article  CAS  PubMed  Google Scholar 

  • Jitsuyama Y (2015) Morphological root responses of soybean to rhizosphere hypoxia reflect waterlogging tolerance. Can J Plant Sci 95:999–1005

    Article  CAS  Google Scholar 

  • Kamphuis LG, Williams AH, Küster H, Trengove RD, Singh KB, Oliver RP, Ellwood SR (2012) Phoma medicaginis stimulates the induction of the octadecanoid and phenylpropanoid pathways in Medicago truncatula. Mol Plant Pathol 13:593–603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kang J, Xie W, Sun Y, Yang Q, Wu M (2010) Identification of genes induced by salt stress from Medicago truncatula L. seedlings. Afric. J Biotechnol 9:7589–7594

    CAS  Google Scholar 

  • Kareem KT, Taiwo MA (2007) Interaction of viruses in cowpea: effect on growth and yield parameters. Virol J 4:15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karpinski S, Escobar C, Karpinska B, Creissen G, Mullineaux PM (1997) Photosynthetic electron transport regulates the expression of cytosolic ascorbate peroxidase genes in Arabidopsis during excess light stress. Plant Cell 9:627–640

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kassem MA, Meksem K, Kang CH, Njiti VN, Kilo V, Wood AJ, Lightfoot DA (2004) Loci underlying resistance to manganese toxicity mapped in a soybean recombinant inbred line population of ‘Essex’ x ‘Forrest’. Plant Soil 260:197–204

    Article  CAS  Google Scholar 

  • Kato T, Sato S, Nakamura Y, Kaneko T, Asamizu E, Tabata S (2003) Structural analysis of a Lotus japonicus genome. V. Sequence features and mapping of sixty-four TAC clones which cover the 6.4 Mb regions of the genome. DNA Res 10:277–285

    Article  CAS  PubMed  Google Scholar 

  • Keneni G, Bekele E, Getu E, Imtiaz M, Damte BM, Dagne K (2011) Breeding food legumes for resistance to storage insect pests: potential and limitations. Sustainability 3:1399–1415

    Article  Google Scholar 

  • Khan AJ, Hassan S, Tariq M, Khan T (2001) Haploidy breeding and mutagenesis for drought tolerance in wheat. Euphytica 120:409–414

    Article  Google Scholar 

  • Kim GB, Nam YW (2013) A novel _1-pyrroline-5-carboxylate synthetase gene of Medicago truncatula plays a predominant role in stressinduced proline accumulation during symbiotic nitrogen fixation. J Plant Physiol 170:291–302

    Article  CAS  PubMed  Google Scholar 

  • Kim JB, Kang JY, Kim SY (2004) Over-expression of a transcription factor regulating ABA-responsive gene expression confers multiple stress tolerance. Plant Biotechnol J 2:459–466

    Article  CAS  PubMed  Google Scholar 

  • Kim CS, Schaible GD, Garrett L, Lubowski RN, Lee DJ (2008) Economic impacts of the US soybean aphid infestation: a multi-regional competitive dynamic analysis. Agric Resour Econ Rev 37:227–242

    Article  Google Scholar 

  • Kim YH, Hwang S, Wagas M, Khan AL, Lee JH, Lee JD, Nguyen HT, Lee IJ (2015) Comparative analysis of endogenous hormones level in two soybean (Glycine max L.) lines differing in waterlogging tolerance. Front Plant Sci 6:714

    Article  PubMed  PubMed Central  Google Scholar 

  • Kim HJ, Cho HS, Pak JH, Kwon T, Lee J, Kim D, Lee DH, Kim C, Chung Y (2018) Molecules and cells confirmation of drought tolerance of ectopically expressed AtABF3 gene in soybean. Mol Cell 41:413–422

    CAS  Google Scholar 

  • Klimczak LJ, Colline MA, Farini D (1995) Reconstitution of Arabidopsis casein kinase II from recombinant subunits and phosphorylation of transcription factor GBF1. Plant Cell 7:105–115

    CAS  PubMed  PubMed Central  Google Scholar 

  • Koenning SR, Overstreet C, Noling JW, Donald PA, Becker JO, Fortnum BA (1999) Survey of crop losses in response to phytoparasitic nematodes in the United States for 1994. J Nematol 31:587–618

    CAS  PubMed  PubMed Central  Google Scholar 

  • Komatsu S, Deschamps T, Hiraga S, Kato M, Chiba M, Hashiguchi A, Tougou M, Shimamura S, Yasue H (2011) Characterization of a novel flooding stress-responsive alcohol dehydrogenase expressed in soybean roots. Plant Mol Biol 77:309–322

    Article  CAS  PubMed  Google Scholar 

  • Kraft JM, Pfleger FL (2001) Compendium of pea diseases and pests. APS Press, St Paul

    Google Scholar 

  • Kulikova O, Gualtieri G, Geurts R, Kim DJ, Cook D, Huguet T, de Jong JH, Fransz PF, Bisseling T (2001) Integration of the FISH pachytene and genetic maps of Medicago truncatula. Plant J 27:49–58

    Article  CAS  PubMed  Google Scholar 

  • Kumar S, Malik J, Thakur P, Kaistha S, Sharma KD, Upadhyaya HD, Berger JD, Nayyar H (2011) Growth and metabolic responses of contrasting chickpea (Cicer arietinum L.) genotypes to chilling stress at reproductive phase. Acta Physiol Plant 33:779–787

    Article  CAS  Google Scholar 

  • Kumar S, Kaushal N, Nayyar H, Gaur P (2012) Abscisic acid induces heat tolerance in chickpea (Cicer arietinum L.) seedlings by facilitated accumulation of osmoprotectants. Acta Physiol Plant 34:1651–1658. https://doi.org/10.1007/s11738-012-0959-1

    Article  CAS  Google Scholar 

  • Kushwaha C, Chand R, Srivastava C (2006) Role of aeciospores in outbreaks of pea (Pisum sativum) rust (Uromyces fabae). Eur J Plant Pathol 115:323–330

    Article  Google Scholar 

  • Larkin PJ, Scowcroft WR (1981) Somaclonal variation – a novel source of variability from cell-cultures for plant Improvement. Theor Appl Genet 60:197–214

    Google Scholar 

  • Lazaridou TB, Roupakias DG, Economou AS (1993) Embryo rescue in Vicia faba and Vicia narbonensis. Plant Cell Tissue Organ Cult 33:297–301

    Article  Google Scholar 

  • Lee GJ, Boerma HR, Villagarcia MR, Zhou XT, Carter E, Li Z, Gibbs MO (2004) A major QTL conditioning salt tolerance in S-100 soybean and descendent cultivars. Theor Appl Genet 109:1610–1619

