Skip to main content
Log in

Resistance to insect pests: What do legumes have to offer?

  • Published:
Euphytica Aims and scope Submit manuscript

Summary

Insect pests are major problems for all crops, worldwide. In this review we will focus on legumes, which are attacked by a range of insect pests including pod/seed feeders, defoliators and sap feeders. We review the history of breeding for resistance to insect pests in legumes, which has had mixed success, and discuss further opportunities in this area. We also review the extraordinary array of direct and indirect mechanisms contributing to insect defence in legumes, the understanding and exploitation of which offer opportunities for both legume and non-legume crops. There is also good potential to improve insect resistance in legume crops through a detailed understanding of the signaling pathways that regulate induced responses to insect feeding, and recent progress in this area, primarily obtained from non-legume systems, is reviewed. The importance legumes play in farming systems, their wide range of novel chemistry and the emergence of model systems suitable for genomic approaches present opportunities for research in this area strongly linked to breeding programs to help develop legume crops with enhanced insect resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adler, L.S. & P.M. Kittelson, 2004. Variation in Lupinus arboreus alkaloid profiles and relationships with multiple herbivores. Biochem Syst Ecol 32: 371–390.

    Article  CAS  Google Scholar 

  • Agrell, J., W. Oleszek, A. Stochmal, M. Olsen & P. Anderson, 2003. Herbivore-induced responses in alfalfa (Medicago sativa). J Chem Ecol 29: 303–320.

    Article  CAS  Google Scholar 

  • Bell, E.A., K.P.W.C. Perera, P.B. Nunn, M.S.J. Simmonds & W.M. Blaney, 1996. Non-protein amino acids of Lathyrus latifolius as feeding deterrents and phagostimulants in Spodoptera littoralis. Phytochemistry 43: 1003–1007.

    Article  CAS  Google Scholar 

  • Berlandier, F.A., O.R. Edwards, P.G.H. Nichols & A. Blake, 2000. Aphid resistance in annual pasture legumes. In: Proceedings of 7th Australasian Conference on Grassland Invertebrate Ecology, pp. 298–303.

  • Boethel, D.J., 1999. In: L. Clement & S.S. Quisenberry (Eds.), Global Plant Genetic Resources for Insect-Resistant Crops, pp. 101–130. CRC Press LLC, Boca Raton, FL.

  • Bostock, R.M., R. Karban, J.S. Thaler, P.D. Weyman & D. Gilchrist, 2001. Signal interactions in induced resistance to pathogens and insect herbivores. Eur J Plant Pathol 107: 103–111.

    Article  CAS  Google Scholar 

  • Bown, D.P., H.S. Wilkinson & J.A. Gatehouse, 2004. Regulation of expression of genes encoding digestive proteases in the gut of a polyphagous lepidopteran larva in response to dietary protease inhibitors. Physiol Entomol 29: 278–290.

    Article  CAS  Google Scholar 

  • Brier, H.B. & D.J. Rogers, 1991. Susceptibility of soybeans to damage by Nezara viridula (L.) (Hemiptera: Pentatomidae) and Riptortus serripes (F.) (Hemiptera: Alydidae) during three stages of pod development. J Aust Entomol Soc 30: 123–128.

    Google Scholar 

  • Burden, B.J. & D.M. Norris, 1992. Role of the isoflavonoid coumestrol in the constitutive antixenosic properties of “Davis” soybeans against an oligophagous insect, the Mexican bean beetle. J Chem Ecol 18: 1069–1082.

    Article  CAS  Google Scholar 

  • Cardona, C. & J. Kornegay, 1999. Bean germplasm resources for insect resistance. In: S.L. Clement & S.S. Quisenberry (Eds.), Global Plant Genetic Resources for Insect-Resistant Crops, pp. 85–100. CRC Press LLC, Boca Raton, FL.

    Google Scholar 

  • Chiang, H.-S. & D.M. Norris, 1983. Morphological and physiological parameters of soybean resistance to agromyzid beanflies. Environ Entomol 12: 260–265.

    Google Scholar 

  • Clement, S.L., 2002. Insect resistance in the wild relatives of food legumes and wheat. In: J.A. McComb (Ed.), Plant Breeding for the 11th Millennium. Proceedings of the 12th Australasian Plant Breeding Conference, Perth, WA, 15–20 September 2002.

  • Clement, S.L., N. El-Din Sharaf El-Din, S. Weigand & S.S. Lateef, 1994. Research achievements in plant resistance to insect pests of cool season food legumes. Euphytica 73: 41–50.

    Article  Google Scholar 

  • Clement, S.L., M. Cristofaro, S.E. Cowgill & S. Weigand, 1999. Germplasm resources, insect resistance, and grain legume improvement. In: S.L. Clement & S.S. Quisenberry (Eds.), Global Plant Genetic Resources for Insect-Resistant Crops, pp. 131–148. CRC Press LLC, Boca Raton, FL.

