Skip to main content

Plant Growth-Promoting Bacteria: Effective Tools for Increasing Nutrient Use Efficiency and Yield of Crops

  • Chapter
  • First Online:
Endophytes: Mineral Nutrient Management, Volume 3

Abstract

Agrochemicals or fertilizers are essential to optimize crop production but their excessive and unwanted application is posing a myriad of adverse effects such as declining soil fertility besides contaminating surface and groundwater. These synthetic chemicals mismanage the soil ecology leading to disturbed ecosystem and loss of beneficial bacteria inhabiting in soil. Traces of such chemicals have also been deposited in agricultural products that cause serious illnesses in human beings. Considering such facts, the use of plant growth-promoting bacteria (PGPB) renamed as plant beneficial bacteria being promoted to enhance nutrient availability, plant growth, and yield promotion to maintain sustainable agriculture. These bacteria have been in use for a long time for increasing plant growth and development and to reduce the subsistence farmer’s dependence on agrochemicals. The scientific community observed that beneficial effects are now befitting for the sustainable growth promotion and crop yield enhancement due to the influence of PGPR in order to augment nutrient uptake capacity and nutrient use efficiency. The aim of the present study is focusing on the PGPRs which work as a tool to enhance nutrient use efficiency of various crops. Long-term application of such bacteria could act as a newer alternative to chemical fertilizer and able to cope its adverse effects on both soil and ecology and reverse plant–soil ecosystem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adak A, Prasanna R, Babu S, Bidyarani N, Verma S, Pal M, Nain L (2016) Micronutrient enrichment mediated by plant-microbe interactions and rice cultivation practices. J Plant Nutr 39(9):1216–1232

    Article  CAS  Google Scholar 

  • Adesemoye AO, Kloepper JW (2009) Plant–microbes interactions in enhanced fertilizer-use efficiency. Appl Microbiol Biotechnol 85(1):1–12

    Article  CAS  PubMed  Google Scholar 

  • Agarwal BD, Broutman LJ, Chandrashekhara K (2017a) Analysis and performance of fiber composites. Wiley, New York, USA

    Google Scholar 

  • Agrawal DPK, Agrawal S (2013) Characterization of Bacillus sp. strains isolated from rhizosphere of tomato plants (Lycopersicon esculentum) for their use as potential plant growth promoting rhizobacteria. Int J Curr Microbiol Appl Sci 2(10):406–417

    Google Scholar 

  • Agarwal M, Dheeman S, Dubey RC, Kumar P, Maheshwari DK, Bajpai VK (2017b) Differential antagonistic responses of Bacillus pumilus MSUA3 against Rhizoctonia solani and Fusarium oxysporum causing fungal diseases in Fagopyrum esculentum Moench. Microbiol Res 205:40–47

    Article  PubMed  Google Scholar 

  • Ahmad S, Imran M, Hussain S, Mahmood S, Hussain A (2017) Bacterial impregnation of mineral fertilizers improves yield and nutrient use efficiency of wheat. J Sci Food Agric 97:11

    Article  CAS  Google Scholar 

  • Aktar W, Sengupta D, Chowdhury A (2009) Impact of pesticides use in agriculture: their benefits and hazards. Interdiscip Toxicol 2(1):1–12

    Article  PubMed  PubMed Central  Google Scholar 

  • Arif MS, Shahzad SM, Riaz M, Yasmeen T, Shahzad T, Akthar MJ, Bragazza L, Buttler A (2017) Nitrogen-enriched compost application combined with plant growth-promoting rhizobacteria (PGPR) improves seed quality and nutrient use efficiency of sunflower. J Plant Nutri Soil Sci 180(4):464–473

    Article  CAS  Google Scholar 

  • Awasthi A, Bharti N, Nair P, Singh R, Shukla AK, Gupta MM, Kalra A (2011) Synergistic effect of Glomus mosseae and nitrogen fixing Bacillus subtilis strain Daz26 on artemisinin content in Artemisia annua L. Appl Soil Ecol 49:125–130

    Article  Google Scholar 

  • Baligar VC, Fageria NK, He ZL (2001) Nutrient use efficiency in plants. Commun Soil Sci Plant Anal 32:921–950