    Article  CAS  PubMed  Google Scholar 

  • Lee HA, Lee HY, Seo E, Lee J, Kim SB, Oh S (2017) Current understandings of plant nonhost resistance. Mol Plant-Microbe Interact 30:5–15

    Article  CAS  PubMed  Google Scholar 

  • Levitt J (1980) Responses of plant to environmental stresses, 2nd edn. Academic Press, New York

    Google Scholar 

  • Lewis G, Schrire B, Mackinder B, Lock M (2005) Legumes of the world. Royal Botanic Gardens, Kew

    Google Scholar 

  • Li HY, Zhu YM, Chen Q, Conner RL, Ding XD, Li J, Zhang BB (2004) Production of transgenic soybean plants with two anti-fungal protein genes via Agrobacterium and particle bombardment. Biol Plant 48:367–374

    Article  CAS  Google Scholar 

  • Li WYF, Wong FL, Tsai SN, Phang TH, Shao G, Lam HM (2006) Tonoplast-located GmCLC1 and GmNHX1 from soybean enhance NaCl tolerance in transgenic bright yellow (BY)-2 cells. Plant Cell Environ 29:1122–1137

    Article  CAS  PubMed  Google Scholar 

  • Li D, Zhang Y, Hu X, Shen X, Ma L, Su Z, Wang T, Dong J (2011) Transcriptional profiling of Medicago truncatula under salt stress identified a novel CBF transcription factor MtCBF4 that plays an important role in abiotic stress responses. BMC Plant Biol 11:109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li H, Wang Z, Ke Q, Ji CY, Jeong JC, Lee HS, Lim YP, Xu B, Deng XP, Kwak SS (2014) Overexpression of codA gene confers enhanced tolerance to abiotic stresses in alfalfa. Plant Physiol Biochem 85:31–40

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Chen Q, Nan H, Li X, Lu S, Zhao X, Liu B, Guo C, Kong F, Cao D (2017) Over expression of GmFDL19 enhances tolerance to drought and salt stresses in soybean. PLoS ONE 12:e0179554

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li DH, Li W, Li HY, Guo JJ, Chen FJ (2018a) The soybean GmRACK1 gene plays a role in drought tolerance at vegetative stages. Russ J Plant Physiol 65:541–552

    Article  CAS  Google Scholar 

  • Li J, Zhang Y, Zhang Y, Yu P, Pan PL, Rollins JA (2018b) Introduction of large sequence inserts by crispr-cas9 to create pathogenicity mutants in the multinucleate filamentous pathogen Sclerotinia sclerotiorum. MBio 9:e00567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu YH, Offler CE, Ruan YL (2013) Regulation of fruit and seed response to heat and drought by sugars as nutrients and signals. Front Plant Sci 4:282

    Article  PubMed  PubMed Central  Google Scholar 

  • Loebenstein G, Thottapilly G (2003) Virus and virus-like diseases of major crops in developing countries. Sweet Potato. Academic Publishers pp 223–248

    Google Scholar 

  • Lopez M, Tejera NA, Iribarne C, Lluch C, Herrera-Cervera JA (2008) Trehalose and trehalase in root nodules of Medicago truncatula and Phaseolus vulgaris in response to salt stress. Physiol Plant 134:575–582

    Article  CAS  PubMed  Google Scholar 

  • Lozovaya VV, Lygin AV, Li S, Hartman GL, Widhohn JM (2004) Biochemical response of soybean roots to Fusarium solani f. sp glycines infection. Crop Sci 44:819–826

    CAS  Google Scholar 

  • Luo Q, Yua B, Liua Y (2005) Differential sensitivity to chloride and sodium ions in seedlings of Glycine max and G. soja under NaCl stress. J Plant Physiol 162:1003–1012

    Article  CAS  PubMed  Google Scholar 

  • Mackie JM, Musial JM, Armour DJ, Phan HTT, Ellwood SE, Aitken KS, Irwin JAG (2007) Identification of QTL for reaction to three races of Colletotrichum trifolii and further analysis of inheritance of resistance in autotetraploid lucerne. Theor Appl Genet 114:1417–1426

    Article  CAS  PubMed  Google Scholar 

  • Makkouk KM, Kumari SG (2009) Epidemiology and integrated management of persistently transmitted aphid-borne viruses of legume and cereal crops in West Asia and North Africa. Virus Res 141:209–218

    Article  CAS  PubMed  Google Scholar 

  • Makkouk KM, Kumari SG, van Leur JAG, Jones RAC (2014) Control of plant virus diseases in cool-season grain legume crops. Adv Virus Res 90:207–253

    Article  PubMed  Google Scholar 

  • Mallikarjuna N, Moss JP (1995) Production of hybrids between Cajanus platycarpus and Cajanus cajan. Euphytica 83:43–46

    Article  Google Scholar 

  • Martin GB, Bogdonove AJ, Sessa G (2003) Understanding the functions of plant disease resistance proteins. Annu Rev Plant Biol 54:23–61

    Article  CAS  PubMed  Google Scholar 

  • Massoud FI (1974) Salinity and alkalinity. In: A world assessment of soil degradation. An international program of soil conservation. Report of an expert consultation on soil degradation. FAO, UNEP, Rome, pp 16–17

    Google Scholar 

  • Mehrtens F, Kranz H, Bednarek P, Weisshaar B (2005) The Arabidopsis transcription factor MYB12 is a flavonol-specific regulator of phenylpropanoid biosynthesis. Plant Physiol 138:1083–1096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Merchan F, de Lorenzo L, Rizzo SG, Niebel A, Manyani H, Frugier F, Sousa C, Crespi M (2007) Identification of regulatory pathways involved in the reacquisition of root growth after salt stress in Medicago truncatula. Plant J 51:11–17

    Article  CAS  Google Scholar 

  • Mhadhbi H, Fotopolos V, Mylona PV, Jebara M, Aouani ME, Polidoros AN (2011) Antioxidant gene-enzyme responses in Medicago truncatula genotypes with different degree of sensitivity to salinity. Physiol Plant 141:201–214

    Article  CAS  PubMed  Google Scholar 

  • Michno JM, Wang X, Liu J, Curtin SJ, Kono TJ, Stupar RM (2015) CRISPR/Cas mutagenesis of soybean and Medicago truncatula using a new web-tool and a modified Cas9 enzyme. GM Crops Food 6:243–252

    Article  PubMed  PubMed Central  Google Scholar 

  • Miklas PN, Kelly JD, Beebe SE, Blair MW (2006) Common bean breeding for resistance against biotic and abiotic stresses: from classical to MAS breeding. Euphytica 147:105–131

