Skip to main content

Chapter 10 Climate Change Responses and Adaptations in Crassulacean Acid Metabolism (CAM) Plants

  • Chapter
  • First Online:
Photosynthesis, Respiration, and Climate Change

Part of the book series: Advances in Photosynthesis and Respiration ((AIPH,volume 48))

Abstract

Global climatic change is predicted to result in certain areas of the earth’s surface becoming hotter and drier. These spatially durable changes in climate will likely have negative impacts on the productivity of many plant species that are poorly adapted to increasing air:leaf vapor pressure deficits. However, more that 6% of vascular plants have evolved crassulacean acid metabolism (CAM) as a photosynthetic adaptation to hotter and drier climates. This specialized mode of photosynthesis exploits a temporal CO2 pump with nocturnal CO2 uptake and concentration to reduce photorespiration, improve water-use efficiency (WUE), and optimize the adaptability of plants to hotter and drier climates. CAM species have a suite of physiological and anatomical adaptations that make them resilient to extreme heat and high insolation including tissue succulence, water-storage and water-capture strategies to attenuate drought , and thick cuticles, epicuticular wax, low stomatal density, high stomatal responsiveness, UV-light protection, and shallow rectifier-like roots to limit water loss under conditions of water deficit. Various modeling approaches have been developed to estimate the growth potential of CAM species under current and future climatic conditions.

Abbreviations: BMP – Best management practices; CAM – Crassulacean acid metabolism; Ci – Leaf intracellular CO2 concentration; EPI – Environmental productivity index; FBA – Flux balance analysis; GHG – Greenhouse gas; Glu – Glucose; gm – Mesophyll conductance of CO2; GREET – Greenhouse gases, regulated emissions, and energy use in transportation; HNT – High nighttime temperature ; IAS – Intracellular air space; LCA – Life cycle assessment; LCCA – Life cycle costing assessment; LCI – Life cycle inventories; MDH – Malate dehydrogenase; ME – Malic enzyme; NPP – Net primary production; PAR – Photosynthetically active radiation; PEP – Phosphoenolpyruvate; PEPC – Phosphoenolpyruvate carboxylase; PEPCK – PEP carboxykinase; PPFD – Photosynthetic photon flux densities; PS II – Photosystem II; Rubisco – Ribulose 1,5-bisphosphate carboxylase oxygenase; RUE – Radiation-use efficiency; SLN – Surface leaf nitrogen; Suc – Sucrose; VPD – Vapor-pressure deficits; WUE – Water-use efficiency

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abraham PE, Yin H, Borland AM, Weighill D, Lim SD, De Paoli HC, Engle N, …, Yang X (2016) Transcript, protein and metabolite temporal dynamics in the CAM plant Agave. Nat Plants 2:16178

    Google Scholar 

  • Acheampong M, Ertem FC, Kappler B, Neubauer P (2017) In pursuit of Sustainable Development Goal (SDG) number 7: will biofuels be reliable? Renew Sust Energ Rev 75:927–937

    Article  Google Scholar 

  • Adams WW, Osmond CB (1988) Internal CO2 supply during photosynthesis of sun and shade grown CAM plants in relation to photoinhibition. Plant Physiol 86:117–123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alencar BR, Dutra ED, Sampaio EV, Menezes RS, Morais JMA (2018) Enzymatic hydrolysis of cactus pear varieties with high solids loading for bioethanol production. Bioresour Technol 250:273–280

    Article  CAS  PubMed  Google Scholar 

  • Aulio K (1986) CAM-like photosynthesis in Littorella uniflora (L.) Aschers.: the role of humidity. Ann Bot 58:273–275

    Article  Google Scholar 

  • Bachereau F, Marigo G, Asta J (1998) Effect of solar radiation (UV and visible) at high altitude on CAM-cycling and phenolic compound biosynthesis in Sedum album. Physiol Plant 104:203–210

    Article  CAS  Google Scholar 

  • Banerjee R, Chintagunta A, Ray S (2017) A cleaner and eco-friendly bioprocess for enhancing reducing sugar production from pineapple leaf waste. J Clean Prod 149:387–395

    Article  CAS  Google Scholar 

  • Bargel H, Koch K, Cerman Z, Neinhuis C (2006) Evans review no. 3: structure–function relationships of the plant cuticle and cuticular waxes – a smart material? Funct Plant Biol 33:893–910

    Google Scholar 

  • Barker DH, Seaton GG, Robinson SA (1997) Internal and external photoprotection in developing leaves of the CAM plant Cotyledon orbiculata. Plant Cell Environ 20:617–624

    Article  CAS  Google Scholar 

  • Barrera-Zambrano VA, Lawson T, Olmos E, Fernández-García N, Borland AM (2014) Leaf anatomical traits which accommodate the facultative engagement of crassulacean acid metabolism in tropical trees of the genus Clusia. J Exp Bot 65:3513–3523

    Article  PubMed  Google Scholar 

  • Bartlett MS, Vico G, Porporato A (2014) Coupled carbon and water fluxes in CAM photosynthesis: modeling quantification of water use efficiency and productivity. Plant Soil 383:111–138

    Article  CAS  Google Scholar 

  • Bautista-Cruz A, Leyva-Pablo T, de León-González F, Zornoza R, Martínez-Gallegos V, Fuentes-Ponce M, Rodríguez-Sánchez L (2018) Cultivation of Opuntia ficus-indica under different soil management practices: a possible sustainable agricultural system to promote soil carbon sequestration and increase soil microbial biomass and activity. Land Degrad Dev 29:38–46

    Article  Google Scholar 

  • Benoit I, Coutinho P, Schols H, Gerlach J, Henrissat B, de Vries R (2012) Degradation of different pectins by fungi: correlations and contrasts between the pectinolytic enzyme sets identified in genomes and the growth on pectins of different origin. BNC Genomics 13:321

    Article  CAS  Google Scholar 

  • Benoit I, Culleton H, Zhou M, DiFalco M, Aguilar-Osorio G, Battaglia E, Bouzid O, …, Gruben BS (2015) Closely related fungi employ diverse enzymatic strategies to degrade plant biomass. Biotechnol Biofuels 8:107

    Google Scholar 

  • Bickford CP (2016) Ecophysiology of leaf trichomes. Funct Plant Biol 43:807–814

    Article  PubMed  Google Scholar 

  • Bonsch M, Humpenöder F, Popp A, Bodirsky B, Dietrich JP, Rolinski S, Biewald A, …, Stevanovic M (2016) Trade-offs between land and water requirements for large-scale bioenergy production. Glob Change Biol Bioenergy 8:11–24

    Google Scholar 

  • Borland A, Elliott S, Patterson S, Taybi T, Cushman J, Pater B, Barnes J (2006) Are the metabolic components of crassulacean acid metabolism up-regulated in response to an increase in oxidative burden? J Exp Bot 57:319–328

    Article  CAS  PubMed  Google Scholar 

  • Borland A, Griffiths H, Hartwell J, Smith J (2009) Exploiting the potential of plants with crassulacean acid metabolism for bioenergy production on marginal lands. J Exp Bot 60:2879–2896

    Article  CAS  PubMed  Google Scholar 

  • Borland A, Zambrano V, Ceusters J, Shorrock K (2011a) The photosynthetic plasticity of crassulacean acid metabolism: an evolutionary innovation for sustainable productivity in a changing world. New Phytol 191:619–633

    Article  CAS  PubMed  Google Scholar 

  • Borland AM, Barerra-Zambrano VA, Ceusters J, Shorrock K (2011b) The photosynthetic plasticity of crassulacean acid metabolism: an evolutionary innovation for sustainable productivity in a changing world. New Phytol 191:619–633

    Article  CAS  PubMed  Google Scholar 

  • Borland AM, Hartwell J, Weston DJ, Schlauch KA, Tschaplinski TJ, Tuskan GA, Yang X, Cushman JC (2014) Engineering crassulacean acid metabolism to improve water-use efficiency. Trends Plant Sci 15:327–338

    Article  CAS  Google Scholar 

  • Borland AM, Wullschleger SD, Weston DJ, Hartwell J, Tuskan GA, Yang X, Cushman JC (2015) Climate-resilient agroforestry: physiological responses to climate change and engineering of crassulacean acid metabolism (CAM) as a mitigation strategy. Plant Cell Environ 38:1833–1849

    Article  CAS  PubMed  Google Scholar 

  • Borland AM, Leverett A, Hurtado-Castano N, Hu R, Yang X (2018) Functional anatomical traits of the photosynthetic organs of plants with crassulacean acid metabolism. In: Adams WW III, Terashima I (eds) The Leaf: A Platform for Performing Photosynthesis, vol 44. Springer, Cham, pp 281–306

    Chapter  Google Scholar 

  • Bormann KJ, Brown RD, Derksen C, Painter TH (2018) Estimating snow-cover trends from space. Nat Clim Chang 8:924

    Article  Google Scholar 

  • Boxall SF, Kadu N, Dever LV, Kneřová J, Waller JL, Gould PJ, Hartwell J (2020) Kalanchoë PPC1 is essential for crassulacean acid metabolism and the regulation of core circadian clock and guard cell signaling genes. Plant Cell 32:1136–1160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brilhaus D, Bräutigam A, Mettler-Altmann T, Winter K, Weber AP (2016) Reversible burst of transcriptional changes during induction of crassulacean acid metabolism in Talinum triangulare. Plant Physiol 170:102–122

    Article  CAS  PubMed  Google Scholar 

  • Budzianowski WM, Postawa K (2017) Renewable energy from biogas with reduced carbon dioxide footprint: implications of applying different plant configurations and operating pressures. Renew Sust Energ Rev 68:852–868