    Article  CAS  Google Scholar 

  • Beneduzi A, Peres D, Vargas LK, Bodanese-Zanettini MH, Passaglia LMP (2008) Evaluation of genetic diversity and plant growth promoting activities of nitrogen-fixing bacilli isolated from rice fields in South Brazil. App Soil Eco 39(3):311–320

    Article  Google Scholar 

  • Bhanti M, Taneja A (2007) Contamination of vegetables of different seasons with organophosphorous pesticides and related health risk assessment in northern India. Chemosphere 69:63–68

    Article  CAS  PubMed  Google Scholar 

  • Bhatt K, Maheshwari DK (2019) Decoding multifarious role of cow dung bacteria in mobilization of zinc fractions along with growth promotion of C. annuum L. Sci Rep 9:14232

    Google Scholar 

  • Bishnoi U (2015) PGPR interaction: an ecofriendly approach promoting the sustainable agriculture system. Adv Bot Res 1(75):81–113

    Google Scholar 

  • Bottini R, Cassán F, Piccoli P (2004) Gibberellin production by bacteria and its involvement in plant growth promotion and yield increase. App Microbiol Biotech 65(5):497–503

    Article  CAS  Google Scholar 

  • Canbolat MY, Bilen S, Cakmakcr R, Sahin F, Aydm A (2006) Effect of plant growth-promoting bacteria and soil compaction on barley seedling growth, nutrient uptake, soil properties and rhizosphere microflora. Biol Fertil Soils 42:350–357

    Google Scholar 

  • Chandini KR, Kumar R, Prakash O (2019) The impact of chemical fertilizers on our environment and ecosystem. In: Research trends in environmental sciences, Vol 2, AkiNik Publications, New Delhi, pp 69–86

    Google Scholar 

  • Chapin FS (1980) The mineral nutrition of wild plants. Annu Rev Ecol Sys 11:233–260

    Article  CAS  Google Scholar 

  • Chaturvedi M, Sharma C, Tiwari M (2013) Effects of pesticides on human beings and farm animals: a case study. Res J Chem Environ Sci 1(3):14–19

    Google Scholar 

  • Chauhan AK, Maheshwari DK, Kim K, Bajpai VK (2016). Termitarium-inhabiting Bacillus endophyticus TSH42 and Bacillus cereus TSH77 colonizing Curcuma longa L.: isolation, characterization, and evaluation of their biocontrol and plant-growth-promoting activities. Can J Microbiol 62(10):880–892

    Google Scholar 

  • Cohen AC, Bottini R, Piccoli P (2015) Role of abscisic acid producing PGPR in sustainable agriculture. In: Maheshwari DK (ed) Bacterial metabolites in sustainable agro-ecosystem. Springer, New York, pp 259–282

    Google Scholar 

  • Dalvie MA, Naik I, Channa K, London L (2011) Urinary dialkyl phosphate levels before and after first season chlorpyrifos spraying amongst farm workers in the Western Cape, South Africa. J Environ Sci and Health, Part B 46(2):163–172

    Article  CAS  Google Scholar 

  • de Santiago A, Quintero JM, Aviles M, Delgado A (2011) Effect of Trichoderma asperellum strain T34 on iron, copper, manganese, and zinc uptake by wheat grown on a calcareous medium. Plant Soil 342(1–2):97–104

    Article  CAS  Google Scholar 

  • Dey RK, Pal KP, Bhatt KK, Chauhan SM (2004) Growth promotion and yield enhancement of peanut (Arachis hypogaea L.) by application of plant growth-promoting rhizobacteria. Microbiol Res 159(4):371–394

    Google Scholar 

  • Dhiman S, Dubey RC, Baliyan N, Kumar S, Maheshwari DK (2019) Application of potassium-solubilising Proteus mirabilis MG738216 inhabiting cattle dung in improving nutrient use efficiency of Foeniculum vulgare Mill. Environ Sustain 2(4):401–409

    Google Scholar 

  • Duarah I, Deka M, Saikia N, Boruah HD (2011) Phosphate solubilizers enhance NPK fertilizer use efficiency in rice and legume cultivation. 3 Biotech 1(4):227–238

    Google Scholar 

  • Dubey RC, Khare S, Kumar P, Maheshwari DK (2014) Combined effect of chemical fertilisers and rhizosphere-competent Bacillus subtilis BSK17 on yield of Cicer arietinum. Arch Phytopatho Plant Prot 47(19):2305–2318