    Google Scholar 

  • Cowling, W.C., 1999. Pedigrees and characteristics of narrow-leafed lupin cultivars released in Australia from 1967 to 1998. Department of Agriculture, Western Australia Bulletin 4365.

  • Dakora, F.D. & D.A. Phillips, 1996. Diverse functions of isoflavonoids in legumes transcend anti-microbial definitions of phytoalexins. Physiol Mol Plant Pathol 49: 1–20.

    Article  CAS  Google Scholar 

  • De Boer, J.G. & M. Dicke, 2004. The role of methyl salicylate in prey searching behavior of the predatory mite Phytoseiulus persimilis. J Chem Ecol 30: 69–89.

    Article  Google Scholar 

  • de Ilarduya, O.M., Q.G. Xie & I. Kaloshian, 2003. Aphid-induced defense responses in Mi-1-mediated compatible and incompatible tomato interactions. Mol Plant-Microbe Interact 16: 699–708.

    Google Scholar 

  • Dicke, M. & H. Dijkman, 2001. Within-plant circulation of systemic elicitor of induced defence and release from roots of elicitor that affects neighbouring plants. Biochem Syst Ecol 29: 1075–1087.

    Article  CAS  Google Scholar 

  • Dixon, R.A., C.J. Lamb, S. Masoud, V.J.H. Sewalt & N.L. Paiva, 1996. Metabolic engineering: Prospects for crop improvement through the genetic manipulation of phenylpropanoid biosynthesis and defense responses – a review. Gene 179: 61–71.

    Article  CAS  PubMed  Google Scholar 

  • Dogimont, C., A. Bendahmane, J. Pauquet, E. Burget, S. Desloire, L. Hagen, M. Caboch & M. Pitrat, 2003. Map-based cloning of the Vat melon gene that confers resistance to both aphid colonization and virus transmission. In: Proceedings of 11th International Congress on Molecular Plant-Microbe Interactions, St. Petersburg, Russia.

  • Doss, R.P., W.M. Proebsting, S.W. Potter & S.L. Clement, 1995. Response of Np mutant of pea (Pisum sativum L.) to pea weevil (Bruchus pisorum L.) oviposition and extracts. J Chem Ecol 21: 97–106.

    Article  CAS  Google Scholar 

  • Doss, R.P., J.E. Oliver, W.M. Proebsting, S.W. Potter, S. Kuy, S.L. Clement, R.T. Williamson, J.R. Carney & E.D. DeVilbiss, 2000. Bruchins: Insect-derived plant regulators that stimulate neoplasm formation. Proc Natl Acad Sci USA 97: 6218–6223.

    Article  CAS  PubMed  Google Scholar 

  • Down, R.E., L. Ford, S.D. Woodhouse, G.M. Davison, M.E.N. Majerus, J.A. Gatehouse & A.M.R. Gatehouse, 2003. Tritrophic interactions between transgenic potato expressing snowdrop lectin (GNA), and aphid pest (peach-potato aphid, Myzus persicae (Sulz.)) and a beneficial predator (2-spot ladybird, Adalia bipunctata L.). Transgenic Res 12: 229–241.

    Article  CAS  PubMed  Google Scholar 

  • Edwards, O.R., 2001. Interspecific and intraspecific variation in the performance of three pest aphid species on five grain legume hosts. Entomol Exp Appl 100: 21–30.

    Article  Google Scholar 

  • Edwards, O.R., T.J. Ridsdill-Smith & F.A. Berlandier, 2003. Aphids do not avoid resistance in Australian lupin (Lupinus angustifolius, L. luteus) varieties. Bull Entomol Res 93: 403–411.

    Article  CAS  PubMed  Google Scholar 

  • Elden, T.C., 2000. Effects of proteinase inhibitors and plant lectins on the adult alfalfa weevil (Coleoptera: Curculionidae). J Entomol Sci 35: 62–69.

    CAS  Google Scholar 

  • Elden, T.C. & J.H. Elgin, Jr., 1992. Mechanisms of resistance to the potato leafhopper (Homoptera: Cicadellidae) in selected alfalfa clones. J Econ Entomol 85: 576–582.

    Google Scholar 

  • Ellis, C., L. Karafyllidis & J.G. Turner, 2002. Constitutive activation of jasmonate signaling in an Arabidopsis mutant correlates with enhanced resistance to Erysiphe cichoracearum, Pseudomonas syringae, and Myzus persicae. Mol Plant-Microbe Interact 15: 1025–1030.

    CAS  PubMed  Google Scholar 

  • Ferry, N., M.G. Edwards, J.A. Gatehouse & A.M.R. Gatehouse, 2004. Plant-insect interactions: Molecular approaches to insect resistance. Curr Opin Biotechnol 15: 155–161.