    Article  CAS  Google Scholar 

  • Calabrò PS, Catalán E, Folino A, Sánchez A, Komilis D (2018) Effect of three pretreatment techniques on the chemical composition and on the methane yields of Opuntia ficus-indica (prickly pear) biomass. Waste Manag Res 36:17–29

    Article  PubMed  Google Scholar 

  • Ceusters J, Borland AM (2010) Impacts of elevated CO2 on the growth and physiology of plants with crassulacean acid metabolism. Prog Bot 72:163–181

    Google Scholar 

  • Challinor AJ, Watson J, Lobell DB, Howden SM, Smith DR, Chhetri N (2014) A meta-analysis of crop yield under climate change and adaptation. Nat Clim Chang 4:287–291

    Article  Google Scholar 

  • Cheeseman J (2016) Food security in the face of salinity, drought, climate change, and population growth. In: Khan MA, Ozturk M, Gul B, Ahmed MZ (eds) Halophytes for Food Security in Dry Lands. Academic, Amsterdam, pp 111–123

    Chapter  Google Scholar 

  • Chetti MB, Nobel PS (1988) Recovery of photosynthetic reactions after high-temperature treatments of a heat-tolerant cactus. Photosynth Res 18:277–286

    Article  CAS  PubMed  Google Scholar 

  • Cheung CYM, Poolman MG, Fell DA, Ratcliffe RG, Sweetlove LJ (2014) A diel flux balance model captures interactions between light and dark metabolism during day-night cycles in C3 and crassulacean acid metabolism leaves. Plant Physiol 165:917–929

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chomicki G, Bidel LP, Ming F, Coiro M, Zhang X, Wang Y, Baissac Y, …, Renner SS (2015) The velamen protects photosynthetic orchid roots against UV-B damage, and a large dated phylogeny implies multiple gains and losses of this function during the Cenozoic. New Phytol 205:1330–1341

    Google Scholar 

  • Christopher JT, Holtum JAM (1996) Patterns of carbohydrate partitioning in the leaves of Crassulacean acid metabolism species during deacidification. Plant Physiol 112:393–399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Christopher JT, Holtum JAM (1998) Carbohydrate partitioning in the leaves of Bromeliaceae performing C3 photosynthesis or Crassulacean acid metabolism. Aust J Plant Physiol 25:371–376

    CAS  Google Scholar 

  • Cook BI, Smerdon JE, Seager R, Coats S (2014) Global warming and 21st century drying. Clim Dyn 43:2607–2627

    Article  Google Scholar 

  • Cook B, Ault T, Smerdon J (2015) Unprecedented 21st century drought risk in the American Southwest and Central Plains. Sci Adv 1:e1400082

    Article  PubMed  PubMed Central  Google Scholar 

  • Cota-Sánchez JH (2002) Taxonomy, distribution, rarity status and uses of Canadian cacti. Haseltonia 9:17–25

    Google Scholar 

  • Crayn DM, Smith JAC, Winter K (2004) Multiple origins of Crassulacan acid metabolism and the epiphytic habit in the neotropical family Bromeliaceae. Proc Natl Acad Sci USA 101:3703–3708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crayn DM, Winter K, Schulte K, Smith JA (2015) Photosynthetic pathways in Bromeliaceae: phylogenetic and ecological significance of CAM and C3 based on carbon isotope ratios for 1893 species. Bot J Linn Soc 178:169–221

    Article  Google Scholar 

  • Croonenborghs S, Ceusters J, Londers E, De Proft MP (2009) Effects of elevated CO2 on growth and morphological characteristics of ornamental bromeliads. Sci Hortic 121:192–198

    Article  CAS  Google Scholar 

  • Cui M, Nobel PS (1994) Gas exchange and growth responses to elevated CO2 and light levels in the CAM species Opuntia ficus-indica. Plant Cell Environ 17:935–944

    Article  CAS  Google Scholar 

  • Cui M, Miller PM, Nobel PS (1993) CO2 exchange and growth of the crassulacean acid metabolism plant Opuntia ficus-indica under elevated CO2 in open-top chambers. Plant Physiol 103:519–524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cushman JC, Tillett RL, Wood JA, Branco JA, Schlauch KA (2008) Large-scale mRNA expression profiling in the common ice plant, Mesembryanthemum crystallinum, performing C3 photosynthesis and Crassulacean acid metabolism (CAM). J Exp Bot 59:1875–1894

    Article  CAS  PubMed  Google Scholar 

  • Cushman JC, Davis SC, Yang X, Borland AM (2015) Development and use of bioenergy feedstocks for semi-arid and arid lands. J Exp Bot 66:4177–4193

    Article  CAS  PubMed  Google Scholar 

  • Cuthber MO, Gleeson T, Moosdorf N, Befus KM, Schneider A, Hartmann J, Lehner B (2019) Global patterns and dynamics of climate–groundwater interactions. Nat Clim Chang 9:137

    Article  Google Scholar 

  • Dai A (2013) Increasing drought under global warming in observations and models. Nat Clim Chang 3:52–58

    Article  Google Scholar 

  • Dai A, Zhao T, Chen J (2018) Climate change and drought: a precipitation and evaporation perspective. Curr Climate Change Rep 4:301–312

    Article  Google Scholar 

  • Daily GC (1995) Restoring value to the world’s degraded lands. Science 269:350–354

    Article  CAS  PubMed  Google Scholar 

  • Davis SC, Dohleman FG, Long SP (2011) The global potential for Agave as a biofuel feedstock. Glob Change Biol Bioenergy 3:68–78

    Article  CAS  Google Scholar 

  • Davis SC, LeBauer DS, Long SP (2014) Light to liquid fuel: theoretical and realized energy conversion efficiency of plants using Crassulacean Acid Metabolism (CAM) in arid conditions. J Exp Bot 65:3471–3478

    Article  PubMed  Google Scholar 

  • Davis SC, Ming R, LeBauer DS, Long SP (2015) Toward systems-level analysis of agricultural production from crassulacean acid metabolism (CAM): scaling from cell to commercial production. New Phytol 208:66–72

    Article  PubMed  Google Scholar 

  • Davis SC, Kuzmick ER, Niechayev N, Hunsake DJ (2017) Productivity and water use efficiency of Agave americana in the first field trial as bioenergy feedstock on arid lands. Glob Change Biol Bioenergy 9:314–325

    Article  CAS  Google Scholar 

  • Davis SC, Simpson J, Vega G, Del Carmen K, Niechayev NA, Tongerlo EV, Castano NH, …, Búrque A (2019) Undervalued potential of crassulacean acid metabolism for current and future agricultural production. J Exp Bot 70:6521–6537

    Google Scholar 

  • de Cortazar VG, Acevedo E, Nobel PS (1985) Modeling of PAR interception and productivity by Opuntia ficus-indica. Agric For Meteorol 34:145–162

    Article  Google Scholar 

  • de Cortázar VG, Acevedo R, Nobel PS (1986) Modeling of PAR interception and productivity of a prickly pear cactus, Opuntia ficus-indica L., at various spacings. Agron J 78:80–85

    Article  Google Scholar 

  • De Fraiture C, Wichelns D (2010) Satisfying future water demands for agriculture. Agric Water Manag 97:502–511

    Article  Google Scholar 

  • de Santo AV, Alfani A, Russo G, Fioretto A (1983) Relationship between CAM and succulence in some species of Vitaceae and Piperaceae. Bot Gaz 144:342–346

    Article  Google Scholar 

  • de Souza Filho PF, Ribeiro VT, dos Santos ES, de Macedo GR (2016) Simultaneous saccharification and fermentation of cactus pear biomass – evaluation of using different pretreatments. Ind Crop Prod 89:425–433

    Google Scholar 

  • DePaoli HC, Borland AM, Tuskan GA, Cushman JC, Yang X (2014) Synthetic biology as it relates to CAM photosynthesis: challenges and opportunities. J Exp Bot 65:3381–3393

    Article  CAS  PubMed  Google Scholar 

  • Didden-Zopfy B, Nobel PS (1982) High temperature tolerance and heat acclimation of Opuntia bigelovii. Oecologia 52:176–180

    Article  PubMed  Google Scholar 

  • Dimitrijević D, Živković P, Branković J, Dobrnjac M, Stevanović Ž (2018) Air pollution removal and control by green living roof systems. Acta Tech Corviniensis Bull Eng 11:47–50

    Google Scholar 

  • Divyalakshmi P, Murugan D, Sivarajan M, Sivasamy A, Saravanan P, Rai CL (2017) Optimization and biokinetic studies on pretreatment of sludge for enhancing biogas production. Int J Environ Sci Technol 14:813–822

    Article  CAS  Google Scholar 

  • Domínguez E, Heredia-Guerrero JA, Heredia A (2011) The biophysical design of plant cuticles: an overview. New Phytol 189:938–949

    Article  PubMed  Google Scholar 

  • Downton WJ, Berry J, Seemann JR (1984) Tolerance of photosynthesis to high temperature in desert plants. Plant Physiol 74:786–790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Drennan PM, Nobel PS (2000) Responses of CAM species to increasing atmospheric CO2 concentrations. Plant Cell Environ 23:767–781

    Article  CAS  Google Scholar 

  • Edwards EJ (2019) Evolutionary trajectories, accessibility and other metaphors: the case of C4 and CAM photosynthesis. New Phytol 223:1742–1755

    Article  PubMed  Google Scholar 

  • Eggli U, Nyffeler R (2009) Living under temporarily arid conditions–succulence as an adaptive strategy. Bradleya 27:13–36

    Article  Google Scholar 

  • Ehleringer JR, Monson RK (1993) Evolutionary and ecological aspects of photosynthetic pathway variation. Annu Rev Ecol Syst 24:411–439

    Article  Google Scholar 

  • Escamilla-Treviño LL (2012) Potential of plants from the genus Agave as bioenergy crops. Bioenergy Res 5:1–9