    Article  CAS  Google Scholar 

  • Egamberdiyeva D (2007) The effect of plant growth promoting bacteria on growth and nutrient uptake of maize in two different soils. Appl Soil Ecol 36:184–189

    Article  Google Scholar 

  • Fan XH, Zhang SA, Mo XD, Li YC, Fu YQ, Liu ZG (2017) Effect of PGPR and N source on plant growth and N, P uptake by tomato grown in Calcareous soils. Pedosphere

    Google Scholar 

  • Fitter AH, Helgason T, Hodge A (2011) Nutritional exchanges in the arbuscular mycorrhizal symbiosis: implications for sustainable agriculture. Fungal Biol Reviews 25(1):68–72

    Article  Google Scholar 

  • Galloway JN, Townsend AR, Erisman JW, Bekunda M, Cai Z, Freney JR, Marinelli LA, Seitzinger SP, Sutton MA (2008) Transformation of the nitrogen cycle: recent trends, questions, and potential solutions. Science 320(5878):889–892

    Article  CAS  PubMed  Google Scholar 

  • Gavito ME, Curtis PS, Mikkelsen TN, Jakobsen I (2001) Interactive effects of soil temperature, atmospheric carbon dioxide and soil N on root development, biomass and nutrient uptake of winter wheat during vegetative growth. J Exp Bot 52(362):1913–1923

    Article  CAS  PubMed  Google Scholar 

  • Gellings CW, Parmenter KE (2016) Energy efficiency in fertilizer production and use. In: Gellings CW (ed) Efficient use and conservation of energy: encyclopedia of life support systems. Eolss Publishers, Oxford, pp 123–136

    Google Scholar 

  • Glick BR (1995) The enhancement of plant growth by free-living bacteria. Can J Microbial 41(2):109–117

    Article  CAS  Google Scholar 

  • Goteti PK, Emmanuel LDA, Desai S, Shaik MHA (2013) Prospective zinc solubilising bacteria for enhanced nutrient uptake and growth promotion in maize (Zea mays L.). Int J Microbiol 32(1):15–19

    Google Scholar 

  • Gray EJ, Smith DL (2005) Intracellular and extracellular PGPR: commonalities and distinctions in the plant–bacterium signaling processes. Soil Biol Biochem 37(3):395–412

    Article  CAS  Google Scholar 

  • Gulati A, Vyas P, Rahi P, Kasana RC (2009) Plant growth-promoting and rhizosphere-competent Acinetobacter rhizosphaerae strain BIHB 723 from the cold deserts of the Himalayas. Curr Microbiol 58:371–377

    Article  CAS  PubMed  Google Scholar 

  • Gulnaz Y, Fathima PS, Denesh GR, Kulmitra AK, Shivrajkumar HS (2017) Effect of Plant Growth Promoting Rhizobacteria (PGPR) and PSB on root parameters, nutrient uptake and nutrient use efficiency of irrigated maize under varying levels of phosphorus. J Entomol Zool Stud 5(6):166–169

    Google Scholar 

  • Guo Q, Dong W, Li S, Lu X, Wang P, Zhang X, Ma P (2014) Fengycin produced by Bacillus subtilis NCD-2 plays a major role in biocontrol of cotton seedling damping-off disease. Microbiol Res 169(7–8):533–540

    Article  CAS  PubMed  Google Scholar 

  • Gupta G, Parihar SS, Ahirwar NK, Snehi SK, Singh V (2015) Plant growth promoting rhizobacteria (PGPR): current and future prospects for development of sustainable agriculture. J Microb Biochem Technol 7(2):096–102

    CAS  Google Scholar 

  • Gurusubramanian G, Rahman A, Sarmah M, Ray S, Bora S (2008) Pesticide usage pattern in tea ecosystem, their retrospects and alternative measures. J Environ Biol 29:813–826

    CAS  PubMed  Google Scholar 

  • Hafeez FY, Yasmin S, Ariani D, Zafar Y, Malik KA (2006) Plant growth-promoting bacteria as biofertilizer. Agr Sustain Dev 26(2):143–150