    Article  CAS  PubMed  Google Scholar 

  • Fitches, E., A.M.R. Gatehouse & J.A. Gatehouse, 1997. Effects of snowdrop lectin (GNA) delivered via artificial diet and transgenic plants on the development of tomato moth (Lacanobia oleracea) larvae in laboratory and glasshouse trials. J Insect Physiol 43: 727–739.

    Article  CAS  PubMed  Google Scholar 

  • Foissac, X., N.T. Loc, P. Christou, A.M.R. Gatehouse & J.A. Gatehouse, 2000. Resistance to green leafhopper (Nephotettix virescens) and brown planthopper (Nilaparvata lugens) in transgenic rice expressing snowdrop lectin (Galanthus nivalis agglutin, GNA). J Insect Physiol 46: 573–583.

    Article  CAS  PubMed  Google Scholar 

  • Galwey, N.W. & A.M. Evans, 1982. The inheritance of resistance to Empoasca kraemeri Ross and Moore in the common bean, Phaseolus vulgaris L. Euphytica 31: 933–952.

    Article  Google Scholar 

  • Garza, R., C. Cardona & S.P. Singh, 1996. Inheritance of resistance to the bean-pod weevil (Apion godmani Wagner) in common beans from Mexico. Theor Appl Genet 92: 357–362.

    Article  Google Scholar 

  • Garza, R., J. Vera, C. Cardona, N. Barcenas & S.P. Singh, 2001. Hypersensitive response of beans to Apion godmani (Coleoptera: Curculionidae). J Econ Entomol 94: 958–962.

    CAS  PubMed  Google Scholar 

  • Gatehouse, A.M.R., G.M. Davison, C.A. Newell, A. Merryweather, W.D.O. Hamilton, E.P.J. Burgess, R.J.C. Gilbert & J.A. Gatehouse, 1997. Transgenic potato plants with enhanced resistance to the tomato moth, Lacaobia oleracea: Growth room trials. Mol Breed 3: 49–63.

    Article  CAS  Google Scholar 

  • Goggin, F.L., V.M. Williamson & D.E. Ullman, 2001. Variability in the response of Macrosiphum euphorbiae and Myzus persicae (Hemiptera: Aphididae) to the tomato resistance gene Mi. Environ Entomol 30: 101–106.

    Article  Google Scholar 

  • Green, P.W.C., P.C. Stevenson, M.S.J. Simmonds & H.C. Sharma, 2003. Phenolic compounds on the pod-surface of pigeonpea, Cajanus cajan, mediate feeding behaviour of Helicoverpa armigera larvae. J Chem Ecol 29: 811–821.

    Article  CAS  PubMed  Google Scholar 

  • Gressent, F., I. Rahioui & Y. Rahbe, 2003. Characterization of a high-affinity binding site for the pea albumin 1b entomotoxin in the weevil Sitophilus. Eur J Biochem 270: 2429–2435.

    Article  CAS  PubMed  Google Scholar 

  • Halitschke, R. & I.T. Baldwin, 2003. Antisense LOX expression increases herbivore performance by decreasing defense responses and inhibiting growth-related transcriptional reorganization in Nicotiana attenuata. Plant J 36: 794–807.

    Article  CAS  PubMed  Google Scholar 

  • Heie, O.E., 1994. Why are there so few aphid species in the temperate areas of the southern hemisphere? Eur J Entomol 91: 127–133.

    Google Scholar 

  • Heil, M., 2004. Induction of two indirect defences benefits Lima bean (Phaseolus lunatus, Fabaceae) in nature. J Ecol 92: 527–536.

    Article  Google Scholar 

  • Holt, J. & N. Birch, 1984. Taxonomy, evolution, and domestication of Vicia in relation to aphid resistance. Ann Appl Biol 105: 547–556.

    Article  Google Scholar 

  • Jouanin, L., M. Boande-Bottino, C. Girard, G. Morrot & M. Giband, 1998. Transgenic plants for insect resistance. Plant Sci 131: 1–11.

    Article  CAS  Google Scholar 

  • Julier, B., R. Bournoville, B. Landre, C. Ecalle & S. Carre, 2004. Genetic analysis of lucerne (Medicago sativa L.) seedling resistance to pea aphid (Acyrthosiphum pisum Harris). Euphytica 138: 133–139.

    Article  CAS  Google Scholar 

  • Kareiva, P. & R. Sahakian, 1990. Tritrophic effects of a simple architectural mutation in pea plants. Nature 345: 433–434.

    Article  Google Scholar 

  • Kessler, A. & I.T. Baldwin, 2002. Plant responses to insect herbivory. Annu Rev Plant Biol 53: 299–328.

    Article  CAS  PubMed  Google Scholar 

  • Kessler, A. & I.T. Baldwin, 2004. Herbivore-induced plant vaccination. Part I. The orchestration of plant defenses in nature and their fitness consequences in the wild tobacco Nicotiana attenuata. Plant J 38: 639–649.