    Article  CAS  Google Scholar 

  • Famiglietti J, Rodell M (2013) Water in the balance. Science 340:1300–1301

    Article  PubMed  Google Scholar 

  • FAO (2017) Coping with water scarcity in agriculture: a global framework for actions in a changing climate. In: Food and Agriculture Organization of the United Nations

    Google Scholar 

  • Faralli M, Matthews J, Lawson T (2019) Exploiting natural variation and genetic manipulation of stomatal conductance for crop improvement. Curr Opin Plant Biol 49:1–7

    Article  PubMed  PubMed Central  Google Scholar 

  • Farquhar GD, von Caemmerer S, Berry JA (1980) A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta 149:78–90

    Article  CAS  PubMed  Google Scholar 

  • February EC, Matimati I, Hedderson TA, Musil CF (2013) Root niche partitioning between shallow rooted succulents in a South African semi desert: implications for diversity. Plant Ecol 214:1181–1187

    Article  Google Scholar 

  • Feller U (2016) Drought stress and carbon assimilation in a warming climate: reversible and irreversible impacts. J Plant Physiol 203:84–94

    Article  CAS  PubMed  Google Scholar 

  • Feng S, Fu Q (2013) Expansion of global drylands under a warming climate. Atmos Chem Phys 13:10081–10094

    Article  CAS  Google Scholar 

  • Fernández V, Bahamonde HA, Peguero-Pina JJ, Gil-Pelegrín E, Sancho-Knapik D, Gil L, Goldbach HE, Eichert T (2017) Physico-chemical properties of plant cuticles and their functional and ecological significance. J Exp Bot 68:5293–5306

    Article  PubMed  CAS  Google Scholar 

  • Field C, Barros V, Mach K, Mastrandrea M, van Aalst M, Adger W, Arent D, …, Yohe G (2014) Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Cambridge University Press, Cambridge/New York

    Google Scholar 

  • Flores-Gómez CA, Silva EM, Zhong C, Dale BE, da Costa SL, Balan V (2018) Conversion of lignocellulosic agave residues into liquid biofuels using an AFEX™-based biorefinery. Biotechnol Biofuels 11:7

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Flörke M, Schneider C, McDonald RI (2018) Water competition between cities and agriculture driven by climate change and urban growth. Nat Sustain 1:51–58

    Article  Google Scholar 

  • Franck N, Muñoz V, Alfaro F, Arancibia D, Pérez-Quezada J (2013) Estimating the carbon assimilation of growing cactus pear cladodes through different methods. Acta Hortic 19:157–164

    Article  Google Scholar 

  • Franks PJ, Drake PL, Beerling DJ (2009) Plasticity in maximum stomatal conductance constrained by negative correlation between stomatal size and density: an analysis using Eucalyptus globulus. Plant Cell Environ 32:1737–1748

    Article  PubMed  Google Scholar 

  • Franco AC, Ball E, Lüttge U (1992) Differential effects of drought and light levels on accumulation of citric and malic acids during CAM in Clusia. Plant Cell Environ 15:821–829

    Article  CAS  Google Scholar 

  • Franco ALC, Bartz MLC, Cherubin MR, Baretta D, Cerri CEP, Feigl BJ, Wall DH, …, Cerri CC (2016) Loss of soil (macro) fauna due to the expansion of Brazilian sugarcane acreage. Sci Total Environ 563:160–168

    Google Scholar 

  • Freschi L, Takahashi CA, Cambui CA, Semprebom TR, Cruz AB, Mioto PT, de Melo Versieux L, …, Mercier H (2010) Specific leaf areas of the tank bromeliad Guzmania monostachia perform distinct functions in response to water shortage. J Plant Physiol 167:526–533

    Google Scholar 

  • Fu Q, Feng S (2014) Responses of terrestrial aridity to global warming. J Geophys Res Atmos 119:7863–7875

    Article  Google Scholar 

  • Garcia de Cortázar V, Nobel P (1991) Prediction and measurement of high annual productivity for Opuntia ficus-indica. Agric For Meterol 56:261–272

    Article  Google Scholar 

  • Garcia de Cortazar V, Nobel PS (1992) Biomass and fruit production for the prickly pear cactus Opuntia ficus-indica. J Am Soc Hortic Sci 117:568–562

    Google Scholar 

  • Garcia-Moya E, Romero-Mananares A, Nobel PS (2011) Highlights of Agave productivty. Glob Change Biol Bioenergy 3:4–14

    Article  Google Scholar 

  • Gerbens-Leenes W, Hoekstra AY (2012) The water footprint of sweeteners and bio-ethanol. Environ Int 40:202–211

    Article  CAS  PubMed  Google Scholar 

  • Gerbens-Leenes W, Hoekstra A, van der Meer T (2009) The water footprint of bioenergy. Proc Natl Acad Sci USA 106:10219–10223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gerbens-Leenes PW, Van Lienden AR, Hoekstra AY, Van der Meer TH (2012) Biofuel scenarios in a water perspective: the global blue and green water footprint of road transport in 2030. Glob Environ Chang 22:764–775

    Article  Google Scholar 

  • Gil LS, Maupoey PF (2018) An integrated approach for pineapple waste valorisation. Bioethanol production and bromelain extraction from pineapple residues. J Clean Prod 172:1224–1231

    Article  CAS  Google Scholar 

  • Goldstein G, Nobel PS (1991) Changes in osmotic pressure and mucilage during low-temperature acclimation of Opuntia ficus-indica. Plant Physiol 97:954–961

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goldstein G, Nobel PS (1994) Water relations and low-temperature acclimation for cactus species varying in freezing tolerance. Plant Physiol 104:675–681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gorelick R, Drezner TD, Hancock K (2015) Freeze-tolerance of cacti (Cactaceae) in Ottawa, Ontario, Canada. Madrono 62:33–46

    Article  Google Scholar 

  • Grace OM (2019) Succulent plant diversity as natural capital. Plants People Planet 1:336–345

    Article  Google Scholar 

  • Graham EA, Nobel PS (1996) Long-term effects of a doubled atmospheric CO2 concentration on the CAM species Agave deserti. J Exp Bot 47:61–69

    Article  CAS  Google Scholar 

  • Graham EA, Nobel PS (1999) Root water uptake, leaf water storage and gas exchange of a desert succulent: implications for root system redundancy. Ann Bot 84:213–223

    Article  Google Scholar 

  • Graham S, Eastwick C, Snape C, Quick W (2017) Mechanical degradation of biomass wood pellets during long term stockpile storage. Fuel Process Technol 160

    Google Scholar 

  • Grams TE, Thiel S (2002) High light-induced switch from C3-photosynthesis to Crassulacean acid metabolism is mediated by UV-A/blue light. J Exp Bot 53:1475–1483

    CAS  PubMed  Google Scholar 

  • Grams TE, Kluge M, Lüttge U (1995) High temperature-adapted plants of Kalanchoë daigremontiana show changes in temperature dependence of the endogenous CAM rhythm. J Exp Bot 46:1927–1929

    Article  CAS  Google Scholar 

  • Griffiths H (1989a) Carbon dioxide concentrating mechanisms and the evolution of CAM in vascular epiphytes. In: Lüttge U (ed) Vascular Plants as Epiphytes: Evolution and Ecophysiology. Springer, Berlin, pp 42–86

    Chapter  Google Scholar 

  • Griffiths H (1989b) Crassulacean acid metabolism: a re-appraisal of physiological plasticity in form and function. Adv Bot Res 15:43–92

    Article  Google Scholar 

  • Griffiths H (2013) Plant venation: from succulence to succulents. Curr Biol 23:R340–R341

    Article  CAS  PubMed  Google Scholar 

  • Griffiths H, Males J (2017) Succulent plants. Curr Biol 27:R890–R896

    Article  CAS  PubMed  Google Scholar 

  • Griffiths H, Ong BL, Avadhani PN, Goh CJ (1989) Recycling of respiratory CO2 during Crassulacean acid metabolism: alleviation of photoinhibition in Pyrrosia piloselloides. Planta 179:115–122

    Article  CAS  PubMed  Google Scholar 

  • Griffiths H, Cousins AB, Badger MR, von Caemmerer S (2007) Discrimination in the dark. Resolving the interplay between metabolic and physical constraints to phosphoenolpyruvate carboxylase activity during the crassulacean acid metabolism cycle. Plant Physiol 143:1055–1067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Habibi G, Hajiboland R (2011) Comparison of water stress and UV radiation effects on induction of CAM and antioxidative defense in the succulent Rosularia elymaitica (Crassulaceae). Acta Biol Cracov Ser Bot 53:15–24

    Google Scholar 

  • Han Y, Wang W, Sun J, Ding M, Zhao R, Deng S, Wang F, …, Chen S (2013) Populus euphratica XTH overexpression enhances salinity tolerance by the development of leaf succulence in transgenic tobacco plants. J Exp Bot 64:4225–4238

    Google Scholar 

  • Hartzell S, Bartlett MS, Porporato A (2018) Unified representation of the C3, C4, and CAM photosynthetic pathways with the Photo3 model. Ecol Model 384:173–187

    Article  CAS  Google Scholar 

  • Hejazi M, Voisin N, Liu L, Bramer L, Fortin D, Hathaway J, Huang M, …, Zhou Y (2015) 21st century United States emissions mitigation could increase water stress more than the climate change it is mitigating. Proc Natl Acad Sci USA 112:10635–10640

    Google Scholar 

  • Heredia-Guerrero JA, Guzman-Puyol S, Benítez JJ, Athanassiou A, Heredia A, Domínguez E (2018) Plant cuticle under global change: biophysical implications. Glob Chang Biol 24:2749–2751