    Article  CAS  Google Scholar 

  • Han CS, Xie G, Challacombe JF, Altherr MR, Bhotika SS, Brown N, Bruce D, Campbell CS, Campbell ML, Chen J, Chertkov O, Cleland C, Dimitrijevic M, Doggett NA, Fawcett JJ, Glavina T, Goodwin LA, Green LD, Hill KK, Hitchcock P, Jackson PJ, Keim P, Kewalramani AR, Longmire J, Lucas S, Malfatti S, McMurry K, Meincke LJ, Misra M, Moseman BL, Mundt M, Munk AC, Okinaka RT, Parson-Quintana B, Reilly LP, Richardson P, Robinson DL, Rubin E, Saunders E, Tapia R, Tesmer JG, Thayer N, Thompson LS, Tice H, Ticknor LO, Wills PL, Brettin TS, Gilna P (2006) Pathogenomic sequence analysis of Bacillus cereus and Bacillus thuringiensis isolates closely related to Bacillus anthracis. J Bacteriol 188:3382–3390

    Article  PubMed  PubMed Central  Google Scholar 

  • Hayat R, Ali S, Amara U, Khalid R, Ahmed I (2010) Soil beneficial bacteria and their role in plant growth promotion: a review. Annals Microbiol 60(4):579–598

    Article  Google Scholar 

  • Heinze J, Gensch S, Weber E, Joshi J (2017) Soil temperature modifies effects of soil biota on plant growth. J Plant Ecol 10(5):808–821

    Google Scholar 

  • Herridge DF, Peoples MB, Boddey RM (2008) Global inputs of biological nitrogen fixation in agricultural systems. Plant Soil 311:1–18

    Article  CAS  Google Scholar 

  • Huang Y, Krauss G, Cottaz S, Driguez H, Lipps G (2005) A highly acid-stable and thermostable endo-β-glucanase from the thermoacidophilic archaeon Sulfolobus solfataricus. Biochemical J 385(2):581–588

    Article  CAS  Google Scholar 

  • Jackson SD, Prat S (1996) Control of tuberisation in potato by gibberellins and phytochrome B. Physiol Plant 98(2):407–412

    Article  CAS  Google Scholar 

  • Jochum MD, McWilliams KL, Borrego EJ, Kolomiets MV, Niu G, Pierson EA, Jo YK (2019) Bioprospecting plant growth promoting rhizobacteria that mitigate drought stressin grasses. Front Microbiol 10:1–9

    Article  Google Scholar 

  • Karlidag H, Yildirim E, Turan M (2009) Salicylic acid ameliorates the adverse effect of salt stress on strawberry. Scientia Agricola 66(2):180–187

    Article  CAS  Google Scholar 

  • Katiyar V, Goel R (2004) Siderophore-mediated plant growthpromotion at low temperature by mutant of fluorescentpseudomonad. Plant Growth Regul 42:239–244

    Article  CAS  Google Scholar 

  • Kaur J, Khanna V, Kumari P, Sharma R (2015) Influence of psychrotolerant plant growth-promoting rhizobacteria (PGPR) as coinoculants with Rhizobium on growth parameters and yield of lentil (Lens culinaris Medikus). Afr J Microbiol Res 9(4):258–264

    Article  CAS  Google Scholar 

  • Kesaulya H, Hasinu JV, Tuhumury GN (2018) Potential of Bacillus spp produces siderophores insuppressing the wilt disease of banana plants. In: IOP conference series: and environmental science (vol. 102, no. 1, p. 012016). IOP Publishing

    Google Scholar 

  • Khabbaz SE, Zhang L, Cáceres LA, Sumarah M, Wang A, Abbasi PA (2015) Characterization of antagonistic Bacillus and Pseudomonas strains for biocontrol potential and suppression of damping-off and root rot diseases. Ann Appl Biol 166(3):456–471

    Article  CAS  Google Scholar 

  • Khan MS, Zaidi A (2007) Synergistic effects of the inoculation with plant growth-promoting rhizobacteria and an arbuscular mycorrhizal fungus on the performance of wheat. Turkish J Agricul Forestry 31(6):355–362

    CAS  Google Scholar 

  • Khanghahi MY, Pirdashti H, Rahimian H, Nematzadeh G, Sepanlou MG (2018) Potassium solubilising bacteria (KSB) isolated from rice paddy soil: from isolation, identification to K use efficiency. Symbiosis 76(1):13–23

    Article  CAS  Google Scholar 

  • Kivi MP, Hokmalipour S, Darbandi MH (2014) Nitrogen and phosphorus use efficiency of spring wheat (Triticum aestivum L.) as affected by seed inoculation with plant growth promoting rhizobacteria (PGPR). International J Ad Biol Biomed Res 2(4):1038–1050

