Skip to main content
Log in

The effects of salinity, crassulacean acid metabolism and plant age on the carbon isotope composition of Mesembryanthemum crystallinum L., a halophytic C3-CAM species

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

The carbon isotope composition of the halophyte Mesembryanthemum crystallinum L. (Aizoaceae) changes when plants are exposed to environmental stress and when they shift from C3 to crassulacean acid metabolism (CAM). We examined the coupling between carbon isotope composition and photosynthetic pathway by subjecting plants of different ages to salinity and humidity treatments. Whole shoot δ13C values became less negative in plants that were exposed to 400 mM NaCl in the hydroponic solution. The isotopic change had two components: a direct NaCl effect that was greatest in plants still operating in the C3 mode and decreased proportionally with increasing levels of dark fixation, and a second component related to the degree of CAM expression. Ignoring the presumably diffusion-related NaCl effect on carbon isotope ratios results in an overestimation of nocturnal CO2 gain in comparison to an isotope versus nocturnal CO2 gain calibration established previously for C3 and CAM species grown under well-watered conditions. It is widely taken for granted that the shift to CAM in M. crystallinum is partially under developmental control and that CAM is inevitably expressed in mature plants. Plants, cultivated under non-saline conditions and high relative humidity (RH) for up to 63 days, maintained diel CO2 gas-exchange patterns and δ13C values typical of C3 plants. However, a weak CAM gas-exchange pattern and an increase in δ13C value were observed in non-salt-treated plants grown at reduced RH. These observations are consistent with environmental control rather than developmental control of the induction of CAM in mature M. crystallinum under non-saline conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

CAM:

Crassulacean acid metabolism

PEPC:

Phosphoenolpyruvate carboxylase

PFD:

Photon flux density (400–700 nm)

RH:

Relative humidity

Rubisco:

Ribulosebisphosphate carboxylase/oxygenase

References

  • Abdulrahman FS, Williams III GJ (1981) Temperature and salinity regulation of growth and gas exchange of Salicornia fruticosa (L.) L. Oecologia 48:346–352

    Article  Google Scholar 

  • Adams P, Nelson DE, Yamada S, Chmara W, Jensen RG, Bohnert HJ, Griffiths H (1998) Growth and development of Mesembryanthemum crystallinum (Aizoaceae). New Phytol 138:171–190

    Article  CAS  Google Scholar 

  • Black CC, Osmond CB (2003) Crassulacean acid metabolism photosynthesis: ‘working the night shift’. Photosynth Res 76:329–341

    Article  PubMed  CAS  Google Scholar 

  • Bloom AJ, Troughton JH (1979) High productivity and photosynthetic flexibility in a CAM plant. Oecologia 38:35–43

    Article  Google Scholar 

  • Bohnert HJ, Cushman JC (2000) The ice plant cometh: lessons in abiotic stress tolerance. J Plant Growth Regul 19:334–346

    Article  CAS  Google Scholar 

  • Borland AM, Griffiths H, Broadmeadow MSJ, Fordham MC, Maxwell C (1993) Short-term changes in carbon-isotope discrimination in the C3-CAM intermediate Clusia minor L. growing in Trinidad. Oecologia 95:444–453

    Article  Google Scholar 

  • Borland AM, Tésci LI, Leegood RC, Walker RP (1998) Inducibility of crassulacean acid metabolism (CAM) in Clusia species; physiological/biochemical characterisation and intercellular localization of carboxylation and decarboxylation processes in three species which exhibit different degrees of CAM. Planta 205:342–351

    Article  CAS  Google Scholar 

  • Card KA, Mahall B, Troughton JH (1974) Salinity and carbon isotope ratios in C3 and C4 plants. Carnegie Inst Wash Year Book 73:784–785

    Google Scholar 

  • Crayn DM, Smith JAC, Winter K (2001) Carbon-isotope ratios and photosynthetic pathways in the Rapateaceae. Plant Biol 3:569–575

    Article  CAS  Google Scholar 

  • Crayn DM, Winter K, Smith JAC (2004) Multiple origins of crassulacean acid metabolism and the epiphytic habit in the Neotropical family Bromeliaceae. Proc Natl Acad Sci USA 101:3703–3708

    Article  PubMed  CAS  Google Scholar 

  • Cushman JC, Bohnert HJ (2002) Induction of crassulacean acid metabolism by salinity—molecular aspects. In: Läuchli A, Lüttge U (eds) Salinity: environment–plants-molecules. Kluwer Academic, Dordrecht, pp 361–393