    Article  PubMed  Google Scholar 

  • Herrera A (2008) Crassulacean acid metabolism and fitness under water deficit stress: if not for carbon gain, what is facultative CAM good for? Ann Bot 103:645–653

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Herrera A, Delgado J, Paraguatey I (1991) Occurrence of inducible crassulacean acid metabolism in leaves of Talinum triangulare (Portulacaceae). J Exp Bot 42:493–499

    Article  CAS  Google Scholar 

  • Heyduk K, Burrell N, Lalani F, Leebens-Mack J (2015) Gas exchange and leaf anatomy of a C3–CAM hybrid, Yucca gloriosa (Asparagaceae). J Exp Bot 67:1369–1379

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Heyduk K, Ray JN, Ayyampalayam S, Leebens-Mack J (2018) Shifts in gene expression profiles are associated with weak and strong crassulacean acid metabolism. Am J Bot 105:587–601

    Article  CAS  PubMed  Google Scholar 

  • Horn JW, Xi Z, Riina R, Peirson JA, Yang Y, Dorsey BL, Berry PE, …, Wurdack KJ (2014) Evolutionary bursts in Euphorbia (Euphorbiaceae) are linked with photosynthetic pathway. Evolution 68:3485–3504

    Google Scholar 

  • Huang J, Yu H, Guan X, Wang G, Guo R (2015) Accelerated dryland expansion under climate change. Nat Clim Chang 6:166–171

    Article  Google Scholar 

  • Huerta C, Freire M, Cardemil L (2013) Expression of hsp70, hsp100 and ubiquitin in Aloe barbadensis Miller under direct heat stress and under temperature acclimation conditions. Plant Cell Rep 32:293–307

    Article  CAS  PubMed  Google Scholar 

  • Hultine KR, Dettman DL, English NB, Williams DG (2019) Giant cacti: isotopic recorders of climate variation in warm deserts of the Americas. J Exp Bot 70:6509–6519

    Article  CAS  PubMed  Google Scholar 

  • Idso SB, Kimball BA, Anderson MG, Szarek SR (1986) Growth response of a succulent plant, Agave vilmoriniana, to elevated CO2. Plant Physiol 80:796–797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ishikawa M, Gusta LV (1996) Freezing and heat tolerance of Opuntia cacti native to the Canadian prairie provinces. Can J Bot 74:1890–1895

    Article  Google Scholar 

  • Jayani RS, Shukla SK, Gupta R (2010) Screening of bacterial strains for polygalacturonase activity: its production by Bacillus sphaericus (MTCC 7542). Enzyme Res 2010

    Google Scholar 

  • Jones JW, Antle JM, Basso B, Boote KJ, Conant RT, Foster I, Godfray HCJ, …, Wheeler TR (2017) Brief history of agricultural systems modeling. Agric Syst 155:240–254

    Google Scholar 

  • Kaushal N, Bhandari K, Siddique KH, Nayyar H (2016) Food crops face rising temperatures: an overview of responses, adaptive mechanisms, and approaches to improve heat tolerance. Cogent Food Agric 2:1134380

    Google Scholar 

  • Kee SC, Nobel PS (1986) Concomitant changes in high temperature tolerance and heat-shock proteins in desert succulents. Plant Physiol 80:596–598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Keeley JE (1981) Isoetes howellii: a submerged aquatic CAM plant? Am J Bot 68:420–424

    Article  CAS  Google Scholar 

  • Keeley JE (1983) Crassulacean acid metabolism in the seasonally submerged aquatic Isoetes howellii. Oecologia 58:57–62

    Article  PubMed  Google Scholar 

  • Keeley JE (1996) Aquatic CAM photosynthesis. In: Winter K, Smith J (eds) Crassulacean Acid Metabolism. Springer, Berlin, pp 281–295

    Chapter  Google Scholar 

  • Keeley JE (1998) CAM photosynthesis in submerged aquatic plants. Bot Rev 64:121–175

    Article  Google Scholar 

  • Keeley JE, Rundel PW (2003) Evolution of CAM and C4 carbon-concentrating mechanisms. Int J Plant Sci 164:S55–S77

    Article  CAS  Google Scholar 

  • Keeley JE, Sandquist DR (1991) Diurnal photosynthesis cycle in CAM and non-CAM seasonal-pool aquatic macrophytes. Ecology 72:716–727

    Article  Google Scholar 

  • King C, Webber M, Duncan I (2010) The water needs for LDV transportation in the United States. Energy Policy 38:1157–1167

    Article  Google Scholar 

  • Kirschbaum MU (2004) Direct and indirect climate change effects on photosynthesis and transpiration. Plant Biol 6:242–253

    Article  CAS  PubMed  Google Scholar 

  • Koutroulis AG, Papadimitriou LV, Grillakis MG, Tsanis IK, Warren R, Betts RA (2019) Global water availability under high-end climate change: a vulnerability based assessment. Glob Planet Chang 175:52–63

    Article  Google Scholar 

  • Krause GH, Winter K, Krause B, Virgo A (2016) Protection by light against heat stress in leaves of tropical crassulacean acid metabolism plants containing high acid levels. Funct Plant Biol 43:1061–1069

    Article  CAS  PubMed  Google Scholar 

  • Krümpel J, George T, Gasston B, Francis G, Lemmer A (2020) Suitability of Opuntia ficus-indica (L) mill. And Euphorbia tirucalli L. as energy crops for anaerobic digestion. J Arid Environ 174:104047

    Article  Google Scholar 

  • Kuloyo OO, du Preez JC, del Prado García-Aparicio M, Kilian SG, Steyn L, Görgens J (2014) Opuntia ficus-indica cladodes as feedstock for ethanol production by Kluyveromyces marxianus and Saccharomyces cerevisiae. World J Microbiol Biotechnol 30:3173–3183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar A, Li C, Portis AR (2009) Arabidopsis thaliana expressing a thermostable chimeric Rubisco activase exhibits enhanced growth and higher rates of photosynthesis at moderately high temperatures. Photosynth Res 100:143–153

    Article  CAS  PubMed  Google Scholar 

  • Kurek I, Chang TK, Bertain SM, Madrigal A, Liu L, Lassner MW, Zhu G (2007) Enhanced thermostability of Arabidopsis Rubisco activase improves photosynthesis and growth rates under moderate heat stress. Plant Cell 19:3230–3241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuronuma T, Watanabe H (2017) Photosynthetic and transpiration rates of three Sedum species used for green roofs. Environ Control Biol 55:137–141

    Article  Google Scholar 

  • Kuronuma T, Watanabe H, Ishihara T, Kou D, Toushima K, Ando M, Shindo S (2018) CO2 payoff of extensive green roofs with different vegetation species. Sustainability 10:2256

    Article  CAS  Google Scholar 

  • Lal R (2008) Carbon sequestration. Philos Trans R Soc London B Biol Sci 363:815–830

    Article  CAS  PubMed  Google Scholar 

  • Lawson T (2008) Guard cell photosynthesis and stomatal function. New Phytol 181:13–34

    Article  CAS  Google Scholar 

  • Lawson T, Blatt MR (2014) Stomatal size, speed, and responsiveness impact on photosynthesis and water use efficiency. Plant Physiol 164:1556–15570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lawson T, Kramer DM, Raines CA (2012) Improving yield by exploiting mechanisms underlying natural variation of photosynthesis. Curr Opin Biotechnol 23:215–220

    Article  CAS  PubMed  Google Scholar 

  • Le Houérou HN (1996) The role of cacti (Opuntia spp.) in erosion control, land reclamation, rehabilitation and agricultural development in the Mediterranean Basin. J Arid Environ 33:135–159

    Article  Google Scholar 

  • Lee DM, Assmann SM (1992) Stomatal responses to light in the facultative crassulacean acid metabolism species, Portulacaria afra. Physiol Plant 85:35–42

    Article  CAS  Google Scholar 

  • Leng G, Hall J (2019) Crop yield sensitivity of global major agricultural countries to droughts and the projected changes in the future. Sci Total Environ 654:811–821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lesk C, Rowhani P, Ramankutty N (2016) Influence of extreme weather disasters on global crop production. Nature 529:84–87

    Article  CAS  PubMed  Google Scholar 

  • Leuning R, Kelliher FM, De Pury DG, Schulze ED (1995) Leaf nitrogen, photosynthesis, conductance and transpiration: scaling from leaves to canopies. Plant Cell Environ 18:1183–1200

    Article  Google Scholar 

  • Levidow L, Zaccaria D, Maia R, Vivas E, Todorovic M, Scardigno A (2014) Improving water-efficient irrigation: prospects and difficulties of innovative practices. Agric Water Manag 146:84–94

    Article  Google Scholar 

  • Li H, Foston MB, Kumar R, Samuel R, Gao X, Hu F, Ragauskas AJ, Wyman CE (2012) Chemical composition and characterization of cellulose for Agave as a fast-growing, drought-tolerant biofuels feedstock. RSC Adv 2:4951–4958

    Article  CAS  Google Scholar 

  • Li H, Pattathil S, Foston MB, Ding SY, Kumar R, Gao X, Mittal A, …, Wyman CE (2014) Agave proves to be a low recalcitrant lignocellulosic feedstock for biofuels production on semi-arid lands. Biotechnol Biofuels 7:50

    Google Scholar 

  • Li W, Li Q, Wang Y, Zheng L, Zhang Y, Yu Z, Chen H, Zhang J (2018) Efficient bioconversion of organic wastes to value-added chemicals by soaking, black soldier fly (Hermetia illucens L.) and anaerobic fermentation. J Environ Manag 227:267–276

    Article  CAS  Google Scholar 

  • Lim SD, Yim WC, Liu D, Hu R, Yang X, Cushman JC (2018) A Vitis vinifera basic helix–loop–helix transcription factor enhances plant cell size, vegetative biomass and reproductive yield. Plant Biotechnol J 16:1595–1615