    Google Scholar 

  • Kloepper JW, Schroth MN (1978) Plant growth promoting rhizobacteria on radishes. Proc. 4th Int. Conf. Plant path. Bact, Angers, pp 879–882

    Google Scholar 

  • Kumar A, Patel JS, Bahadur I, Meena VS (2016) The molecular mechanisms of KSMs for enhancement of crop production under organic farming. In Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 61–75

    Google Scholar 

  • Lavakush YJ, Verma JP, Jaiswal DK, Kumar A (2014) Evaluation of PGPR and different concentration of phosphorous level on plant growth, yield and nutrient content of rice (Oryza sativa). Ecol Eng 62:123–128

    Article  Google Scholar 

  • Lawrence G, Richards CA, Cheshire L (2004) The environmental enigma: why do producers professing stewardship continue to practice poor natural resource management? J Environ Policy Plan 6(3–4):251–270

    Article  Google Scholar 

  • Lee MH, Lee J, Nam YD, Lee JS, Seo MJ, Yi SH (2016) Characterization of antimicrobial lipopeptides produced by Bacillus sp. LM7 isolated from chungkookjang, a Korean traditional fermented soybean food. Int J Food Microbiol 221:12–18

    Article  CAS  PubMed  Google Scholar 

  • Li YC, Li ZW, Lin WW, Jiang YH, Weng BQ, Lin WX (2018) Effects of biochar and sheep manure on rhizospheric soil microbial community in continuous ratooning tea orchards. Chin J Appl Ecol 29:1273–1282

    Google Scholar 

  • Lin W, Lin M, Zhou H, Wu H, Li Z, Lin W (2019) The effects of chemical and organic fertilizer usage on rhizosphere soil in tea orchards. PLoS One 14(5):e0217018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maheshwari DK (ed) (2011) Bacteria in agrobiology: crop ecosystems. Springer Science & Business Media

    Google Scholar 

  • Maheshwari DK, Agarwal M, Dheeman S, Saraf M (2013) Potential of rhizobia in productivity enhancement of Macrotyloma uniflorum L. and Phaseolus vulgaris L. cultivated in the Western Himalaya. In: Maheshwari DK, Saraf M, Aeron A (eds) Bacteria in agrobiology: crop productivity. Springer, Berlin, Heidelberg, pp 127–165

    Google Scholar 

  • Maheshwari DK, Dheeman S, Annapurna K (2017) Endophytes as contender of plant productivity and protection: an introduction. In: Endophytes: crop productivity and protection. Springer, Cham, pp 1–9

    Google Scholar 

  • Maheshwari DK, Dubey RC, Agarwal M, Dheeman S, Aeron A, Bajpai VK (2015) Carrier based formulations of biocoenotic consortia of disease suppressive Pseudomonas aeruginosa KRP1 and Bacillus licheniformis KRB1. JEE 81:272–277

    Google Scholar 

  • Mehta P, Walia A, Kulshrestha S, Chauhan A, Shirkot CK (2015) Efficiency of plant growth-promoting P-solubilizing Bacillus circulans CB7 for enhancement of tomato growth under net house conditions. J Basic Microbiol 55(1):33–44

    Article  CAS  PubMed  Google Scholar 

  • Melnykova N, Gryshchuk O, Mykhalkiv L, Mamenko P, Sergii KOTS (2013) Plant growth promoting properties of bacteria isolated from the rhizosphere of soybean and pea. Natura Montenegrina 12(3–4):915–923

    Google Scholar 

  • Minaxi RP, Acharya KO, Santosh N (2011) Impact of climate change on food security. Inter J Agricul Environ Biotechnol 4(2):125–127

    Google Scholar 

  • Mishra PK, Bisht SC, Ruwari P, Selvakumar G, Joshi GK, Bisht JK, Bhatt JC, Gupta HS (2011) Alleviation of cold stress in inoculated wheat (Triticum aestivum L.) seedlings with psychrotolerant Pseudomonads from NW Himalayas. Arch Microbiol 193:497–513

    Article  CAS  PubMed  Google Scholar 

  • Mishra PK, Mishra S, Selvakumar G, Kundu S, Shankar Gupta H (2009) Enhanced soybean (Glycine max L.) plant growth and nodulation by Bradyrhizobium japonicum-SB1 in presence of Bacillus thuringiensis-KR1. Acta Agriculturae Scand Sect B–Soil and Plant Sci 59(2):189–196