    Google Scholar 

  • Cushman JC, Borland AM (2002) Induction of crassulacean acid metabolism by water limitation. Plant Cell Environ 25:295–310

    Article  PubMed  CAS  Google Scholar 

  • Cushman JC, Michalowski CM, Bohnert HJ (1990) Developmental control of crassulacean acid metabolism inducibility by salt stress in the common ice plant. Plant Physiol 94:1137–1142

    Article  PubMed  CAS  Google Scholar 

  • Earnshaw MJ, Winter K, Ziegler H, Stichler W, Cruttwell NEG, Kerenga K, Cribb PJ, Wood J, Croft JR, Carver KA, Gunn TC (1987) Altitudinal changes in the incidence of crassulacean acid metabolism in vascular epiphytes and related life forms in New Guinea. Oecologia 73:566–572

    Article  Google Scholar 

  • Edwards GE, Dai Z, Cheng SH, Ku MSB (1996) Factors affecting the induction of crassulacean acid metabolism in Mesembryanthemum crystallinum. In: Winter K, Smith JAC (eds) Crassulacean acid metabolism. Springer, Berlin Heidelberg New York, pp 119–134

    Google Scholar 

  • Farquhar GD, Ball MC, von Caemmerer S, Roksandic Z (1982a) Effect of salinity and humidity on δ13C value of halophytes—evidence for diffusional isotope fractionation determined by the ratio of intercellular/atmospheric partial pressure of CO2 under different environmental conditions. Oecologia 52:121–124

    Article  Google Scholar 

  • Farquhar GD, O’Leary MH, Berry JA (1982b) On the relationship between carbon isotope discrimination and the intercellular carbon dioxide concentration in leaves. Aust J Plant Physiol 9:121–137

    Article  CAS  Google Scholar 

  • Farquhar GD, Ehleringer JR, Hubick KT (1989) Carbon isotope discrimination and photosynthesis. Ann Rev Plant Physiol Plant Mol Biol 40:503–537

    Article  CAS  Google Scholar 

  • Fißlthaler B, Meyer G, Bohnert HJ, Schmitt JM (1995) Age-dependent induction of pyruvate, orthophosphate dikinase in Mesembryanthemum crystallinum L. Planta 196:492–500

    Article  PubMed  Google Scholar 

  • Griffiths H (1992) Carbon isotope discrimination and the integration of carbon assimilation pathways in terrestrial CAM plants. Plant Cell Environ 15:1051–1062

    Article  CAS  Google Scholar 

  • Guy RD, Reid DM, Krouse HR (1980) Shifts in carbon isotope ratios of two C3 halophytes under natural and artificial conditions. Oecologia 44:241–247

    Article  Google Scholar 

  • Herppich WB, Herppich M, von Willert DJ (1992) The irreversible C3 to CAM shift in well-watered and salt-stressed plants of Mesembryanthemum crystallinum is under strict ontogenetic control. Bot Acta 105:34–40

    CAS  Google Scholar 

  • Holtum JAM, Winter K (1999) Degrees of crassulacean acid metabolism in tropical epiphytic and lithophytic ferns. Aust J Plant Physiol 26:749–757

    Article  CAS  Google Scholar 

  • Holtum JAM, Aranda J, Virgo A, Gehrig HH, Winter K (2004) δ13C values and crassulacean acid metabolism in Clusia species from Panama. Trees 18:658–668

    Article  CAS  Google Scholar 

  • Jones MB (1975) The effect of leaf age and leaf resistance on CO2 exchange of the CAM plant Bryophyllum fedtschenkoi. Planta 123:91–96

    Article  Google Scholar 

  • Lüttge U (1996) Clusia: plasticity and diversity in a genus of C3/CAM intermediate tropical trees. In: Winter K, Smith JAC (eds) Crassulacean acid metabolism. Springer, Berlin Heidelberg New York, pp 296–311

    Google Scholar 

  • Lüttge U (2004) Ecophysiology of crassulacean acid metabolism (CAM). Ann Bot 93:629–652

    Article  PubMed  Google Scholar 

  • Neales TF, Fraser MS, Roksandic Z (1983) Carbon isotope composition of the halophyte Disphyma clavellatum (Haw.) Chinnock (Aizoaceae), as affected by salinity. Aust J Plant Physiol 10:437–444

    Article  CAS  Google Scholar 

  • Piepenbrock M, Schmitt JM (1991) Environmental control of phosphoenolpyruvate carboxylase induction in mature Mesembryanthemum crystallinum L. Plant Physiol 97:998–1003