    Article  CAS  PubMed  Google Scholar 

  • Kessler, A., R. Halitschke & I.T. Baldwin, 2004. Silencing the jasmonate cascade: Induced plant defenses and insect populations. Science 305: 665–668.

    Article  CAS  PubMed  Google Scholar 

  • Kilen, T.C. & L. Lambert, 1986. Evidence for different genes controlling insect resistance in three soybean genotypes. Crop Sci 26: 869–871.

    Article  Google Scholar 

  • Kilen, T.C. & L. Lambert, 1998. Genetic control of insect resistance in soybean germplasm PI 417061. Crop Sci 38: 652–654.

    Article  Google Scholar 

  • Kitch, L.W., R.E. Shade & L.L. Murdock, 1991. Resistance to cowpea weevil (Callosobruchus maculata) larva in pods of cowpea (Vigna unguiculata). Entomol Exp Appl 60: 183–192.

    Article  Google Scholar 

  • Klingler, J., R. Creasy, L. Gao, R.M. Nair, A.S. Calix, H.S. Jacob, O.R. Edwards & K.B. Singh, 2005. Aphid resistance in Medicago truncatula involves antixenosis and phloem-specific, inducible antibiosis, and maps to a single locus flanked by NBS-LRR resistance gene analogs. Plant Physiol 137: 1445–1455.

    Article  CAS  PubMed  Google Scholar 

  • Kogan, M., 1972. Feeding and nutrition of insects associated with soybeans. 2. Soybean resistance and host preferences of the Mexican bean beetle, Epilachna varivestis. Ann Entomol Soc Am 64: 1044–1055.

    Google Scholar 

  • Koona, P., E.O. Osisanya, L.E.N. Jackai, M. Tamo, J. Reeves & J.D. A’Hughes, 2002. Pod surface characteristics in wild and cultivated Vigna species and resistance to the coreid bug Clavigralla tomentosicollis Stal. (Hemiptera: Coreidae). Insect Sci Appl 22: 1–8.

    Google Scholar 

  • Koona, P., E.O. Osisanya, L. Lajide, L.E. Jackai & M. Tamo, 2003. Assessment of chemical resistance of wild and cultivated Vigna species to the brown pod bug Clavigralla tomentosicollis Stal (Hem: Coreidae). J Appl Entomol 127: 293–298.

    Article  Google Scholar 

  • Kornegay, J.L. & C. Cardona, 1990. Development of an appropriate breeding scheme for tolerance to Empoasca kraemeri in common bean. Euphytica 47: 223–231.

    Google Scholar 

  • Kornegay, J.L. & C. Cardona, 1991. Inheritance of resistance to Acanthoscelides obtectus in a wild common bean accession crossed to commercial bean cultivars. Euphytica 52: 103–111.

    Google Scholar 

  • Kornegay, J.L. & S.R. Temple, 1986. Inheritance and combining ability of leafhopper defense mechanisms in common bean. Crop Sci 26: 1153–1158.

    Article  Google Scholar 

  • Lam, W.-K.F. & L.P. Pedigo, 2001. Effect of trichome density on soybean pod feeding by adult bean leaf beetles (Coleoptera: Chrysomelidae). J Econ Entomol 94: 1459–1463.

    Article  CAS  PubMed  Google Scholar 

  • Lambert, A.L., R.M. McPherson & K.E. Espelie, 1995. Soybean host plant resistance mechanisms that alter abundance of whiteflies (Homoptera: Aleyrodidae). Environ Entomol 24: 1381–1386.

    Google Scholar 

  • Lambert, L. & T.C. Kilen, 1984. Influence of three soybean plant genotypes and their F1 intercrosses on the development of five insect species. J Econ Entomol 77: 622–625.

    Google Scholar 

  • Li, C.Y., M.M. Williams, Y.T. Loh, G.I. Lee & G.A. Howe, 2002a. Resistance of cultivated tomato to cell content-feeding herbivores is regulated by the octadecanoid-signaling pathway. Plant Physiol 130: 494–503.

    Article  CAS  Google Scholar 

  • Li, X., M.A. Schuler & M.R. Berenbaum, 2002b. Jasmonate and salicylate induce expression of herbivore cytochrome P450 genes. Nature 419: 712–715.

    Article  CAS  Google Scholar 

  • Li, X., M.R. Berenbaum & M.A. Schuler, 2002c. Plant allelochemicals differentially regulate Helicoverpa zea cytochrome P450 genes. Insect Mol Biol 11: 343–351.

    Article  CAS  Google Scholar 

  • Li, Y., C.B. Hill & G.L. Hartman, 2004a. Effect of three resistant soybean genotypes on the fecundity, mortality, and maturation of soybean aphid (Homoptera: Aphididae). J Econ Entomol 97: 1106–1111.