    Google Scholar 

  • Negi YK (2005) Strain improvement of fluorescent Pseudomonas spp. with respect to their PGPR activity using molecular approaches. Ph.D. thesis submitted to Dr. RML Avadh University, Faizabad, UP, India

    Google Scholar 

  • Negi YK, Prabha D, Garg SK, Kumar J (2011) Genetic diversity among cold-tolerant fluorescent Pseudomonas isolates from Indian Himalayas and their characterization for biocontrol and plant growth promotion activities. J Plant Growth Regul 30:128–143

    Article  CAS  Google Scholar 

  • Odukkathil G, Vasudevan N (2013) Toxicity and bioremediation of pesticides in agricultural soil. Rev Env Sci Bio/Tech 12(4):421–444

    Article  CAS  Google Scholar 

  • Ogunseitan O (2005) Microbial diversity: form and function in prokaryotes. Blackwell Science Ltd., Massachusetts, USA, p 142

    Google Scholar 

  • Orozco FH, Cegarra J, Trujillo LM, Roig A (1996) Vermicomposting of coffee pulp using the earthworm Eisenia fetida: effects on C and N contents and the availability of nutrients. Bio Fertil Soil 22:162–166

    Article  Google Scholar 

  • Pandey A, Trivedi P, Kumar B, Palni LMS (2006) Characterization of a phosphate solubilizing and antagonistic strain of Pseudomonas putida (B0) isolated from a Sub-Alpine Location in the Indian Central Himalaya. Curr Microbiol 53:102–107

    Article  CAS  PubMed  Google Scholar 

  • Pandey C, Bajpai VK, Negi YK, Rather IA, Maheshwari DK (2018a) Effect of plant growth promoting Bacillus spp. on nutritional properties of Amaranthus hypochondriacus grains. Saudi J Biol Sci 25:1066–1071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pandey C, Negi YK, Maheshwari DK, Rawat D, Prabha D (2018b) Potential of native cold tolerant plant growth promoting bacilli to enhance nutrient use efficiency and yield of Amaranthus hypochondriacus. Plant Soil 428(1–2):307–320

    Article  CAS  Google Scholar 

  • Pandey C, Prabha D, Negi YK (2017) Mycoremediation of common agricultural pesticides. In: Prasad R (ed) Mycoremediation and environmental sustainability, vol. 2. Springer Publications, Cham, pp 155–179

    Google Scholar 

  • Parmar JK, Patel JJ (2009) Effect of organic and inorganic nitrogen and biofertilizer on nutrient content and uptake by amaranth (Amaranthus hypochondriacus L.). An Asian J Soil Sci 4:135–138

    Google Scholar 

  • Prasanna R, Sharma E, Sharma P, Kumar A, Kumar R, Gupta V, Nain L (2013) Soil fertility and establishment potential of inoculated cyanobacteria in rice crop grown under non-flooded conditions. Paddy Water Environ 11(1–4):175–183

    Article  Google Scholar 

  • Puente ME, Li CY, Bashan Y (2004) Microbial populations and activities in the rhizoplane of rock‐weathering desert plants. II. Growth promotion of cactus seedlings. Plant Bio 6(5):643–650

    Google Scholar 

  • Putten WH, Bardgett RD, Bever JD, Bezemer TM, Casper BB, Fukami T, Kardol P, Klironomos JN, Kulmatiski, Schweitzer jA, Suding KN, Van de Voorde TFJ, Wardle DA, Suding KN (2013). Plant–soil feedbacks: the past, the present and future challenges. J Ecol 101(2):265–276

    Google Scholar 

  • Rahman M, Sabir AA, Mukta JA, Khan MA, Mohi-Ud-Din M, Miah MG, Rahman M, Islam MT (2018) Plant probiotic bacteria Bacillus and Paraburkholderia improve growth, yield and content of antioxidants in strawberry fruit. Scient Rep 8:2504

    Article  CAS  Google Scholar 

  • Ramesh A, Sharma SK, Sharma MP, Yadav N, Joshi OP (2014) Inoculation of zinc solubilizing Bacillus aryabhattai strains for improved growth, mobilization and biofortification of zinc in soybean and wheat cultivated in Vertisols of central India. Appl Soil Ecol 73:87–96