    Article  PubMed  CAS  Google Scholar 

  • Pierce S, Winter K, Griffiths H (2002) Carbon isotope ratio and the extent of daily CAM use by Bromeliaceae. New Phytol 156:75–84

    Article  CAS  Google Scholar 

  • Schmitt JM, Fißlthaler B, Sheriff A, Lenz B, Bäßler M, Meyer G (1996) Environmental control of CAM induction in Mesembryanthemum crystallinum—a role for cytokinin, abscisic acid and jasmonate? In: Winter K, Smith JAC (eds) Crassulacean acid metabolism. Springer, Berlin Heidelberg New York, pp 159–175

    Google Scholar 

  • von Willert DJ, Kramer D (1972) Feinstruktur und Crassulaceensäurestoffwechsel in Blättern von Mesembryanthemum crystallinum während natürlicher und NaCl-induzierter Alterung. Planta 107:227–237

    Article  Google Scholar 

  • Winter K (1973) CO2-Fixierungsreaktionen bei der Salzpflanze Mesembryanthemum crystallinum unter variierten Auβenbedingungen. Planta 114:75–85

    Article  CAS  Google Scholar 

  • Winter K, Gademann R (1991) Daily changes in CO2 and water vapor exchange, chlorophyll fluorescence, and leaf water relations in the halophyte Mesembryanthemum crystallinum during the induction of crassulacean acid metabolism in response to high NaCl salinity. Plant Physiol 95:768–776

    Article  PubMed  CAS  Google Scholar 

  • Winter K, Holtum JAM (2002) How closely do the δ13C values of CAM plants reflect the proportion of CO2 fixed during day and night? Plant Physiol 129:1843–1851

    Article  PubMed  CAS  Google Scholar 

  • Winter K, Lüttge U (1976) Balance between C3 and CAM pathway of photosynthesis. In: Lange OL, Kappen L, Schulze E-D (eds) Water and plant life. Springer, Berlin Heidelberg New York, pp 323–334

    Google Scholar 

  • Winter K, Smith JAC (1996) Crassulacean acid metabolism. Current status and perspectives. In: Winter K, Smith JAC (eds) Crassulacean acid metabolism. Springer, Berlin Heidelberg New York, pp 389–426

    Google Scholar 

  • Winter K, von Willert DJ (1972) NaCl-induzierter Crassulaceensäurestoffwechsel bei Mesembryanthemum crystallinum. Z Pflanzenphysiol 67:166–170

    CAS  Google Scholar 

  • Winter K, Ziegler H (1992) Induction of crassulacean acid metabolism in Mesembryanthemum crystallinum increases reproductive success under conditions of drought and salinity stress. Oecologia 92:475–479

    Article  Google Scholar 

  • Winter K, Lüttge U, Winter E, Troughton JH (1978) Seasonal shift from C3 photosynthesis to crassulacean acid metabolism in Mesembryanthemum crystallinum growing in its natural environment. Oecologia 34:225–237

    Article  Google Scholar 

  • Winter K, Osmond CB, Pate JS (1981) Coping with salinity. In: Pate JS, McComb AJ (eds) Biology of Australian native plants. University of Western Australia Press, Perth, pp 88–113

    Google Scholar 

  • Winter K, Wallace BJ, Stocker GC, Roksandic Z (1983) Crassulacean acid metabolism in Australian vascular epiphytes and some related species. Oecologia 57:129–141

    Article  Google Scholar 

  • Winter K, Zotz G, Baur B, Dietz KJ (1992) Light and dark CO2 fixation in Clusia uvitana and the effects of plant water status and CO2 availability. Oecologia 91:47–51

    Article  Google Scholar 

Download references

Acknowledgements

This research was funded by the Andrew W. Mellon Foundation and the Smithsonian Tropical Research Institute. J.A.M.H. was supported by Dr. R.G. Dunn, a Queensland-Smithsonian Fellowship and the James Cook University Special Studies Programme. δ13C measurements were performed by Tom Maddox, Analytical Chemistry Laboratory, Institute of Ecology, University of Georgia, Athens, Georgia; plant carbon contents were measured by Elfriede Reisberg in the laboratory of Professor W. Kaiser, University of Würzburg, Germany.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Klaus Winter.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Winter, K., Holtum, J.A.M. The effects of salinity, crassulacean acid metabolism and plant age on the carbon isotope composition of Mesembryanthemum crystallinum L., a halophytic C3-CAM species. Planta 222, 201–209 (2005). https://doi.org/10.1007/s00425-005-1516-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-005-1516-6

Keywords

Navigation