    Article  CAS  Google Scholar 

  • Miller RW, Donahue RL (1990) Chelates and nutrient availability. In: Miller RW, Donahue RL (eds) Soils, an introduction to soils and plant growth. Prentice-Hall Inc, Englewood Cliffs, pp 295–296

    Google Scholar 

  • Miller PR, Mc Conkey BG, Clayton GW, Brandt SA, Staricka JA, Johnston AM (2002) Pulse crop adaptation in the northern great plains. Agron J 94:261–272

    Article  Google Scholar 

  • Mingpeng H, Yongge G, Chengzhang W, Fangrui S, Yanhua W, Xiaoxia Z (2010) Related studies on the effects of high temperature stress on alfalfa and its heat resistance mechanism. Genom Appl Biol 29:563–569

    Google Scholar 

  • Morphew R, Arndt R, Lauter C, Tesfaye M, Samac D, Temple G (2004) Characterization of altered metabolism in transgenic alfalfa overexpressing malate dehydrogenase to confer aluminum tolerance. Abstr Pap Am Chem Soc 227:148

    Google Scholar 

  • Moy P, Qutob D, Chapman BP, Atkinson I, Gijzen M (2004) Patterns of gene expression upon infection of soybean plants by Phytophthora sojae. Mol Plant-Microbe Interact 17:1051–1062

    Article  CAS  PubMed  Google Scholar 

  • Mutlu N, Miklas P, Reiser J, Coyne D (2005) Backcross breeding for improved resistance to common bacterial blight in pinto bean (Phaseolus vulgaris L.). Plant Breed 124:282–287

    Article  Google Scholar 

  • Nayak SN, Balaji J, Upadhyaya HD, Hash CT, Kishor PBK, Blair MW, Baum M, Chattopadhyay D, Marı L, Mcnally K (2009) Plant science isolation and sequence analysis of DREB2A homologues in three cereal and two legume species. Plant Sci 177:460–467

    Article  CAS  Google Scholar 

  • Nayyar H, Bains TS, Kumar S (2005) Chilling stressed chickpea seedlings: effect of cold acclimation, calcium and abscisic acid on cryoprotective solutes and oxidative damage. Environ Exp Bot 54:275–285. https://doi.org/10.1016/j.envexpbot.2004.09.007

    Article  CAS  Google Scholar 

  • Nemeskeri E (2004) Study of heat tolerance during germination in grain legumes. In: ISTA seed symposium. Abstracts. Budapest, Hungary, 17–19 May, pp 85–86

    Google Scholar 

  • Nene YL, Reddy MV (1987) Chickpea diseases and their control. In: Saxena MC, Singh KB (eds) The chickpea, CAB International, Oxon, pp 233–270

    Google Scholar 

  • Newton AC, Johnson SN, Gregory PJ (2011) Implications of climate change for diseases, crop yields and food security. Euphytica 179:3–18

    Article  Google Scholar 

  • Nguyen VT, Vuong TD, Van TT, Lee JD, Wu X, Mian MAR, Dorrance AE, Shannon JG, Nguyen HT (2012) Mapping of quantitative trait loci associated with resistance to and flooding tolerance in soybean. Crop Sci 52:2481–2493

    Article  CAS  Google Scholar 

  • Nguyen VL, Takahashi R, Githiri SM, Rodriguez TO, Tsutsumi N, Kajihara S, Sayama T, Ishimoto M, Harada K, Suematsu K (2017) Mapping quantitative trait loci for root development under hypoxia conditions in soybean (Glycine max L. Merr.). Theor Appl Genet 130:743–755

    Article  CAS  PubMed  Google Scholar 

  • Nigam SN, Prasada Rao RDVJ, Bhatnagar-Mathur P, Sharma KK (2012) Genetic management of virus diseases in peanut. Plant Breeding Rev 36:293–356

    Google Scholar 

  • Onate SL, Singh KB (2002) Identification of Arabidopsis ethylene-responsive element binding factors with distinct induction kinetics after pathogen infection. Plant Physiol 128:1313–1322

    Article  CAS  Google Scholar 

  • Ouedraogo JT, Tignegre JB, Timko P, Belzile FJ (2002) AFLP markers linked to resistance against Striga gesnerioides race 1 in cowpea (Vigna unguiculata). Genome 45(3):787–793

    Article  CAS  PubMed  Google Scholar 

  • Ozawa R, Arimura G, Takabayashi J, Shimoda T, Nishioka T (2000) Involvement of jasmonate- and salicylate-related signalling pathways for the production of specific herbivore-induced volatiles in plants. Plant Cell Physiol 41:391–398

    Google Scholar 

  • Palta JA, Ganjeali A, Turner NC, Siddique KHM (2010) Effects of transient subsurface waterlogging on root growth, plant biomass and yield of chickpea. Agric Water Manag 97:1469–1476

    Article  Google Scholar 

  • Pande S, Stevenson PC, Rao JN, Neupane RK, Grzywacz D, Bourai VA, Krishna-Kishnore G (2005) Riviving chickpea production in Napel through integrated crop management, with emphasis on botrytis gray mold. Plant Dis 89:1252–1262

    Article  CAS  PubMed  Google Scholar 

  • Pande S, Sharma M, Kumari S, Gaur PM, Chen W, Kaur L, MacLeod W, Basandrai A, Basandrai D, Bakr A, Sandhu JS, Tripathi HS, Gowda CLL (2009) Integrated foliar diseases management of legumes. In: Proceedings of international conference on grain legumes: quality improvement, value addition and trade, 14–16 February 2009. Indian Institute of Pulses Research, Kanpur, pp 143–167

    Google Scholar 

  • Parker C (2009) Observations on the current status of Orobanche and Striga problems worldwide. Pest Manag Sci 65:453–459

    Article  CAS  PubMed  Google Scholar 

  • Pedrosa A, Sandal N, Stougaard J, Schweizer D, Bachmair A (2002) Chromosomal map of the model legume Lotus japonicus. Genetics 161:1661–1672

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pessarakli M (1999) Response of green beans (Phaseolus vulgaris L.) to salt stress. In: Pessarakli M (ed) Handbook of plant and crop stress, 2nd edn. MARCED LEKKERIN, C.E.E.U.U, New York, pp 827–842

    Chapter  Google Scholar 

  • Pfannschmidt T, Nilsson A, Allen JF (1999) Photosynthetic control of chloroplast gene expression. Nature 397:625–628

    Article  CAS  Google Scholar 

  • Piramila BHM, Prabha AL, Nandagopalan V, Stanley AL (2012) Effect of heat treatment on germination, seedling growth and some biochemical parameters of dry seeds of black gram. Int J Pharm Phytopharmacol Res 1:194–202