    Article  Google Scholar 

  • Refish NMR, Talib AJ, Jian-Wei G, Fu C, Yu L (2016) Promoting role of Bacillus subtilis BS87 on the growth and content of some natural products in the medicinal plants Anoectochilus roxburghii and A. formosanus. Adv Life Sci 6(2):31–38

    Google Scholar 

  • Ren X, Guo S, Tian W, Chen Y, Han H, Chen E, Li BL, Li YY, Chen Z (2019) Effects of Plant Growth-Promoting Bacteria (PGPR) inoculation on the growth, antioxidant activity, Cu uptake, and bacterial community structure of rape (Brassica napus L.) grown in Cu-contaminated agricultural soil. Front Microbiol 10:1455

    Google Scholar 

  • Romao-Dumaresq AS, Franco HCJ, Borges BMMN, Batista BD, Quecine MC (2017) Beneficial microorganisms associated with sugarcane crops: the green gold for clean energy. Diversity and benefits of microorganisms from the tropics. Springer, Cham, pp 313–339

    Chapter  Google Scholar 

  • Selvakumar G, Mohan M, Kundu S, Gupta AD, Joshi P, Nazim S, Gupta HS (2007) Cold tolerance and plantgrowth promotion potential of Serratia marcescensstrain SRM (MTCC 8708) isolated from flowers of summer squash (Cucurbita pepo). Lett Appl Microbiol 46:171–175

    Article  PubMed  CAS  Google Scholar 

  • Selvakumar G, Mohan M, Kundu S, Gupta AD, Joshi P, Nazim S, Gupta HS (2008) Cold tolerance and plant growth promotion potential of Serratia marcescens strain SRM (MTCC 8708) isolated from flowers of summer squash (Cucurbita pepo). Lett Appl Microbiol 46:171–175

    Article  CAS  PubMed  Google Scholar 

  • Shabayev VP (2012) Mineral nutrition of plants inoculated with plant growth-promoting rhizobacteria of Pseudomonas genus. Bio Bull Rev 2(6):487–499

    Article  Google Scholar 

  • Shaharooma B, Naveed M, Arshad M, Zahir ZA (2008) Fertilizer-dependent efficiency of Pseudomonads for improving growth, yield, and nutrient use efficiency of wheat (Triticum aestivum L.). Appl Microbiol Biotechnol 79:147–155

    Article  CAS  Google Scholar 

  • Shakeel M, Rais A, Hassan MN, Hafeez FY (2015) Root associated Bacillus sp. improves growth, yield and zinc translocation for basmati rice (Oryza sativa) varieties. Front Microbiol 6:1286

    Google Scholar 

  • Sharma A, Shankhdhar D, Shankhdhar SC (2015) Plant growth promoting rhizobacteria—an approach for biofortification in cereal grains. Physiological Efficiency for Crop Improvement, pp 460–545

    Google Scholar 

  • Sharma P, Bhatt D, Zaidi MGH, Saradhi PP, Khanna PK, Arora S (2012) Silver nanoparticle-mediated enhancement in growth and antioxidant status of Brassica juncea. Appl Biochem Biotechnol 167(8):2225–2233

    Article  CAS  PubMed  Google Scholar 

  • Shukla A, Dhauni N, Suyal DC, Kumar S, Goel R (2015) Comparative plant growth promoting potential of psychrotolerant diazotrophs, Pseudomonas sp. JJS2 and Enterobacter sp. AAB8 against native Cajanuscajan (L.) and Eleusinecoracana (L.). Afr J Microbiol Res 9(20):1371–1375

    Google Scholar 

  • Singh AK, Karambeer Pal AK (2015) Effect of vermicompost and biofertilizers on strawberry: growth, flowering and yield. Ann Plant Soil Res 17:196–199

    Google Scholar 

  • Singh N, Singh G, Aggarwal N, Khanna V (2018) Yield enhancement and phosphorus economy in lentil (Lens culinaris Medikus) with integrated use of phosphorus, Rhizobium and plant growth promoting rhizobacteria. J Plant Nutrition 41(6):737–748

    Article  CAS  Google Scholar 

  • Singh PB, Singh V, Nay PK (2008) Pesticide residues and reproductive dysfunction in different vertebrates from north India. Food Chem Toxicol 46:2533–2539