    Google Scholar 

  • Li, L., Y.F. Zhao, B.C. McCaig, B.A. Wingerd, J.H. Wang, M.E. Whalon, E. Pichersky & G.A. Howe, 2004b. The tomato homolog of CORONATINE-INSENSITIVE1 is required for the maternal control of seed maturation, jasmonate-signaled defense responses, and glandular trichome development. Plant Cell 16: 126–143.

    Article  CAS  Google Scholar 

  • Lopes, E.C.A., D. Destro, R. Montalvan, M.U. Ventura & E.P. Guerra, 1997. Genetic gain and correlations among traits for stink bug resistance in soybeans. Euphytica 97: 161–166.

    Article  Google Scholar 

  • Louis, S., B. Delobel, F. Gressent, I. Rahioui, L. Quillien, A. Vallier & Y. Rahbe, 2004. Molecular and biological screening for insect-toxic seed albumins from four legume species. Plant Sci 167: 705–714.

    Article  CAS  Google Scholar 

  • Machuka, J.S., O.G. Okeola, M.J. Chrispeels, L.E.N. Jackai, 2000. The African yam bean seed lectin affects the development of the cowpea weevil but does not affect the development of larvae of the legume pod borer. Phytochemistry 53: 667–674.

    Article  CAS  PubMed  Google Scholar 

  • Manglitz, G.R. & E.L. Sorensen, 1999. In: S.L. Clement & S.S. Quisenberry (Eds.), Global Plant Genetic Resources for Insect-Resistant Crops, pp. 149–170. CRC Press LLC, Boca Raton, FL.

  • McConn, M., R.A. Creelman, E. Bell, J.E. Mullet & J. Browse, 1997. Jasmonate is essential for insect defense in Arabidopsis. Proc Natl Acad Sci USA 94: 5473–5477.

    Article  CAS  PubMed  Google Scholar 

  • McManus, M.T., E.P.J. Burgess, P. Bruce, L.M. Watson, W.A. Laing, C.R. Voisey & D.W.R. White, 1999. Expression of the soybean (Kunitz) trypsin inhibitor in transgenic tobacco: Effects on larval development of Spodoptera littoralis. Transgen Res 8: 383–395.

    Article  CAS  Google Scholar 

  • Milligan, S.B., J. Bodeau, J. Yaghoobi, I. Kaloshian, P. Zabel & V.M. Williamson, 1998. The root knot nematode resistance gene Mi from tomato is a member of the leucine zipper, nucleotide binding, leucine-rich repeat family of plant genes. Plant Cell 10: 1307–1319.

    Article  CAS  PubMed  Google Scholar 

  • Moon, J., R.A. Salzman, J. Ahn, H. Koiwa & K. Zhu-Salzman, 2004. Transcriptional regulation in cowpea bruchid guts during adaptation to a plant defence protease inhibitor. Insect Mol Biol 13: 283–291.

    Article  CAS  PubMed  Google Scholar 

  • Moran, P.J. & G.A. Thompson, 2001. Molecular responses to aphid feeding in Arabidopsis in relation to plant defense pathways. Plant Physiol 125: 1074–1085.

    Article  CAS  PubMed  Google Scholar 

  • Moran, P.J., Y.F. Cheng, J.L. Cassell & G.A. Thompson, 2002. Gene expression profiling of Arabidopsis thaliana in compatible plant-aphid interactions. Arch Insect Biochem Physiol 51: 182–203.

    Article  CAS  PubMed  Google Scholar 

  • Morton, R.L., H.E. Schroeder, K.S. Bateman, M.J. Chrispeels, E. Armstrong & T.J.V. Higgins, 2000. Bean α-amylase inhibitor 1 in transgenic peas (Pisum sativum) provides complete protection from pea weevil (Bruchus pisorum) under field conditions. Proc Natl Acad Sci USA 97: 3820–3825.

    Article  CAS  PubMed  Google Scholar 

  • Muehlbauer, F.J., 1996. Advances in the production of cool season food legumes. Am J Alt Agric 11: 71–76.

    Google Scholar 

  • Musser, R.O., S.M. Hum-Musser, H. Eichenseer, M. Peiffer, G. Ervin, J.B. Murphy & G.W. Felton, 2002. Herbivory: Caterpillar saliva beats plant defences – a new weapon emerges in the evolutionary arms race between plants and herbivores. Nature 416: 599–600.

    Article  CAS  PubMed  Google Scholar 

  • Nair, R.M., A.D. Craig, G.C. Auricht, O.R. Edwards, S.S. Robinson, M.J. Otterspoor & J.A. Jones, 2003. Evaluating pasture legumes for resistance to aphids. Aust J Exp Agric 43: 1345–1349.

    Article  Google Scholar 

  • Nakamura, Y., A. Kaihara, K. Yoshii, Y. Tsumura, S. Ishimitsu & Y. Tonogai, 2001. Content and composition of isoflavonoids in mature and immature beans and bean sprouts consumed in Japan. J Health Sci 47: 394–406.