    Article  CAS  PubMed Central  Google Scholar 

  • Lim SD, Lee S, Yim WC, Choi W-G, Cushman JC (2019) Laying the foundation for crassulacean acid metabolism (CAM) biodesign: expression of the C4 metabolism cycle genes of CAM in Arabidopsis. Front Plant Sci 10:101

    Article  PubMed  PubMed Central  Google Scholar 

  • Lim SD, Mayer JA, Yim WC, Cushman JC. (2020) Plant tissue succulence engineering improves water‐use efficiency, water‐deficit stress attenuation and salinity tolerance in Arabidopsis. The Plant Journal. 103: 1049–1072

    Google Scholar 

  • Lima MS, Damasio AR, Crnkovic PM, Pinto MR, da Silva AM, da Silva JC, Segato F, …, Polizeli MD (2016) Co-cultivation of Aspergillus nidulans recombinant strains produces an enzymatic cocktail as alternative to alkaline sugarcane bagasse pretreatment. Front Microbiol 7:583

    Google Scholar 

  • Lin Q, Abe S, Nose A, Sunami A, Kawamitsu Y (2006) Effects of high night temperature on crassulacean acid metabolism (CAM) photosynthesis of Kalanchoë pinnata and Ananas comosus. Plant Prod Sci 9:10–19

    Article  CAS  Google Scholar 

  • Lindner J, Zielonka S, Oechsner H, Lemmer A (2015) Effects of mechanical treatment of digestate after anaerobic digestion on the degree of degradation. Bioresour Technol 178:194–200

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Wang J, Wolcott MP (2017) Evaluating the effect of wood ultrastructural changes from mechanical treatment on kinetics of monomeric sugars and chemicals production in acid bisulfite treatment. Bioresour Technol 226:24–30

    Article  CAS  PubMed  Google Scholar 

  • Liu D, Palla KJ, Hu R, Moseley RC, Mendoza C, Chen M, Abraham PE, …, Yang X (2018) Perspectives on the basic and applied aspects of crassulacean acid metabolism (CAM) research. Plant Sci 274:394–401

    Google Scholar 

  • Lobell D, Schlenker W, Costa-Roberts J (2011) Climate trends and global crop production since 1980. Science 333:616–620

    Article  CAS  PubMed  Google Scholar 

  • Loik ME, Nobel PS (1993) Freezing tolerance and water relations of Opuntia fragilis from Canada and the United States. Ecology 74:1722–1732

    Article  Google Scholar 

  • Lueangwattanapong K, Ammam F, Mason PM, Whitehead C, McQueen-Mason SJ, Gomez LD, Smith JA, Thompson IP (2020) Anaerobic digestion of Crassulacean acid metabolism plants: exploring alternative feedstocks for semi-arid lands. Bioresour Technol 297:122262

    Article  CAS  PubMed  Google Scholar 

  • Lujan R, Lledias F, MartÍnez LM, Barreto R, Cassab GI, Nieto-Sotelo JO (2009) Small heat-shock proteins and leaf cooling capacity account for the unusual heat tolerance of the central spike leaves in Agave tequilana var. Weber Plant Cell Environ 32:1791–1803

    Article  CAS  PubMed  Google Scholar 

  • Luo Y, Nobel PS (1993) Growth characteristics of newly initiated cladodes of Opuntia ficus-indica as affected by shading, drought and elevated CO2. Physiol Plant 87:467–474

    Article  CAS  Google Scholar 

  • Luttge U (2000) Light-stress and crassulacean acid metabolism. Phyton-Horn 40:65–82

    CAS  Google Scholar 

  • Lüttge U (2002) CO2-concentrating: consequences in crassulacean acid metabolism. J Exp Bot 53:2131–2142

    Article  PubMed  CAS  Google Scholar 

  • Lüttge U, Nobel PS (1984) Day-night variations in malate concentration, osmotic pressure, and hydrostatic pressure in Cereus validus. Plant Physiol 5:804–807

    Article  Google Scholar 

  • Males J (2016) Think tank: water relations of Bromeliaceae in their evolutionary context. Bot J Linn Soc 181:415–440

    Article  Google Scholar 

  • Males J (2017) Secrets of succulence. J Exp Bot 68:2121–2134

    Article  CAS  PubMed  Google Scholar 

  • Males J (2018) Concerted anatomical change associated with crassulacean acid metabolism in the Bromeliaceae. Funct Plant Biol 45:681–695

    Article  CAS  PubMed  Google Scholar 

  • Males J, Griffiths H (2017) Stomatal biology of CAM plants. Plant Physiol 174:550–560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mason PM, Glover K, Smith JAC, Willis KJ, Woods J, Thompson IP (2015) The potential of CAM crops as a globally significant bioenergy resource: moving from ‘fuel or food’ to ‘fuel and more food’. Energy Enivon Sci 8:2320–2329

    Article  CAS  Google Scholar 

  • Mathur S, Agrawal D, Jajoo A (2014) Photosynthesis: response to high temperature stress. J Photochem Photobiol B Biol 137:116–126

    Article  CAS  Google Scholar 

  • Maurya DP, Singla A, Negi S (2015) An overview of key pretreatment processes for biological conversion of lignocellulosic biomass to bioethanol. 3Biotech 5:597–609

    Google Scholar 

  • Maxwell K, von Caemmerer S, Evans JR (1997) Is a low internal conductance to CO2 diffusion a consequence of succulence in plants with crassulacean acid metabolism? Aust J Plant Physiol 24:777–786

    CAS  Google Scholar 

  • Maxwell C, Griffiths H, Young AJ (1994) Photosynthetic acclimation to light regime and water stress by the C -CAM epiphyte Guzmania monostachia: gas-exchange characteristics, photochemical efficiency and the xanthophyll cycle. Funct Ecol 8:746–754

    Article  Google Scholar 

  • Mekeonnen MM, Hoekstra AY (2016) Four billion people facing severe water scarcity. Sci Adv 2:21500323

    Google Scholar 

  • Minardi BD, Voytena AP, Santos M, Randi ÁM (2014) Water stress and abscisic acid treatments induce the CAM pathway in the epiphytic fern Vittaria lineata (L.) Smith. Photosynthetica 52:404–412

    Article  CAS  Google Scholar 

  • Moiwo J, Lu W, Tao F (2012) GRACE, GLDAS and measured groundwater data products show water storage loss in Western Jilin, China. Water Sci Technol 65:1606–1614

    Article  PubMed  Google Scholar 

  • Monteiro JAF, Zotz G, Körner C (2009) Tropical epiphytes in a CO2-rich atmosphere. Acta Oecol 35:60–68

    Article  Google Scholar 

  • Mortensen LM, Moe R (1992) Effects of CO2 enrichment and different day/night temperature combinations on growth and flowering of Rosa L. and Kalanchoe blossfeldiana v. poelln. Sci Hortic 51:145–153

    Article  CAS  Google Scholar 

  • Mshandete A, Björnsson L, Kivaisi AK, Rubindamayugi ST, Mattiasson B (2005) Enhancement of anaerobic batch digestion of sisal pulp waste by mesophilic aerobic pre-treatment. Water Res 39:1569–1575

    Article  CAS  PubMed  Google Scholar 

  • Myovela H, Mshandete AM, Imathiu S (2019) Enhancement of anaerobic batch digestion of spineless cacti (Opuntia ficus indica) feedstock by aerobic pre-treatment. Afr J Biotechnol 18:12–22

    Article  CAS  Google Scholar 

  • Naumann G, Alfieri L, Wyser K, Mentaschi L, Betts RA, Carrao H, Spinoni J, …, Feyen L (2018) Global changes in drought conditions under different levels of warming. Geophys Res Lett 45:3285–3296

    Google Scholar 

  • Nelson EA, Sage RF (2008) Functional constraints of CAM leaf anatomy: tight cell packing is associated with increased CAM function across a gradient of CAM expression. J Exp Bot 59:1841–1850

    Article  CAS  PubMed  Google Scholar 

  • Nelson EA, Sage TL, Sage RF (2005) Functional leaf anatomy of plants with crassulacean acid metabolism. Funct Plant Biol 32:409–419

    Article  PubMed  Google Scholar 

  • Neubig KM, Whitten WM, Williams NH, Blanco MA, Endara L, Burleigh G, Silvera K, …, Chase MW (2012) Generic recircumscriptions of Oncidiinae (Orchidaceae: Cymbidieae) based on maximum likelihood analysis of combined DNA datasets. Bot J Linn Soc 168:117–146

    Google Scholar 

  • Niechayev NA, Jones AM, Rosenthal DM, Davis SC (2019a) A model of environmental limitations on production of Agave americana L. grown as a biofuel crop in semi-arid regions. J Exp Bot 70:6549–6559

    Article  CAS  PubMed  Google Scholar 

  • Niechayev NA, Pereira PN, Cushman JC (2019b) Understanding trait diversity associated with crassulacean acid metabolism (CAM). Curr Opin Plant Biol 49:74–85

    Article  CAS  PubMed  Google Scholar 

  • Nobel PS (1978) Surface temperatures of cacti: influences of environmental and morphological factors. Ecology 59:986–996

    Article  Google Scholar 

  • Nobel PS (1980) Interception of photosynthetically active radiation by cacti of different morphology. Oecologia 45:160–166

    Article  PubMed  Google Scholar 

  • Nobel PS (1983) Spine influences on PAR interception, stem temperature, and nocturnal acid accumulation by cacti. Plant Cell Environ 6:153–159

    Article  Google Scholar 

  • Nobel PS (1984) Extreme temperatures and thermal tolerances for seedlings of desert succulents. Oecologia 62:310–317

    Article  PubMed  Google Scholar 

  • Nobel PS (1988) Environmental Biology of Agaves and Cacti. Cambridge University Press, New York