    Article  CAS  PubMed  Google Scholar 

  • Singh RK, Malik N, Singh S (2013) Improved nutrient use efficiency increases plant growth of rice with the use of IAA-overproducing strains of endophytic Burkholderia cepacia strain RRE25. Microbial Ecol 66(2):375–384

    Article  CAS  Google Scholar 

  • Spaepen S, Vanderleyden J, Remans R (2007) Indole-3-acetic acid in microbial and microorganism-plant signaling. FEMS Microbiol Rev 31(4):1–24

    Google Scholar 

  • Spolaor LT, Gonçalves LSA, Santos OJAPD, Oliveira ALMD, Scapim CA, Bertagna FAB, Kuki MC (2016) Plant growth-promoting bacteria associated with nitrogen fertilization at topdressing in popcorn agronomic performance. Bragantia 75:33–40

    Article  Google Scholar 

  • Supanjani HH, Jung JS, Lee KD (2006) Rock phosphate-potassium and rock-solubilising bacteria as alternative, sustainable fertilizers. Agron Sustain Dev 26:233–240

    Article  CAS  Google Scholar 

  • Talboys PJ, Owen DW, Healey JR, Withers PJA, Jones DL (2014) Auxin secretion by Bacillus amyloliquifaciens FZB42 both stimulates root exudation and limits phosphorus uptake in Triticum aestivium. BMC Plant Biol 14:51

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Thomas L, Gupta A, Gopal M, George P, Thomas GV (2010) Plant growth promoting potential of Bacillus spp. isolated from rhizosphere of cocoa (Theobroma cacao L.). J Plant Crops 38:97–104

    Google Scholar 

  • Tiryaki O, Temur C (2010) The fate of pesticide in the environment. J Biol Environ Sci 4:29–38

    Google Scholar 

  • UNDESA (2017) World population prospects: the 2017 revision. United Nations Department of Economics and Social Affairs, New York, USA

    Google Scholar 

  • Vejan P, Abdullah R, Khadiran T, Ismail S, Boyce AN (2016) Role of plant growth promoting rhizobacteria in agricultural sustainability—a review. Molecule 21:573

    Article  CAS  Google Scholar 

  • Verma JP, Yadav J, Tiwari KN, Lavakush SV (2010) Impact of plant growth promoting rhizobacteria on crop production. Int J Agric Res 5:954–983

    Article  Google Scholar 

  • Vurukonda SSKP, Vardharajula S, Shrivastava M, SkZ A (2016) Enhancement of drought stress tolerance in crops by plant growth promoting rhizobacteria. Microbiol Res 184:13–24

    Article  PubMed  Google Scholar 

  • Wu SC, Cao ZH, Li ZG, Cheung KC, Wong MH (2005) Effects of biofertilizer containing N-fixer, P and K solubilizers and AM fungi on maize growth: a greenhouse trial. Geoderma 125:155–166

    Article  Google Scholar 

  • Yildrim E, Karlidag H, Turan M, Dursun A, Goktepe F (2011) Growth, nutrient uptake, and yield promotion of broccoli by plant growth promoting rhizobacteria with manure. Hort Sci 46:932–936

    Google Scholar 

  • Zeffa DM, Perini LJ, Silva MB, de Sousa NV, Scapim CA, Oliveira ALMd, Junior ATdA, Goncalves LSA (2019) Azospirillum brasilense promotes increases in growth and nitrogen use efficiency of maize genotypes. PLoS One 14:e0215332. http://doi.org/10.1371/Journal.Pone.0215332

  • Zongzheng Y, Xin L, Zhong L, Jinzhao P, Jin Q, Wenyan Y (2010) Effect of Bacillus subtilis SY1 on antifungal activity and plant growth. Int J Agri Bio Eng 2:55–61

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yogesh Kumar Negi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pandey, C., Dheeman, S., Prabha, D., Negi, Y.K., Maheshwari, D.K. (2021). Plant Growth-Promoting Bacteria: Effective Tools for Increasing Nutrient Use Efficiency and Yield of Crops. In: Maheshwari, D.K., Dheeman, S. (eds) Endophytes: Mineral Nutrient Management, Volume 3. Sustainable Development and Biodiversity, vol 26. Springer, Cham. https://doi.org/10.1007/978-3-030-65447-4_13

Download citation

Publish with us

Policies and ethics