    CAS  Google Scholar 

  • Poehlman JM (1991) The mungbean. IBH Publishing Co. Pvt. Ltd., New Delhi/Oxford, pp 27–30

    Google Scholar 

  • Pooniya V, Choudhary AK, Dass A, Bana RS, Rana KS, Rana DS, Tyagi VK, Puniya MM (2015) Improved crop management practices for sustainable pulse production: an Indian perspective. Indian J Agric Sci 85(6):747–758

    Google Scholar 

  • Popelka JC, Terryn N, Higgins TJV (2004) Gene technology for grain legumes: can it contribute to the food challenge in developing countries? Plant Sci 167:195–206

    Article  CAS  Google Scholar 

  • Prince SJ, Mutava RN, Pegoraro C, Oliveira ACD, Nguyen HT (2013) Root characters. In: Kole C (ed) Genomics and breeding for climate resilient crops. Springer, Berlin, pp 67–131

    Chapter  Google Scholar 

  • Pruthvi V, Narasimhan R, Nataraja KN (2014) Simultaneous expression of abiotic stress responsive transcription factors, AtDREB2A, AtHB7 and AtABF3 improves salinity and drought tolerance in peanut (Arachis hypogaea L.). PLoS One 9(12):e111152

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ramón S, Cecilia C, Gabriel I (2009) Enhanced tolerance to multiple abiotic stresses in transgenic alfalfa accumulating trehalose. Crop Sci 49:1791–1799

    Article  CAS  Google Scholar 

  • Reddy AA (2006) Impact assessment of pulses production technology, Research Report No 3. Indian Institute of Pulses Research, Kanpur

    Google Scholar 

  • Reddy AR, Chaitanya KV, Vivekanandan M (2004) Drought-induced responses of photosynthesis and antioxidant metabolism in higher plants. J Plant Physiol 161:1189–1202

    Article  CAS  Google Scholar 

  • Riches CR, Hamilton K, Parker C (1992) Parasitism of grain legumes by Alectra species (Scrophulariaceae). Ann Appl Biol 121:361–370

    Article  Google Scholar 

  • Rispail N (2005) Molecular and metabolic characterisation of symbiotic interactions in Lotus japonicus. PhD thesis, Institute of Grassland and Environmental Research (IGER), University of Wales, Aberystwyth

    Google Scholar 

  • Robatzek S, Somssich IE (2002) Targets of AtWRKY6 regulation during plant senescence and pathogen defense. Genes Dev 16:1139–1149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Robinson MF, Very AA, Sanders D, Mansfield TA (1997) How can stomata contribute to salt tolerance? Ann Bot 80:387–393

    Article  CAS  Google Scholar 

  • Rockstrom J, Falkenmark M (2000) Semiarid crop production from a hydrological perspective: gap between potential and actual yields. Crit Rev Plant Sci 19:319–346

    Article  Google Scholar 

  • Rodrigues LR, Oliveira JMS, Mariath JEA, Bodanese-Zanettini MH (2005) Histology of embryogenic responses in soybean anther culture. Plant Cell Tissue Organ Cult 80:129–137

    Article  Google Scholar 

  • Rodriguez LD, Lemmon ZH, Man J, Bartlett ME, Lippman ZB (2017) Engineering quantitative trait variation for crop improvement by genome editing. Cell 171:470–480

    Article  CAS  Google Scholar 

  • Roman B, Torres AM, Rubiales D, Cubero JI, Satovic Z (2002) Mapping of quantitative trait loci controlling broomrape (Orobanche crenata Forsk.) resistance in faba bean (Vicia faba L.). Genome 45:1057–1063

    Article  CAS  PubMed  Google Scholar 

  • Rubiales D, Fernández-Aparicio M (2012) Innovations in parasitic weeds management in legume crops. A review. Agron Sustain Dev 32:433–449

    Article  CAS  Google Scholar 

  • Rubiales D, Emeran AAJ, Sillero C (2002) Rusts on legumes in Europe and North 22 Africa. Grain Legumes 37:8–9

    Google Scholar 

  • Rubiales D, Pérez-de-Luque A, Sillero JC, Román B, Kharrat M, Khalil S, Joel DM, Riches CR (2006) Screening techniques and sources of resistance against parasitic weeds in grain legumes. Euphytica 147:187–199

    Article  Google Scholar 

  • Rubiales D, Fondevilla S, Chen W, Gentzbittel L, Higgins TJV, Castillejo MA (2015) Achievements and challenges in legume breeding for pest and disease resistance. Crit Rev Plant Sci 34:195–236

    Article  CAS  Google Scholar 

  • Rubio MC, Bustos-Sanmamed P, Clemente MR, Becana M (2009) Effects of salt stress on the expression of antioxidant genes and proteins in the model legume Lotus japonicus. New Phytol 181:851–859

    Article  CAS  PubMed  Google Scholar 

  • Sagan M, Huguet T, Duc G (1994) Phenotypic characterization and classification of nodulation mutants of pea (Pisum sativum L.). Plant Sci 100:59–70

    Article  CAS  Google Scholar 

  • Sakazono S, Nagata T, Matsuo R, Kajihara S, Watanabe M, Ishimoto M, Shimamura S, Harada K, Takahashi R, Mochizuki T (2014) Variation in root development response to flooding among 92 Soybean lines during early growth stages. Plant Prod Sci 17:228–236

    Article  Google Scholar 

  • Saleh AAH, Abdel-Kader DZ, El Elish AM (2007) Role of heat shock and salicylic acid in antioxidant homeostasis in Mung bean (Vigna radiata L.) plant subjected to heat stress. Am J Plant Physiol 2:344–355

    Article  CAS  Google Scholar 

  • Salles II, Blount JW, Dixon RA, Schubert K (2002) Phytoalexin induction and beta-1,3- glucanase activities in Colletotrichum trifolii infected leaves of alfalfa (Medicago sativa L.). Physiol Mol Plant Pathol 61:89–101

    Article  CAS  Google Scholar 

  • Samac D, Nix RJ, Oleson AE (1998) Transmission frequency of Clavibacter michiganensis subsp. insidiosus to alfalfa seeds and identification of the bacterium by PCR. Plant Disease 82:1362–1367

    Google Scholar 

  • Samac DA, Tesfaye M, Dornbusch M, Saruul PSJ, Temple (2004) A comparison of constitutive promoters for expression of transgenes in alfalfa (Medicago sativa). Transgenic Res 13:349–361