    Article  CAS  Google Scholar 

  • Nombela, G., V.M. Williamson & M. Muniz, 2003. The root-knot nematode resistance gene Mi-1.2 of tomato is responsible for resistance against the whitefly Bemisia tabaci. Mol Plant-Microbe Interact 16: 645–649.

    CAS  PubMed  Google Scholar 

  • Oliveira, A.E.A., M.P. Sales, O.L.T. Machado, K.V.S. Fernandes & J. Xavier-Filho, 1999. The toxicity of Jack bean (Canavalia ensiformis) cotyledon and seed coat proteins to the cowpea weevil (Callosobruchus maculatus). Entomol Exp Appl 92: 249–255.

    Article  CAS  Google Scholar 

  • Osborne, T.C., M.D. Burwo & F.A. Bliss, 1986. Bean arcelin 2. Genetic variation, inheritance and linkage relationships of a novel seed protein of Phaseolus vulgaris L. Theor Appl Genet 71: 847–855.

    Google Scholar 

  • Patankar, A.G., A.P. Giri, A.M. Harsulkar, M.N. Sainani, V.V. Deshpande, P.K. Ranjekar & V.S. Gupta, 2001. Complexity in specificities and expression of Helicoverpa armigera gut proteinases explains polyphagous nature of the insect pest. Insect Biochem Mol Biol 31: 453–464.

    Article  CAS  PubMed  Google Scholar 

  • Petitt, F.L. & D.O. Wietlisbach, 1992. Intraspecific competition among same-aged laravae of Liriomyza sativae (Diptera: Agromyzidae) in lima bean primary leaves. Environ Entomol 21: 136–140.

    Google Scholar 

  • Pompermayer, P., A.R. Lopes, W.R. Terra, J.R.P. Parra, M.C. Falco & M.C. Silva-Filho, 2001. Effects of soybean proteinase inhibitor on development, survival, and reproductive potential of the sugarcane borer, Diatraea saccharalis. Entomol Exp Appl 99: 79–85.

    Article  CAS  Google Scholar 

  • Qaim, M. & D. Zilberman, 2003. Yield effects of genetically modified crops in developing countries. Science 299: 900–902.

    Article  CAS  PubMed  Google Scholar 

  • Romero-Andreas, J., B.S. Yandell & F.A. Bliss, 1986. Bean arcelin 1. Inheritance of a novel seed protein of Phaseolus vulgaris L. and its effect on seed composition. Theor Appl Genet 72: 123–128.

    Google Scholar 

  • Rossi, M., F.L. Goggin, S.B. Milligan, I. Kaloshian, D.E. Ullman & V.M. Williamson, 1998. The nematode resistance gene Mi of tomato confers resistance against the potato aphid. Proc Natl Acad Sci USA 95: 9750–9754.

    Article  CAS  PubMed  Google Scholar 

  • Roth, B., 2004. http://www.otm.uiuc.edu/techs/techdetail.asp?id=267.

  • Royo, J., J. Leon, G. Vancanneyt, J.P. Albar, S. Rosahl, F. Ortego, P. Castanera & J.J. Sanchez-Serrano, 1999. Antisense-mediated depletion of a potato lipoxygenase reduces wound induction of proteinase inhibitors and increase weight gain of insect pests. Proc Natl Acad Sci USA 96: 1146–1151.

    Article  CAS  PubMed  Google Scholar 

  • Rufener, G.K., II, S.K. St. Martin, R.L. Cooper & R.B. Hammond, 1989. Genetics of antibiosis resistance to Mexican bean beetle in soybean. Crop Sci 29: 618–622.

  • Russin, J.S., M.B. Layton, D.B. Orr & D.J. Boethel, 1987. Within-plant distribution of, and partial compensation for, stink bug (Heteroptera: Pentatomidae) damage to soybeans. J Econ Entomol 80: 215–220.

    Google Scholar 

  • Ryan, C.A. & G. Pearce, 2003. Systemins: A functionally defined family of peptide signal that regulate defensive genes in Solanaceae species. Proc Natl Acad Sci USA 100: 14577–14580.

    Article  CAS  PubMed  Google Scholar 

  • Sarmah, B.K., A. Moore, W. Tate, L. Movgiv, R.L. Morton, D.P. Rees, P. Chiaiese, M.J. Chrispeels, L.M. Tabe & T.J.V. Higgins, 2004. Transgenic chickpea seeds expressing high levels of a bean α-amylase inhibitor. Mol Breed 14: 73–82.

    Article  CAS  Google Scholar 

  • van Schoonhoven, A., C. Cardona & J. Valor, 1983. Resistance to the bean weevil and the Mexican bean weevil (Coleoptera: Bruchidae) in noncultivated common bean accessions. J Econ Entomol 76: 1255–1259.