    Google Scholar 

  • Nobel PS (1989) A nutrient index quantifying productivity of agaves and cacti. J Appl Ecol 26:635–645

    Article  Google Scholar 

  • Nobel PS (1991a) Achievable productivities of certain CAM plants: basis for high values compared with C3 and C4 plants. New Phytol 119:183–205

    Article  CAS  PubMed  Google Scholar 

  • Nobel PS (1991b) Environmental productivity indices and productivity for Opuntia ficus-indica under current and elevated atmospheric CO2 levels. Plant Cell Environ 14:637–646

    Article  Google Scholar 

  • Nobel PS (1994) Remarkable Agaves and Cacti. Oxford University Press, New York

    Google Scholar 

  • Nobel PS (1996) High productivity of certain agronomic CAM species. In: Winter K, Smith JAC (eds) Crassulacean Acid Metabolism: Biochemistry, Ecophysiology and evolution. Springer, Berlin, pp 255–265

    Chapter  Google Scholar 

  • Nobel PS, Cui M (1992) Hydraulic conductances of the soil, the root-soil air gap, and the root: changes for desert succulents in drying soil. J Exp Bot 43:319–326

    Article  Google Scholar 

  • Nobel PS, Hartsock TL (1984) Physiological responses of Opuntia ficus-indica to growth temperature. Physiol Plant 60:98–105

    Article  Google Scholar 

  • Nobel PS, Hartsock TL (1986a) Short-term and long-term responses of crassulacean acid metabolism plants to elevated CO2. Plant Physiol 82:604–606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nobel PS, Hartsock TL (1986b) Temperature, water, and PAR influences on predicted and measured productivity of Agave deserti at various elevations. Oecologia 68:181–185

    Article  PubMed  Google Scholar 

  • Nobel PS, Israel AA (1994) Cladode development, environmental responses of CO2 uptake, and productivity for Opuntia ficus-indica under elevated CO2. J Exp Bot 45:295–303

    Article  Google Scholar 

  • Nobel PS, Meyer SE (1985) Field productivity of a CAM plant, Agave salmiana, estimated using daily acidity changes under various environmental conditions. Physiol Plant 65:397–404

    Article  CAS  Google Scholar 

  • Nobel PS, Quero E (1986) Environmental productivity indices for a Chihuahuan Desert CAM plant, Agave lechuguilla. Ecology 67:1–11

    Article  Google Scholar 

  • Nobel PS, Sanderson J (1984) Rectifier-like activities of roots of two desert succulents. J Exp Bot 35:727–737

    Article  Google Scholar 

  • Nobel PS, Smith SD (1983) High and low temperature tolerances and their relationships to distribution of agaves. Plant Cell Environ 6:711–719

    Google Scholar 

  • Nobel PS, Valenzuela AG (1987) Environmental responses and productivity of the CAM plant, Agave tequilana. Agric For Meterol 39:319–334

    Article  Google Scholar 

  • Nobel PS, Geller GN, Kee SC, Zimmerman AD (1986) Temperatures and thermal tolerances for cacti exposed to high temperatures near the soil surface. Plant Cell Environ 9:279–287

    Google Scholar 

  • Nobel PS, Garciamoya E, Quero E (1992) High annual productivity of certain agaves and cacti under cultivation. Plant Cell Environ 15:329–335

    Article  Google Scholar 

  • Nobel PS, Castañeda M, North G, Pimienta-Barrios E, Ruiz A (1998) Temperature influences on leaf CO2 exchange, cell viability and cultivation range for Agave tequilana. J Arid Environ 39:1–9

    Article  Google Scholar 

  • Nogia P, Sidhu GK, Mehrotra R, Mehrotra S (2016) Capturing atmospheric carbon: biological and nonbiological methods. Int J Low-Carbon Technol 11:266–274

    Article  CAS  Google Scholar 

  • North GB, Nobel PS (1991) Changes in hydraulic conductivity and anatomy caused by drying and rewetting roots of Agave deserti (Agavaceae). Am J Bot 78:906–915

    Article  Google Scholar 

  • North GB, Moore L, Nobel PS (1995) Cladode development for Opuntia ficus-indica (Cactaceae) under current and doubled CO2 concentrations. Am J Bot 82:159–166

    Article  Google Scholar 

  • Novara A, Pereira P, Santoro A, Kuzyakov Y, La Mantia T (2014) Effect of cactus pear cultivation after Mediterranean maquis on soil carbon stock, δ13C spatial distribution and root turnover. Catena 118:84–90

    Article  CAS  Google Scholar 

  • Nungesser D, Kluge M, Tolle H, Oppelt W (1984) A dynamic computer model of the metabolic and regulatory processes in Crassulacean acid metabolism. Planta 162:204–214

    Article  CAS  PubMed  Google Scholar 

  • Ochoa MJ, Uhart S (2004) Nitrogen availability and fruit yield generation in cactus pear (Opuntia ficus-indica): II. Effects on solar radiation use efficiency and dry matter accumulation. Acta Hortic 728:125–130

    Google Scholar 

  • OECD-FAO (2013) Agricultural outlook 2013–2022 highlights. In. Food and Agricultural Organization (FAO) of the United Nations, pp 1–116

    Google Scholar 

  • Ogburn RM, Edwards EJ (2013) Repeated origin of three-demensional leaf venation releases constraints of the evolution of succulence in plants. Curr Biol 23:722–726

    Article  CAS  PubMed  Google Scholar 

  • Osmond CB (1978) Crassulacean acid metabolism: a curiosity in context. Annu Rev Plant Physiol 29:379–414

    Article  CAS  Google Scholar 

  • Otto R, Castro SA, Mariano E, Castro SG, Franco HC, Trivelin PC (2016) Nitrogen use efficiency for sugarcane-biofuel production: what is next? Bioenergy Res 9:1272–1289

    Article  CAS  Google Scholar 

  • Owen NA, Griffiths H (2013) A system dynamics model integrating physiology and biochemical regulation predicts extent of crassulacean acid metabolism (CAM) phases. New Phytol 200:1116–1131

    Article  CAS  PubMed  Google Scholar 

  • Owen NA, Griffiths H (2014) Marginal land bioethanol yield potential of four crassulacean acid metabolism candidates (Agave fourcroydes, Agave salmiana, Agave tequilana and Opuntia ficus-indica) in Australia. Glob Change Biol Bioenergy 6:687–703

    Article  CAS  Google Scholar 

  • Owen NA, Fahy KF, Griffiths H (2016) Crassulacean acid metabolism (CAM) offers sustainable bioenergy production and resilience to climate change. Glob Clim Chang Bioenergy 8:737–749

    Article  CAS  Google Scholar 

  • Pérez-Cadena R, Espinosa Solares T, Medina-Moreno SA, Martínez A, Lizardi-Jiménez MA, Téllez-Jurado A (2018) Production of ethanol by three yeasts in defined media and hydrolyzed cladodes of Opuntia ficus-indica var. Atlixco. Int J Agric For 8:26–34

    Google Scholar 

  • Pierce S, Winter K, Griffiths H (2002) The role of CAM in high rainfall cloud forests: an in situ comparison of photosynthetic pathways in Bromeliaceae. Plant Cell Environ 25:1181–1189

    Article  CAS  Google Scholar 

  • Pikart FC, Marabesi MA, Mioto PT, Gonçalves AZ, Matiz A, Alves FR, Mercier H, Aidar MP (2018) The contribution of weak CAM to the photosynthetic metabolic activities of a bromeliad species under water deficit. Plant Physiol Biochem 123:297–303

    Article  CAS  PubMed  Google Scholar 

  • Poorter H, Navas ML (2003) Plant growth and competition at elevated CO2: on winners, losers and functional groups. New Phytol 157:175–198

    Article  PubMed  Google Scholar 

  • Powlson DS, Stirling CM, Thierfelder C, White RP, Jat ML (2016) Does conservation agriculture deliver climate change mitigation through soil carbon sequestration in tropical agro-ecosystems? Agric Ecosyst Environ 220:164–174

    Article  CAS  Google Scholar 

  • Qambrani NA, Rahman MM, Won S, Shim S, Ra C (2017) Biochar properties and eco-friendly applications for climate change mitigation, waste management, and wastewater treatment: a review. Renew Sust Energ Rev 79:255–273

    Article  CAS  Google Scholar 

  • Quero E, Nobel PS (1987) Predictions of field productivity for Agave lechuguilla. J Appl Ecol 24:1053–1062

    Article  Google Scholar 

  • Ramírez-Arpide FR, Demirer GN, Gallegos-Vázquez C, Hernández-Eugenio G, Santoy-Cortés VH, Espinosa-Solares T (2018) Life cycle assessment of biogas production through anaerobic co-digestion of nopal cladodes and dairy cow manure. J Clean Prod 172:2313–2322

    Article  CAS  Google Scholar 

  • Ranjan P, Ranjan JK, Misra RL, Dutta M, Singh B (2016) Cacti: notes on their uses and potential for climate change mitigation. Genet Resour Crop Evol 63:901–917

    Article  Google Scholar 

  • Ranjithkumar M, Ravikumar R, Sankar MK, Kumar MN, Thanabal V (2017) An effective conversion of cotton waste biomass to ethanol: a critical review on pretreatment processes. Waste Biomass Valoriz 8:57–68

    Article  CAS  Google Scholar 

  • Raveh E, Gersani M, Nobel PS (1995) CO2 uptake and fluorescence responses for a shade-tolerant cactus Hylocereus undatus under current and doubled CO2 concentrations. Physiol Plant 93:505–511

    Article  CAS  Google Scholar 

  • Ray D, Mueller N, West P, Foley J (2013) Yield trends are insufficient to double global crop production by 2050. PLoS One 8:e66428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rebman JP, Pinkava DJ (2001) Opuntia cacti of North America: an overview. Fla Entomol 84:475–483