    Article  CAS  PubMed  Google Scholar 

  • Samantaray S, Rout GR, Das P (1999) In vitro selection and regeneration of zinc tolerant calli from Setaria italica L. Plant Sci 143:201–209

    Article  CAS  Google Scholar 

  • Sanchez DH, Lippold F, Redestig H, Hannah MA, Erban A, Kramer U, Kopka J, Udvardi MK (2008) Integrative functional genomics of salt acclimatization in the model legume Lotus japonicus. Plant J 53:973–987

    Article  CAS  PubMed  Google Scholar 

  • Santos JRP, Ndeve AD, Huynh BL, Matthews WC, Roberts PA (2018) QTL mapping and transcriptome analysis of cowpea reveals candidate genes for root-knot nematode resistance. PLoS One 13:e0189185

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sasidharan R, Bailey Serres J, Ashikari M, Atwell BJ, Colmer TD, Fagerstedt K et al (2017a) Community recommendations on terminology and procedures used in flooding and low oxygen stress research. New Phytol 214:1403–1407

    Article  PubMed  Google Scholar 

  • Sasidharan R, Hartman S, Liu Z, Martopawiro S, Sajeev N, van Veen H, Yeung E, Voesenek LACJ (2017b) Signal dynamics and interactions during flooding stress. Plant Physiol 176:1106

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sasser JN, Eisenback JD, Carter CC, Triantaphyllou AC (1983) The International Meloidogyne project – its goals and accomplishments. Annu Rev Phytopathol 21:271–288

    Google Scholar 

  • Sastry KS, Zitter TA (2014) Plant virus and viroid diseases in the tropics. Epidemiol Manag 2:489

    Google Scholar 

  • Satyagopal K, Sushil SN, Jeyakumar P, Shankar G, Sharma OP, Boina DR, Sain SK, Lavanya N, Sunanda BS, Asre R, Kapoor KS, Arya S, Kumar S, Patni CS, Jacob TK, Santhosh J, Eapen CN, Biju K, Dhanapal H, Ravindra BC, Hanumanthaswamy Raju LS, Babu R, Sathyanarayana L, Latha S (2014a) AESA based IPM Package for Redgram. National Institute of Plant Health Management, Hyderabad, p 42

    Google Scholar 

  • Satyagopal K, Sushil SN, Jeyakumar P, Shankar G, Sharma OP, Sain SK, Boina DR, Lavanya N, Sunanda BS, Asre R, Kapoor KS, Arya S, Kumar S, Patni CS, Dhanapal AN, Sabalpara SK, Beura CN, Biju BG, Naik RK, Mesta TK, Jacob N, Sathyanarayana L, Latha S (2014b) AESA based IPM package for Black gram and Green gram. National Institute of Plant Health Management, Hyderabad, p 43

    Google Scholar 

  • Saunders J, O’Neill N (2004) The characterization of defense responses to fungal infection in alfalfa. Biol Control 49:715–728

    CAS  Google Scholar 

  • Savitri ES, Fauziah SM (2018) Characterization of drought tolerance of GmDREB2 soybean mutants (Glycine max L.) by ethyl methane sulfonate induction. AIP Conf Proc 2019:020017

    Article  CAS  Google Scholar 

  • Schafleitner R, Huang SM, Chu SH, Yen JY, Lin CY, Yan MR, et al (2016) Identification of single nucleotide polymorphism markers associated with resistance to bruchids (Callosobruchus spp.) in wild mungbean (Vigna radiata var. sublobata) and cultivated V. radiata through genotyping by sequencing and quantitative trait locus analysis. BMC Plant Biol 16:159

    Google Scholar 

  • Scheelbeek PFD (2018) Effect of environmental changes on vegetable and legume yields 435 and nutritional quality. Proc Natl Acad Sci U S A 115:6804–6809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schena M, Shalon D, Davis RW, Brown PO (1995) Quantitative monitoring of gene2 expression patterns with a complementary-DNA microarray. Science 270:467–470

    Article  CAS  PubMed  Google Scholar 

  • Schneider KA, Brothers ME, Kelly JD (1997) Marker-assisted selection to improve drought resistance in common bean. Crop Sci 37:51–60

    Article  CAS  Google Scholar 

  • Schneider KA, Grafton KF, Kelly JD (2001) QTL analysis of resistance to fusarium root rot in bean. Crop Sci 41:535–542

    Article  CAS  Google Scholar 

  • Seki M, Kamei A, Yamaguchi-Shinozaki K, Shinozaki K (2003) Molecular responses to drought, salinity and frost: common and different paths for plant protection. Curr Opin Biotechnol 14:194–199

    Article  CAS  PubMed  Google Scholar 

  • Shao HB, Chu LY, Jaleel CA, Zhao CX (2008) Water-deficit stress induced anatomical changes in higher plants. Comptes Rendus Biologies 331:215–225

    Article  PubMed  Google Scholar 

  • Sharma KK, Lavanya M (2002) Recent developments in transgenics for abiotic stress in legumes of the semi-arid tropics. In: Ivanaga M (ed) Genetic engineering of crop plants for abiotic stress. JIRCAS Working Report No. 23, JIRCAS: Tsukuba, Japan, pp 61–73

    Google Scholar 

  • Sharma KD, Nayyar H (2014) Cold stress alters transcription in meiotic anthers of cold tolerant chickpea (Cicer arietinum L.). BMC Res Notes 7:717. https://doi.org/10.1186/1756-0500-7-717

    Article  PubMed  PubMed Central  Google Scholar 

  • Shimada N, Akashi T, Aoki T, Ayabe S (2000) Induction of iso flavonoid pathway in the model legume Lotus japonicus: molecular characterization of enzymes involved in phytoalexin biosynthesis. Plant Sci 160:37–47

    Article  CAS  PubMed  Google Scholar 

  • Siddique KHM, Sykes J (1997) Pulse production in Australia past, present and future. Aust J Exp Agric 37:103–111

    Article  Google Scholar 

  • Sillero JCS, Fondevilla J, Davidson MC, Vaz Patto TD, Warkentin J, Thomas J, Rubiales D (2005) Screening techniques and sources of resistance to rusts and mildews in grain legumes. Euphytica 147:255–272

    Article  Google Scholar 

  • Sillero JC, Fondevilla S, Davidson J, Vaz Patto MC, Warkentin TD, Thomas J, Rubiales D (2006) Screening techniques and sources of resistance to rusts and mildews in grain legumes. Euphytica 147:255–272

    Article  Google Scholar 

  • Sillero C, Villegas-Fernández AM, Thomas J, Rojas-Molina MM, Emeran AA, Fernández-Aparicio M, Rubiales D (2010) Faba bean breeding for disease resistance. Field Crop Res 115:297–307