    Google Scholar 

  • Schuler, M.A., 1996. The role of cytochrome P450 monooxygenases in plant-insect interactions. Plant Physiol 112: 1411–1419

    Article  CAS  PubMed  Google Scholar 

  • Shade, R.E. & L.W. Kitch, 1983. Pea aphid (Homoptera: Aphididae) biology on glandular-haired Medicago species. Environ Entomol 12: 237–240.

    Google Scholar 

  • Shade, R.E., M.J. Doskocil & N.P. Maxon, 1979. Potato leafhopper resistance in glandular-haired alfalfa species. Crop Sci 19: 287–289.

    Article  Google Scholar 

  • Sharma, H., K. Mann, S. Kashyap, G. Pampapathy & J. Ridsdill-Smith, 2001. In: J.A. McComb (Ed.), Plant Breeding for the 11th Millennium. Proceedings of the 12th Australasian Plant Breeding Conference, Perth, WA, 15–20 September 2002, pp. 277–280.

  • Sharma, H.C., G. Pampapathy & L.J. Reddy, 2003. Wild relatives of pigeonpea as a source of resistance to the pod fly (Melanagromyza obtuse Malloch) and pod wasp (Tanaostigmodes cajaninae La Salle). Genet Resour Crop Evol 50: 817–824.

    Article  Google Scholar 

  • Shimoda, T., J. Takabayashi, W. Ashihara & A. Takafuji, 1997. Response of predatory insect Scolothrips takahashii toward herbivore-induced plant volatiles under laboratory and field conditions. J Chem Ecol 23: 2033–2048.

    Article  CAS  Google Scholar 

  • Simmonds, M.S.J., J.T. Romeo & W.M. Blaney, 1988. The effect of non-protein amino acids from Calliandra plants on the aphid, Aphis fabae. Biochem Syst Ecol 16: 623–626.

    Article  CAS  Google Scholar 

  • Singh, K.B. & S. Weigand, 1994. Identification of resistant sources in Cicer species to Liriomyza cicerina. Genet Resour Crop Evol 41: 75–79.

    Article  Google Scholar 

  • Sisson, V.A., P.A. Miller, W.V. Campbell & J.W. Van Duyn, 1976. Evidence of inheritance of resistance to the Mexcian bean beetle in soybeans. Crop Sci 16: 835–837.

    Article  Google Scholar 

  • Smith, C.M., T. Belay, C. Stauffer, P. Stary, I. Kubeckova & S. Starkey, 2004. Identification of Russian wheat aphid (Homoptera: Aphididae) populations virulent to the Dn4 resistance gene. J Econ Entomol 97: 1112–1117.

    CAS  PubMed  Google Scholar 

  • Sorensen, E.L. & E.K. Horber, 1974. Selecting alfalfa seedlings to resist the potato leafhopper. Crop Sci 14: 85–86.

    Article  Google Scholar 

  • Soroka, J.J. & P.A. MacKay, 1990. Seasonal occurrence of the pea aphid, Acyrthosiphum pisum (Harris) (Homoptera: Aphididae), on cultivars of field peas in Manitoba and its effect on pea growth and yield. Can Entomol 122: 503–512.

    Article  Google Scholar 

  • Srivastava, C.P. & R.P. Srivastava, 1989. Screening for resistance to gram pod borer Heliothis armigera (Hubner), in chickpea (Cicer arietinum L.) genotypes and observations on its mechanism of resistance in India. Insect Sci Appl 10: 255–258.

    Google Scholar 

  • Stamopoulos, D.C., 1987. Influence of the Leguminosae secondary substances on the ecology and biology of Bruchidae. Entomologia Hellenica 5: 61–67.

    Google Scholar 

  • Stoger, E., S. Williams, P. Christou, R.E. Down & J.A. Gatehouse, 1999. Expression of the insecticidal lectin from snowdrop (Galanthus nivalis agglutin; GNA) in transgenic wheat plants: Effets on predation by the grain aphid Sitobion avenae. Mol Breed 5: 65–73.

    Article  CAS  Google Scholar 

  • Summers, C.G. & A.S. Newton, 1987. Low temperature decreases CUF101 alfalfa resistance to blue alfalfa aphid. Calif Agric 41: 11–12.

    Google Scholar 

  • Takabayashi, J., M. Dicke & M.A. Posthumus, 1994. Volatile herbivore-induced terpendoids in plant-mite interactions: Variation caused by biotic and abiotic factors. J Chem Ecol 20: 1329–1354.

    Article  CAS  Google Scholar 

  • Talekar, N.S. & C.P. Lin, 1994. Characterization of resistance to limabean pod borer (Lepidoptera: Pyralidae) in soybean. J Econ Entomol 87: 821–825.

    Google Scholar 

  • Tayo, T.O., 1989. Anatomical basis of cowpea resistance to pod borer, Maruca testulalis (Geyer). Insect Sci Appl 10: 631–638.

    Google Scholar 

  • Turnipseed, S.G., 1977. Influence of trichome density on populations of small phytophagous insects on soybeans. Environ Entomol 6: 815–817.