    Article  Google Scholar 

  • Ren J, Dong L, Sun L, Goodsite ME, Tan S, Dong L (2015) Life cycle cost optimization of biofuel supply chains under uncertainties based on interval linear programming. Bioresour Technol 187:6–13

    Article  CAS  PubMed  Google Scholar 

  • Robinson SA, Osmond CB (1994) Internal gradients of chlorophyll and carotenoid pigments in relation to photoprotection in thick leaves of plants with crassulacean acid metabolism. Funct Plant Biol 21:497–506

    Article  CAS  Google Scholar 

  • Rodrigues MA, Matiz A, Cruz AB, Matsumura AT, Takahashi CA, Hamachi L, Félix LM, …, Kerbauy GB (2013) Spatial patterns of photosynthesis in thin-and thick-leaved epiphytic orchids: unravelling C3–CAM plasticity in an organ-compartmented way. Ann Bot 112:17–29

    Google Scholar 

  • Rodrígueza L, Unai Pascualb U, Niemeyer HM (2006) Local identification and valuation of ecosystem goods and services from Opuntia scrublands of Ayacucho, Peru. Ecol Econ 57:30–44

    Article  Google Scholar 

  • Rodríguez-Machín L, Arteaga-Pérez LE, Pérez-Bermúdez RA, Casas-Ledón Y, Prins W, Ronsse F (2018) Effect of citric acid leaching on the demineralization and thermal degradation behavior of sugarcane trash and bagasse. Biomass Bioenergy 108:371–380

    Article  CAS  Google Scholar 

  • Rodríguez-Machín L, Arteaga-Pérez LE, Pala M, Herregods-Van De Pontseele K, Pére Bermúdez RA, Feys J, Prins W, Ronsse F (2019) Influence of citric acid leaching on the yield and quality of pyrolytic bio-oils from sugarcane residues. J Anal Appl Pyrolysis 137:43–53

    Article  CAS  Google Scholar 

  • Roe S, Streck C, Obersteiner M, Frank S, Griscom B, Drouet L, Fricko O, …, Lawrence D (2019) Contribution of the land sector to a 1.5° C world. Nat Clim Chang 9:817–828

    Google Scholar 

  • Russell C, Felker P (1987) Comparative cold-hardiness of Opuntia spp. and cvs grown for fruit, vegetable and fodder production. J Hortic Sci 62:545–550

    Article  Google Scholar 

  • Rykaczewski K, Jordan JS, Linder R, Woods ET, Sun X, Kemme N, Manning KC, …, Majure LC (2016) Microscale mechanism of age dependent wetting properties of prickly pear cacti (Opuntia). Langmuir 32:9335–9341

    Google Scholar 

  • Saag KML, Sanderson G, Moyna P, Ramos G (1975) Cactaceae mucilage composition. J Sci Food Agric 26:993–1000

    Article  Google Scholar 

  • Salvucci ME, Crafts-Brandner SJ (2004) Relationship between the heat tolerance of photosynthesis and the thermal stability of Rubisco activase in plants from contrasting thermal environments. Plant Physiol 134:1460–1470

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sánchez J, Sánchez F, Curt MD, Fernández J (2012) Assessment of the bioethanol potential of prickly pear (Opuntia ficus-indica (L.) Mill.) biomass obtained from regular crops in the province of Almeria (SE Spain). Israel J Plant Sci 60:301–318

    Google Scholar 

  • Sayed OH (1998) Phenomorphology and ecophysiology of desert succulents in eastern Arabia. J Arid Environ 40:177–189

    Article  Google Scholar 

  • Scanlon B, Faunt C, Longuevergne L, Reedy R, Alley W, McGuire V, McMahon P (2012) Groundwater depletion and sustainability of irrigation in the US High Plains and Central Valley. Proc Natl Acad Sci USA 109:9320–9325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shakee SN, Aman S, Haq NU, Heckathorn SA, Luthe D (2013) Proteomic and transcriptomic analyses of Agave americana in response to heat stress. Plant Mol Biol Report 31:840–851

    Article  CAS  Google Scholar 

  • Shameer S, Baghalian K, Cheung CM, Ratcliffe RG, Sweetlove LJ (2018) Computational analysis of the productivity potential of CAM. Nat Plants 4:165–171

    Article  CAS  PubMed  Google Scholar 

  • Shivhare D, Mueller-Cajar O (2017) In vitro characterization of thermostable CAM Rubisco activase reveals a Rubisco interacting surface loop. Plant Physiol 174:1505–1516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Silvera K, Santiago LS, Winter K (2005) Distribution of crassulacean acid metabolism in orchids of Panama: evidence of selection of weak and strong modes. Funct Plant Biol 32:397–407

    Article  CAS  PubMed  Google Scholar 

  • Silvera K, Santiago LS, Cushman JC, Winter K (2009) Crassulacean acid metabolism and epiphytism linked to adaptive radiations in the Orchidaceae. Plant Physiol 149:1838–1847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Silvera K, Neubig KM, Whitten WM, Williams NH, Winter K, Cushman JC (2010a) Evolution along the crassulacan acid metabolism continuum. Funct Plant Biol 37:995–1010

    Article  CAS  Google Scholar 

  • Silvera K, Santiago LS, Cushman JC, Winter K (2010b) Incidence of crassulacean acid metabolism in the Orchidaceae derived from carbon isotope ratios: a checklist of the flora of Panama and Costa Rica. Bot J Linn Soc 163:194–222

    Article  Google Scholar 

  • Sinclair TR, Muchow RC (1999) Radiation use efficiency. Adv Agron 65:215–265

    Article  Google Scholar 

  • Sipes DL, Ting IP (1985) Crassulacean acid metabolism and crassulacean acid metabolism modifications in Peperomia camptotricha. Plant Physiol 77:59–63

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith SD, Didden-Zopfy B, Nobel PS (1984) High-temperature responses of North American cacti. Ecology 65:643–651

    Article  Google Scholar 

  • Smith JAC, Schulte PJ, Nobel PS (1987) Water flow and water storage in Agave deserti: osmotic implications of crassulacean acid metabolism. Plant Cell Environ 10:639–648

    Article  Google Scholar 

  • Somerville C, Youngs H, Taylor C, Davis S, Long SP (2010) Feedstocks for lignocellulosic biofuels. Science 329:790–792

    Article  CAS  PubMed  Google Scholar 

  • Stork KC, Singh MK (1995) Impact of the renewable oxygenate standard for reformulated gasoline on ethanol demand, energy use, and greenhouse gas emissions

    Google Scholar 

  • Swarr TE, Hunkeler D, Klöpffer W, Pesonen H-L, Ciroth A, Brent AC, Pagan R (2011) Environmental life-cycle costing: a code of practice. Int J Life Cycle Assess 16:389–391

    Article  Google Scholar 

  • Sweetlove LJ, Ratcliffe RG (2011) Flux-balance modelling of plant metabolism. Front Plant Sci 2:38

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Szarek SR, Johnson HB, Ting IP (1973) Drought adaptation in Opuntia basilaris. Significance of recycling carbon through crassulacean acid metabolism. Plant Physiol 52:539–541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taherzadeh M, Karimi K (2008) Pretreatment of lignocellulosic wastes to improve ethanol and biogas production: a review. Int J Mol Sci 9:1621–1651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tallman G, Zhu JX, Mawson BT, Amodeo G, Nouhi Z, Levy K, Zeiger E (1997) Induction of CAM in Mesembryanthemum crystallinum abolishes the stomatal response to blue light and light-dependent zeaxanthin formation in guard cell chloroplasts. Plant Cell Physiol 38:236–242

    Article  CAS  Google Scholar 

  • Taybi T, Cushman JC (1999) Signaling events leading to Crassulacean acid metabolism (CAM) induction in the common ice plant, Mesembryanthemum crystallinum. Plant Physiol 121:545–555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taybi T, Cushman JC (2002) Abscisic acid signaling and protein synthesis requirements for CAM induction in the common ice plant. J Plant Physiol 159:1235–1243

    Article  Google Scholar 

  • Teeri JA, Tonsor SJ, Turner M (1981) Leaf thickness and carbon isotope composition in the Crassulaceae. Oecologia 50:367–369

    Article  CAS  PubMed  Google Scholar 

  • Tilman D, Balzer C, Hill J, Befort BL (2011) Global food demand and the sustainable intensification of agriculture. Proc Natl Acad Sci USA 108:20260–20264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ting I (1985) Crassulacean acid metabolism. Annu Rev Plant Physiol 36:595–622

    Article  CAS  Google Scholar 

  • Trajano HL, Engle NL, Foston M, Ragauskas AJ, Tschaplinski TJ, Wyman CE (2013) The fate of lignin during hydrothermal pretreatment. Biotechnol Biofuels 6:110–125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Treberth K (2011) Changes in precipitation with climate change. Clim Res 47:123–138

    Article  Google Scholar 

  • U.S. Department of Agriculture (USDA) (2012) Pima cotton 2012 yield per har- vested acre by county for selected states. In: USDo Agriculture (ed) National Agricultural Statistics Service

    Google Scholar 

  • United Nations (2007) World population prospects: the 2006 revision, highlights. In: PD Department of Economic and Social Affairs (ed) Vol working paper no. ESA/P/WP. 202. United Nations, New York

    Google Scholar 

  • Valdez-Cepeda RD, Blanco-Macías F, Gallegos-Vázquez C, Salinas-García GE, Vázquez-Alvarado RE (2002) Freezing tolerance of Opuntia spp. J Prof Assoc Cactus Dev 4:105–116