    Article  Google Scholar 

  • Sillero JC, Moreno-Alía I, Rubiales D (2012) Identification and characterization of resistance to rust (Uromyces ciceris-arietini (Grognot) Jacz. & Boyd) in a germplasm collection of Cicer spp. Euphytica 188:229–238

    Article  CAS  Google Scholar 

  • Singh NH, Dhaliwal GS (1972) Effect of soil temperature on seedling emergence in different crops. Plant Soil 37:441–444

    Article  Google Scholar 

  • Singh DP, Singh BB (2011) Breeding for tolerance to abiotic stresses in mung bean. J Food Legumes 24:83–90

    Google Scholar 

  • Singh KB, Foley RC, Onate-Sanchez L (2002) Transcription factors in plant defense and stress responses. Curr Opin Plant Biol 5:430–436

    Article  CAS  PubMed  Google Scholar 

  • Solaiman Z, Colmer TD, Loss SP, Thomson BD, Siddique KHM (2007) Growth responses of cool-season grain legumes to transient waterlogging. Aust J Agric Res 58:406–412

    Article  Google Scholar 

  • Somers DA, Samac DA, Olhoft PM (2003) Recent advances in legume transformation. Plant Physiol 131:892–899

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Somta P, Ammaranan C, Ooi PAC, Srinives P (2007) Inheritance of seed resistance to bruchids in cultivated mung bean (Vigna radiata L. Wilczek). Euphytica 155:47–55

    Article  Google Scholar 

  • Southgate BJ (1979) Biology of the bruchids. Annu Rev Entomol 24:449–473

    Article  Google Scholar 

  • Srinivasan A, Takeda H, Senboku T (1996) Heat tolerance in food legumes as evaluated by cell membrane thermostability and chlorophyll fluorescence techniques. Euphytica 88:35–45

    Article  Google Scholar 

  • Srivastava R, Kumar S, Kobayashi Y, Kusunoki K, Tripathi P, Kobayashi Y, Koyama H, Sahoo L (2018) Comparative genome-wide analysis of WRKY transcription factors in two Asian legume crops: Adzuki bean and Mung bean. Sci Rep 8:16971

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Stoddard FL, Nicholas AH, Rubiales D, Thomas J, Villegas AM (2010) Integrated pest management in faba bean. Field Crop Res 115:308–318

    Article  Google Scholar 

  • Subramanian S, Graham MY, Yu O, Graham TL (2005) RNA interference of soybean isoflavone synthase genes leads to silencing in tissues distal to the transformation site and to enhanced susceptibility to Phytophthora sojae. Plant Physiol 137:1345–1353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sumner LW, Mendes P, Dixon RA (2003) Plant metabolomics: large-scale phytochemistry in the functional genomics era. Phytochemistry 62:817–836

    Article  CAS  PubMed  Google Scholar 

  • Taïbi K, Taïbi F, Abderrahim LA, Ennajah A, Belkhodja M, Mulet JM (2016) Effect of salt stress on growth, chlorophyll content, lipid peroxidation and antioxidant defence systems in Phaseolus vulgaris L. S Afr J Bot 105:306–312

    Article  CAS  Google Scholar 

  • Tang L, Cai H, Ji W, Luo X, Wang Z, Wu J, Wang X, Cui L, Wang Y, Zhu Y et al (2013) Overexpression of GsZFP1 enhances salt and drought tolerance in transgenic alfalfa (Medicago sativa L.). Plant Physiol Biochem 71:22–30

    Article  CAS  PubMed  Google Scholar 

  • Taylor JD, Teverson DM, Allen DJ, Pastor-Corrales MA (1996) Identification and origin of races of Pseudomonas syringae pv. phaseolicola from Africa and other bean growing areas. Plant Pathol 45:469–478

    Article  Google Scholar 

  • Teakle NL, Amtmann A, Real D, Colmer TD (2010) Lotus tenuis tolerates combined salinity and waterlogging: maintaining O2 transport to roots and expression of an NHX1-like gene contribute to regulation of Na+ transport. Physiol Plant 139:358–374

    CAS  PubMed  Google Scholar 

  • Tegli S, Sereni A, Surico G (2002) PCR-based assay for the detection of Curtobacterium flaccumfaciens pv. flaccumfaciens in bean seeds. Lett Appl Microbiol 35:331–337

    Article  CAS  PubMed  Google Scholar 

  • Thomashow MF (1999) Plant cold acclimation: freezing tolerance genes and regulatory mechanisms. Annu Rev Plant Physiol Plant Mol Biol 50:571–599

    Article  CAS  PubMed  Google Scholar 

  • Thomashow MF (2001) So what’s new in the field of plant cold acclimation? Lots!: Fig. 1. Plant Physiology 125(1):89–93

    Google Scholar 

  • Thoquet P, Gherardi M, Journet EP, Kereszt A, Ane JM, Prosperi JM, Huguet T (2002) The molecular genetic linkage map of the model legume Medicago truncatula: an essential tool for comparative legume genomics and the isolation of agronomically important genes. BMC Plant Biol 2:1

    Article  PubMed  PubMed Central  Google Scholar 

  • Timmerman VGM, Moya L, Frew TJ, Murray SR, Crowhurst R (2016) Ascochyta blight disease of pea (Pisum sativum L.): defence-related candidate genes associated with QTL regions and identification of epistatic QTL. Theor Appl Genet 129:879–896

    Article  CAS  Google Scholar 

  • Tivoli B, Baranger A, Avila CM, Banniza S, Barbetti M, Chen W, Davidson J, Lindeck K, Kharrat M, Rubiales D, Sadiki M, Sillero JC, Sweetingham M, Muehlbauer FJ (2006) Screening techniques and sources of resistance to foliar diseases caused by major necrotrophic fungi in grain legumes. Euphytica 147:223–253

    Article  Google Scholar 

  • Toker C, Yadav SS (2010) Legumes cultivars for stress environments. In: Yadav SS, McNeil DL, Redden R, Patil SA (eds) Climate change and management of cool season grain legume crops. Springer, Dordrecht

    Google Scholar 

  • Trabanco N, Pérez-Vega E, Campa A, Rubiales D, Ferreira JJ (2012) Genetic resistance to powdery mildew in common bean. Euphytica 186:875–882

    Article  Google Scholar 

  • Tran L, Nakashima K, Sakuma Y, Simpson SD, Fujita Y, Maruyama K, Fujita M, Seki M, Shinozaki K (2004) Isolation and functional analysis of Arabidopsis stress-inducible NAC transcription factors that bind to a drought responsive cis-element in the early responsive to dehydration stress promoter. Plant Cell 6:2481–2498