    Google Scholar 

  • Underwood, N., W. Morris, K. Gross & J. Lockwood III, 2000. Induced resistance to Mexican bean beetle in soybean: Variation among genotypes and lack of correlation with constitutive resistance. Oecologia 122: 83–89.

    Article  Google Scholar 

  • Vancanneyt, G., C. Sanz, T. Farmaki, M. Paneque, F. Ortego, P. Castanera & J.J. Sanchez-Serrano, 2001. Hydroperoxide lyase depletion in transgenic potato plants leads to an increase in aphid performance. Proc Natl Acad Sci USA 98: 8139–8144.

    Article  CAS  PubMed  Google Scholar 

  • van de Ven, W.T.G., C.S. LeVesque, T.M. Perring & L.L. Walling, 2000. Local and systemic changes in squash gene expression in response to silverleaf whitefly feeding. Plant Cell 12: 1409–1423.

    Article  CAS  PubMed  Google Scholar 

  • Voelckel, C. & I.T. Baldwin, 2004. Herbivore-induced plant vaccination. Part II. Array-studies reveal the transience of herbivore-specific transcriptional imprints and a distinct imprint from stress combinations. Plant J 38: 650–663.

    Article  CAS  PubMed  Google Scholar 

  • Voelckel, C., W.W. Weisser & I.T. Baldwin, 2004. An analysis of plant-aphid interactions by different microarray hybridization strategies. Mol Ecol 13: 3187–3195

    Article  CAS  PubMed  Google Scholar 

  • Walling, L.L., 2000. The myriad plant responses to herbivores. J Plant Growth Regul 19: 195–216.

    CAS  PubMed  Google Scholar 

  • Wang, S.F., T.J. Ridsdill-Smith & E.L. Ghisalberti, 1998. Role of isoflavonoids in resistance of subterranean clover trifoliates to the redlegged earth mite Halotydeus destructor. J Chem Ecol 24: 2089–2100.

    Article  CAS  Google Scholar 

  • Wang, S.F., T.J. Ridsdill-Smith & E.L. Ghisalberti, 1999. Levels of isoflavonoids as indicators of resistance of subterranean clover trifoliates to redlegged earth mite Halotydeus destructor. J Chem Ecol 25: 795.

    Article  CAS  Google Scholar 

  • Wang, S.F., A.Y. Liu, T.J. Ridsdill-Smith & E.L. Ghisalberti, 2000. Role of alkaloids in resistance of yellow lupin to red-legged earth mite Halotydeus destructor. J Chem Ecol 26: 429–442.

    Article  CAS  Google Scholar 

  • Wang, Z.Y. & J.X. He, 2004. Brassinosteroid signal transduction – choices of signals and receptors. Trends Plant Sci 9: 91–96.

    Article  CAS  PubMed  Google Scholar 

  • Wink, M., 1984. Biochemistry and chemical ecology of lupin alkaloids. In: Proceedings of the International Lupin Conference, La Rochelle, France, pp. 326–343.

  • Yoshida, M., S.E. Cowgill & J.A. Wightman, 1997. Roles of oxalic acid and malic acids in chickpea trichome exudates in host-plant resistance to Helicoverpa armigera. J Chem Ecol 23: 1195–1210.

    Article  CAS  Google Scholar 

  • Zarrabi, A.A., R.C. Berberet & J.L. Caddel, 1995. New biotype of Acyrthosiphon kondoi (Homoptera: Aphididae) on alfalfa in Oklahoma. J Econ Entomol 88: 1461–1465.

    Google Scholar 

  • Zhu-Salzman, K., P.K. Hammen, R.A. Salzman, H. Koiwa, R.A. Bressan, L.L. Murdock & P.M. Hasegawa, 2002. Calcium modulates protease resistance and carbohydrate binding of a plant defense legume lectin, Griffonia simplicifolia lectin II (GSII). Comp Biochem Physiol 132: 327–334.

    Google Scholar 

  • Zhu-Salzman, K., H. Koiwa, R.A. Salzman, R.E. Shade & J.-E. Ahn, 2003. Cowpea bruchid Callosobruchus maculates uses a three-component strategy to overcome a plant defensive cysteine protease inhibitor. Insect Mol Biol 12: 135–145.

    Article  CAS  PubMed  Google Scholar 

  • Zhu-Salzman, K., R.A. Salzman, J.E. Ahn & H. Koiwa, 2004. Transcriptional regulation of sorghum defense determinants against a phloem-feeding aphid. Plant Physiol 134: 420–431.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karam B. Singh.

Additional information

CSIRO’s right to retain a non-exclusive, royalty-free licence in and to any copyright is acknowledged.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Edwards, O., Singh, K.B. Resistance to insect pests: What do legumes have to offer?. Euphytica 147, 273–285 (2006). https://doi.org/10.1007/s10681-006-3608-1

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10681-006-3608-1

Key Words

Navigation