    Google Scholar 

  • Valenzuela-Soto J, Maldonado-Bonilla L, Hernández-Guzmán G, Rincón-Enríquez G, Martínez-Gallardo N, Ramírez-Chávez E, Hernández I, …, Délano-Frier J (2015) Infection by a coronatine-producing strain of Pectobacterium cacticidum isolated from sunflower plants in Mexico is characterized by soft rot and chlorosis. J Gen Plant Pathol 81:368–381

    Google Scholar 

  • Velasco-Muñoz J, Aznar-Sánchez J, Belmonte-Ureña L, Román-Sánchez I (2018) Sustainable water use in agriculture: a review of worldwide research. Sustainability 10:1084

    Article  Google Scholar 

  • Voloshin RA, Rodionova MV, Zharmukhamedov SK, Veziroglu TN, Allakhverdiev SI (2016) Biofuel production from plant and algal biomass. Int J Hydrog Energy 41:17257–17273

    Article  CAS  Google Scholar 

  • von Caemmerer S, Furbank R (1999) Modeling C4 photosynthesis. In: Sage RF, Monson RK (eds) C4 Plant Biology. Academic Press, San Diego, pp 173–211

    Chapter  Google Scholar 

  • von Caemmerer S, Griffiths H (2009) Stomatal responses to CO2 during a diel crassulacean acid metabolism cycle in Kalanchoe daigremontiana and Kalanchoe pinnata. Plant Cell Environ 32:567–576

    Article  CAS  Google Scholar 

  • Voss KA, Famiglietti JS, Lo M, Linage C, Rodell M, Swenson SC (2013) Groundwater depletion in the Middle East from GRACE with implications for transboundary water management in the Tigris-Euphrates-Western Iran region. Water Resour Res 49:904–914

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang MQ (1999) GREET 1.5-transportation fuel-cycle model-Vol. 1: methodology, development, use, and results. Argonne National Lab, IL, USA

    Google Scholar 

  • Weiss I, Mizrahi Y, Raveh E (2010) Effect of elevated CO2 on vegetative and reproductive growth characteristics of the CAM plants Hylocereus undatus and Selenicereus megalanthus. Sci Hortic 123:531–536

    Article  CAS  Google Scholar 

  • Wheeler T, Von Braun J (2013) Climate change impacts on global food security. Science 341:508–513

    Article  CAS  PubMed  Google Scholar 

  • Williams DG, Hultine KR, Dettman DL (2014) Functional trade-offs in succulent stems predict responses to climate change in columnar cacti. J Exp Bot 65:3405–3413

    Article  PubMed  Google Scholar 

  • Winter K (2019) Ecophysiology of constitutive and facultative CAM photosynthesis. J Exp Bot 70:6495–6508

    Article  CAS  PubMed  Google Scholar 

  • Winter K, Holtum JAM (2002) How closely do the δ13C values of Crassulacean acid metabolism plants reflect the proportion of CO2 fixed during day and night? Plant Physiol 129:1843–1851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Winter K, Holtum JAM (2005) The effects of salinity, crassulacean acid metabolism and plant age on the carbon isotope composition of Mesembryanthemum crystallinum L., a halophytic C3-CAM species. Planta 222:201–209

    Article  CAS  PubMed  Google Scholar 

  • Winter K, Holtum JAM (2011a) Drought-stress-induced up-regulation of CAM in seedlings of a tropical cactus, Opuntia elatior, operating predominantly in the C3 mode. J Exp Bot 62:4037–4042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Winter K, Holtum JAM (2011b) Induction and reversal of crassulacean acid metabolism in Calandrinia polyandra: effects of soil moisture and nutrients. Funct Plant Biol 38:576–582

    Article  CAS  PubMed  Google Scholar 

  • Winter K, Holtum JAM (2014) Facultative crassulacean acid metabolism (CAM) plants: powerful tools for unravelling the functional elements of CAM photosynthesis. J Exp Bot 65:3425–3441

    Article  PubMed  Google Scholar 

  • Winter K, Holtum JAM (2017) Facultative CAM photosynthesis (crassulacean acid metabolism) in four small C3 and C4 leaf-succulents. Aust J Bot 65:103–108

    Article  CAS  Google Scholar 

  • Winter K, Smith JAC (1996) Crassulacean acid metabolism. Current status and perspectives. In: Winter K, Smith JAC (eds) Crassulacean Acid Metabolism. Biochemistry, Ecophysiology and Evolution. Springer, Berlin, pp 389–426

    Chapter  Google Scholar 

  • Winter K, Schröppel-Meier G, Caldwell MM (1986) Respiratory CO2 as carbon source for nocturnal acid synthesis at high temperatures in three species exhibiting crassulacean acid metabolism. Plant Physiol 81:390–394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Winter K, Richter A, Engelbrecht B, Posada J, Virgo A, Popp M (1997) Effect of elevated CO2 on growth and crassulacean acid metabolism activity of Kalanchoe pinnata under tropical conditions. Planta 201:389–396

    Article  CAS  Google Scholar 

  • Winter K, Aranda J, Holtum JA (2005) Carbon isotope composition and water-use efficiency in plants with crassulacean acid metabolism. Funct Plant Biol 32:381–388

    Article  CAS  PubMed  Google Scholar 

  • Winter K, Garcia M, Holtum JAM (2008) On the nature of facultative and constitutive CAM: environmental and developmental control of CAM expression during early growth of Clusia, Kalanchoë, and Opuntia. J Exp Bot 59:1829–1840

    Article  CAS  PubMed  Google Scholar 

  • Winter K, Holtum JAM, Smith JAC (2015) Crassulacean acid metabolism: a continuous or discrete trait? New Phytol 208:73–78

    Article  CAS  PubMed  Google Scholar 

  • Wu A, Song Y, van Oosterom EJ, Hammer GL (2016) Connecting biochemical photosynthesis models with crop models to support crop improvement. Front Plant Sci 7:1518

    Article  PubMed  PubMed Central  Google Scholar 

  • Yamori W, Hikosaka K, Way DA (2014) Temperature response of photosynthesis in C3, C4, and CAM plants: temperature acclimation and temperature adaptation. Photosynth Res 119:101–117

    Article  CAS  PubMed  Google Scholar 

  • Yan X, Tan DKY, Inderwildi OR, Smith JAC, King DA (2011) Life cycle energy and greenhouse gas analysis for agave-derived bioethanol. Energy Environ Sci 4:3110–3121

    Article  CAS  Google Scholar 

  • Yang L, Carl S, Lu M, Mayer JA, Cushman JC, Tian E, Lin H (2015a) Biomass characterization of Agave and Opuntia as potential biofuel feedstocks. Biomass Bioenergy 76:43–53

    Article  CAS  Google Scholar 

  • Yang X, Cushman JC, Borland AM, Edwards EJ, Wullschleger SD, Tuskan GA, Owen NA, …, Holtum JAM (2015b) A roadmap for research on crassulacean acid metabolism to enhance sustainable food and bioenergy production in a hotter, drier world. New Phytol 207:491–504

    Google Scholar 

  • Yang SJ, Sun M, Yang QY, Ma RY, Zhang JL, Zhang SB (2016) Two strategies by epiphytic orchids for maintaining water balance: thick cuticles in leaves and water storage in pseudobulbs. AoB Plants 8:plw046

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ye G, Luo H, Ren Z, Ahmad MS, Liu CG, Tawab A, Al-Ghafari AB, …, Mehmood MA (2018) Evaluating the bioenergy potential of Chinese liquor-industry waste through pyrolysis, thermogravimetric, kinetics and evolved gas analyses. Energy Convers Manag 163:13–21

    Google Scholar 

  • Yeats TH, Rose JK (2013) The formation and function of plant cuticles. Plant Physiol 163:5–20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zeisler-Diehl V, Müller Y, Schreiber L (2018) Epicuticular wax on leaf cuticles does not establish the transpiration barrier, which is essentially formed by intracuticular wax. J Plant Physiol 227:66–74

    Article  CAS  PubMed  Google Scholar 

  • Zeng Y, Zhao S, Yang S, Ding S-Y (2014) Lignin plays a negative role in the biochemical process for producing lignocellulosic biofuels. Curr Opin Biotechnol 27:38–45

    Article  CAS  PubMed  Google Scholar 

  • Zhao M, Running SW (2009) Drought-induced reduction in global terrestrial net primary production from 2000 through 2009. Science 329:940–943

    Article  CAS  Google Scholar 

  • Zhu J, Bartholomew DP, Goldstein G (1997) Effect of elevated carbon dioxide on the growth and physiological responses of pineapple, a species with crassulacean acid metabolism. J Am Soc Hortic Sci 122:233–237

    Article  CAS  Google Scholar 

  • Zhu X, Liang C, Masters MD, Kantola IB, DeLucia EH (2018) The impacts of four potential bioenergy crops on soil carbon dynamics as shown by biomarker analyses and DRIFT spectroscopy. Glob Clim Change Bioenergy 10:489–500

    Article  CAS  Google Scholar 

  • Zika M, Erb K (2009) The global loss of net primary production resulting from human-induced soil degradation in drylands. Ecol Econ 69:310–318

    Article  Google Scholar 

  • Ziska LH, Hogan KP, Smith AP, Drake BG (1991) Growth and photosynthetic response of nine tropical species with long-term exposure to elevated carbon dioxide. Oecologia 86:383–389

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John C. Cushman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pereira, P.N., Niechayev, N.A., Blair, B.B., Cushman, J.C. (2021). Chapter 10 Climate Change Responses and Adaptations in Crassulacean Acid Metabolism (CAM) Plants. In: Becklin, K.M., Ward, J.K., Way, D.A. (eds) Photosynthesis, Respiration, and Climate Change . Advances in Photosynthesis and Respiration, vol 48. Springer, Cham. https://doi.org/10.1007/978-3-030-64926-5_10

Download citation

Publish with us

Policies and ethics