    Article  Google Scholar 

  • Tullu A, Banniza S, Taran B, Warkentin T, Vandenberg A (2010) Sources of resistance to ascochyta blight in wild species of lentil (Lens culinaris Medik.). Genet Resour Crop Evol 57:1053–1063

    Article  Google Scholar 

  • Turner M, Jauneau A, Genin S, Tavella MJ, Vailleau F, Gentzbittel L, Jardinaud MF (2009) Dissection of bacterial wilt on Medicago truncatula revealed two type III secretion system effectors acting on root infection process and disease development. Plant Physiol 150:1713–1722

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uemura M, Joseph RA, Steponkus PL (1995) Cold acclimation of Arabidopsis thaliana: effect on plasma membrane lipid composition and freeze-induced lesions. Plant Physiol 109:15–30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Valliyodan B, Van Toai TT, Alves JD, Goulart PDP, Lee JD, Fritschi FB, Rahman MA, Islam R, Shannon JG, Nguyen HT (2014) Expression of root-related transcription factors associated with flooding tolerance of soybean (Glycine max). Int J Mol Sci 15:17622–17643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Valliyodan B, Ye H, Song L, Murphy M, Shannon JG, Nguyen HT (2017) Genetic diversity and genomic strategies for improving drought and waterlogging tolerance in soybeans. J Exp Bot 68:1835–1849

    CAS  PubMed  Google Scholar 

  • Van den Boogaart T, Maule AJ, Davies JW, Lomonossoff GP (2004) Sources of target specificity associated with the recovery against Pea Seed-borne Mosaic Virus infection mediated by RNA silencing in pea. Mol Plant Pathol 5:37–43

    Article  Google Scholar 

  • Van Toai TT, Martin SK, Chase K, Boru G, Schnipke V, Schmitthenner AF, Lark KG (2001) Identification of a QTL associated with tolerance of soybean to soil waterlogging. Crop Sci 41:1247–1252

    Article  Google Scholar 

  • Vandemark GJ, Larsen RC, Hughes TJ (2006) Heritability of resistance to Verticillium wilt in alfalfa. Plant Dis 90:314–318

    Article  PubMed  Google Scholar 

  • Varshney RK, Dubey A (2009) Novel genomic tools and modern genetic and breeding approaches for crop improvement. J Plant Biochem Biotechnol 18:127–138

    Article  CAS  Google Scholar 

  • Velculescu VE, Zhang L, Vogelstein B, Kinzler KW (1995) Serial analysis of gene expression. Science 270:484–487

    Article  CAS  PubMed  Google Scholar 

  • Wahid A, Gelani S, Ashraf M, Foolad M (2007) Heat tolerance in plants: an overview. Environ Exp Bot 61:199–223

    Article  Google Scholar 

  • Walker DR, Narvel JM, Boerma HR, All JN, Parrott WA (2004) A QTL that enhances and broadens Bt insect resistance in soybean. Theor Appl Genet 109:1051–1057

    Article  PubMed  Google Scholar 

  • Wang WX, Vinocur B, Altman A (2003) Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta 218:1–14

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Zhu J, Li X, Wang S, Wu J (2018a) Salt and drought stress and ABA responses related to bZIP genes from V. radiata and V. angularis. Gene 651:152–160

    Article  CAS  PubMed  Google Scholar 

  • Wang LS, Chen QS, Xin DW, Qi ZM, Zhang C, Li SN, Jin Y, Li M, Mei HY, Su AY et al (2018b) Overexpression of GmBIN2, a soybean glycogen synthase kinase 3 gene, enhances tolerance to salt and drought in transgenic Arabidopsis and soybean hairy roots. J Integr Agric 17:1959–1971

    Article  CAS  Google Scholar 

  • Wang W, Wang C, Pan D, Zhang Y, Luo B, Ji J (2018c) Effects of drought stress on photosynthesis and chlorophyll fluorescence images of soybean (Glycine max L.) seedlings. Int J Agric Biol Eng 11:196–201

    Google Scholar 

  • War AR, Paulraj MG, Hussain B, Buhroo AA, Ignacimuthu S, Sharma HC (2013) Effect of plant secondary metabolites on legume pod borer, Helicoperpa armigera. J Pest Sci 86:399–408

    Article  Google Scholar 

  • Wrather JA, Anderson TR, Arzsad DM, Gai J, Ploper LD, Porta-Puglia A, Ram HH, Yorinori YT (1997) Soybean disease loss estimates for the top 10 soybean-producing countries in 1995. Plant Dis 81:107–110

    Article  CAS  PubMed  Google Scholar 

  • Wu QD, Van Etten HD (2004) Introduction of plant and fungal genes into pea (Pisum sativum L.) hairy roots reduces their ability to produce pisatin and affects their response to a fungal pathogen. Mol Plant-Microbe Interact 17:798–804

    Article  CAS  PubMed  Google Scholar 

  • Xiaoshuang L, Daoyuan Z, Haiyan L, Yucheng W, Yuanming Z, Andrew J, Wood (2014) EsDREB2B, a novel truncated DREB2-type transcription factor in the desert legume Eremosparton songoricum, enhances tolerance to multiple abiotic stresses in yeast and transgenic tobacco. BMC Plant Biol 14(1):44

    Article  CAS  Google Scholar 

  • Xu ZZ, Zhou GS (2006) Combined effects of water stress and high temperature on photosynthesis, nitrogen metabolism and lipid peroxidation of a perennial grass Leymus chinensis. Planta 224:1080–1090

    Article  CAS  PubMed  Google Scholar 

  • Yamaguchi SK, Shinozaki K (2005) Organization of cis-acting regulatory elements in osmotic- and cold-stress-responsive promoters. Trends Plant Sci 10:88–94

    Article  CAS  Google Scholar 

  • Yamamoto E, Karakaya HC, Knap HT (2000) Molecular characterization of two soybean homologs of Arabidopsis thaliana CLAVATA1 from the wild type and fasciation. Biochim Biophys Acta 1491:333–340

    Article  CAS  PubMed  Google Scholar 

  • Ye H, Song L, Chen HT, Valliyodan B, Cheng P, Ali L, Vuong T, Wu CJ, Orlowski J, Buckley B et al (2018) A major natural genetic variation associated with root system architecture and plasticity improves waterlogging tolerance and yield in soybean. Plant Cell Environ 41:2169–2182

    CAS  PubMed  Google Scholar 

  • Yeung E, van Veen H, Vashisht D, Paiva ALS, Hummel M, Rankenberg T et al (2018) A stress recovery signaling network for enhanced flooding tolerance in Arabidopsis thaliana. Proc Natl Acad Sci U S A 115:E6085–E6094. https://doi.org/10.1073/pnas.1803841115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoo JH, Park CY, Cheol J, Do Heo W, Cheong MS, Park HC, Kim MC, Moon BC, Choi MS, Kang YH et al (2005) Direct interaction of a divergent CaM isoform and the transcription factor, MYB2, enhances salt tolerance in Arabidopsis. J Biol Chem 280:3697–3706

    Article  CAS  PubMed  Google Scholar 

  • Yoshida M, Cowgill SE, Wightman JA (1997) Roles of oxalic and malic acids in chickpea trichome exudate in host-plant resistant to Helicoverpa armigera. J Chem Ecol 23:1195–1210

    Article  CAS  Google Scholar 

  • Yu Q, Rengel Z (1999) Waterlogging influences plant growth and activities of superoxide dismutases in narrow-leafed lupin and transgenic tobacco plants. J Plant Physiol 155:431–438

    Article  CAS  Google Scholar 

  • Yu Y, Buss G, Saghai Maroof M (1996) Isolation of a superfamily of candidate disease-resistance genes in soybean based on a conserved nucleotide-binding site. Proc Natl Acad Sci U S A 93:11751–11756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu KF, Park SJ, Zhang BL, Haffner M, Poysa V (2004) An SSR marker in the nitrate reductase gene of common bean is tightly linked to a major gene conferring resistance to common bacterial blight. Euphytica 138:89–95

    Article  CAS  Google Scholar 

  • Yvonne M, Jideani VA (2017) The role of legumes in human, chapter 6. In: Hueda MC (ed) Functional food improve health through adequate food. InTech, Rijeka

    Google Scholar 

  • Zabala G, Zou J, Tuteja J, Gonzales DO, Clough SJ, Vodkin LO (2006) Transcriptome changes in the phenylpropanoid pathway of Glycine max in response to Pseudomonas syringae infection. BMC Plant Biol 6:26

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zagorska N, Dimitrov B, Gadeva P, Robeva P (1997) Regeneration and characterization of plants obtained from anther cultures in Medicago sativa L. In Vitro Cell Dev Biol Plant 33:107–110

    Article  Google Scholar 

  • Zahaf O, Blanchet S, de Z’elicourt A, Alunni B, Plet J, Laffont C, de Lorenzo L, Imbeaud S, Ichante JL, Diet A, Badri M, Zabalza A, Gonzalez EM, Delacroix H, Gruber V, Frugier F, Crespi M (2012) Comparative transcriptomic analysis of salt adaptation in roots of contrasting Medicago truncatula genotypes. Mol Plant 5:1068–1081

    Article  CAS  PubMed  Google Scholar 

  • Zahran HH, Manzano MCM, Sanchez-Raya AJ, Bedmar EJ, Venema K, Rodriguez-Rosales MP (2007) Effect of salt stress on the expression of NHX-type ion transporters in Medicago intertexta and Melilotus indicus plants. Physiol Plant 131:122–130

    Article  CAS  PubMed  Google Scholar 

  • Zair I, Chlyah A, Sabounji K, Tittahsen M, Chlyah H (2003) Salt tolerance improvement in some wheat cultivars after application of in vitro selection pressure. Plant Cell Tissue Organ Cult 73:237–244

    Article  CAS  Google Scholar 

  • Zhang XH, Zhong WQ, Widholm JM (2005) Expression of a fungal cyanamide hydratase in transgenic soybean detoxifies cyanamide in tissue culture and in planta to provide cyanamide resistance. J Plant Physiol 162:1064–1073

    Article  CAS  PubMed  Google Scholar 

  • Zhang G, Chen M, Chen X, Xu Z, Li L, Guo J, Ma Y (2010) Isolation and characterization of a novel EAR-motif-containing gene GmERF4 from soybean (Glycine max L.). Mol Biol Rep 37:809–818

    Article  CAS  PubMed  Google Scholar 

  • Zhang LL, Zhao MG, Tian QY, Zhang WH (2011) Comparative studies on tolerance of Medicago truncatula and Medicago falcata to freezing. Planta 234:445–457

    Article  CAS  PubMed  Google Scholar 

  • Zhang T, Yu L, Mccord X, Miller P, Bhamidimarri DS, Johnson D et al (2014) Identification of molecular markers associated with Verticillium wilt resistance in alfalfa (Medicago sativa L.) using high-resolution melting. PLoS One 9:e115953

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang J, Duan Z, Zhang D, Zhang J, Di H, Wu F, Wang Y (2016) Co-transforming bar and CsLEA enhanced tolerance to drought and salt stress in transgenic alfalfa (Medicago sativa L.) Biochem. Biophys Res Commun 472:75–82

    Article  CAS  Google Scholar 

  • Zheng G, Fan C, Di S, Wang X, Xiang C, Pang Y (2017) Over-expression of Arabidopsis EDT1 gene confers drought tolerance in alfalfa (Medicago sativa L.). Front Plant Sci 8:2125

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhu H, Cannon SB, Young ND, Cook DR (2002) Phylogeny and genomic organization of the TIR and non-TIR NBS-LRR resistance gene family in Medicago truncatula. Mol Plant-Microbe Interact 15:529–539

    Article  CAS  PubMed  Google Scholar 

  • Zhu H, Choi HK, Cook DR, Shoemaker RC (2005) Bridging model and crop legumes through comparative genomics. Plant Physiol 137:1189–1196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu B, Ye C, Lu H, Chen X, Chai G, Chen J et al (2006) Identification and characterization of a novel heat shock transcription factor gene, GmHsfA1, in oybeans (Glycine max). J Plant Res 119:247–256. https://doi.org/10.1007/s10265-006-0267-1

    Article  CAS  PubMed  Google Scholar 

  • Zou J, Rodriguez-Zas S, Aldea M, Li M, Zhu J, Gonzalez DO, Vodkin LO, DeLucia E, Clough SJ (2005) Expression profiling soybean response to Pseudomonas syringae reveals new defense-related genes and rapid HR specific downregulation of photosynthesis. Mol Plant-Microbe Interact 18:1161–1174

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Debanjan Sanyal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chandrashekharaiah, P.S., Paul, V., Kushwaha, S., Sanyal, D., Dasgupta, S. (2021). Biotechnological Approaches for Enhancing Stress Tolerance in Legumes. In: Guleria, P., Kumar, V., Lichtfouse, E. (eds) Sustainable Agriculture Reviews 51. Sustainable Agriculture Reviews, vol 51. Springer, Cham. https://doi.org/10.1007/978-3-030-68828-8_9

Download citation

Publish with us

Policies and ethics