Skip to main content
Log in

Expression of hsp70, hsp100 and ubiquitin in Aloe barbadensis Miller under direct heat stress and under temperature acclimation conditions

  • Original Paper
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Key message

The study determined the tolerance of Aloe vera to high temperature, focusing on the expression of hsp70 , hsp100 and ubiquitin genes. These were highly expressed in plants acclimated at 35 °C prior to a heat shock of 45 °C.

Abstract

Aloe barbadensis Miller (Aloe vera), a CAM plant, was introduced into Chile in the semiarid IV and III Regions, which has summer diurnal temperature fluctuations of 25 to 40 °C and annual precipitation of 40 mm (dry years) to 170 mm (rainy years). The aim of this study was to investigate how Aloe vera responds to water and heat stress, focusing on the expression of heat shock genes (hsp70, hsp100) and ubiquitin, which not studied before in Aloe vera. The LT50 of Aloe vera was determined as 53.2 °C. To study gene expression by semi-quantitative RT-PCR, primers were designed against conserved regions of these genes. Sequencing the cDNA fragments for hsp70 and ubiquitin showed a high identity, over 95 %, with the genes from cereals. The protein sequence of hsp70 deduced from the sequence of the cDNA encloses partial domains for binding ATP and the substrate. The protein sequence of ubiquitin deduced from the cDNA encloses a domain for interaction with the enzymes E2, UCH and CUE. The expression increased with temperature and water deficit. Hsp70 expression at 40–45 °C increased 50 % over the controls, while the expression increased by 150 % over the controls under a water deficit of 50 % FC. The expression of all three genes was also studied under 2 h of acclimation at 35 or 40 °C prior to a heat shock at 45 °C. Under these conditions, the plants showed greater expression of all genes than when they were subjected to direct heat stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abràmoff MD, Magalhães PJ, Ram SJ (2004) Image Processing with ImageJ. Biophoton Int 11:36–42

    Google Scholar 

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    PubMed  CAS  Google Scholar 

  • Altschul SF, Madden T, Schaffer A, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucl Acid Res 25:3389–3402

    Article  CAS  Google Scholar 

  • Biedermann S, Hellmann H (2011) WD40and CUL4-based ligases: lubricating aspects of life. Trends Biochem Sci 16:38–46

    CAS  Google Scholar 

  • Borland AM, Taybi T (2004) Synchronization of metabolic processes in plants with Crassulacean acid metabolism. J Exp Bot 55:1255–1265

    Article  PubMed  CAS  Google Scholar 

  • Callis J, Carpenter TR, Sun CW, Vierstra RD (1995) Structure and evolution of genes encoding polyubiquitin and ubiquitin-like proteins in Arabidopsis thaliana ecotype Columbia. Genetics 139:921–939

    PubMed  CAS  Google Scholar 

  • Cardemil L (2008) La asimilación de CO2 y síntesis de azúcares en las plantas. In: Cardemil L, Squeo F (eds) Fisiología vegetal, chapter 9. Edición de La Universidad de La Serena. Plant, Cell Environ 29:2113–2123

  • Ceusters J, Borland AM (2011) Impacts of elevated CO(2) on the growth and physiology of plants with crassulacean acid metabolism. Prog Bot 72:163–181

    Article  CAS  Google Scholar 

  • Ceusters J, Borland AM, Londers E, Verdoodt V, Godts C, De Proft MP (2009) Differential usage of storage carbohydrates in the CAM bromeliad Aechmea ‘Maya’ during acclimation to drought and recovery from dehydration. Physiol Plant 135:174–184

    Article  PubMed  CAS  Google Scholar 

  • Delatorre-Herrera J, Delfino I, Salinas C, Silva H, Cardemil L (2010) Irrigation restriction effects on water use efficiency and osmotic adjustment in Aloe Vera plants (Aloe barbadensis Miller). Agric Water Manage 97:1564–1570

    Article  Google Scholar 

  • Gagne JM, Downes BP, Shiu SH, Durski AM, Vierstra RD (2002) The F-box subunit of the SCF E3 complex is encoded by a diverse superfamily of genes in Arabidopsis. Proc Natl Acad Sci USA 99:11519–11524

    Article  PubMed  CAS  Google Scholar 

  • Gasteiger E, Gattiker A, Hoogland C, Ivanyi I, Appel RD, Bairoch A (2003) ExPASy—the proteomics server for in-depth protein knowledge and analysis. Nucl Acid Res 31:3784–3788

    Article  CAS  Google Scholar 

  • Goidin D, Mammessier A, Staquet MJ, Schmitt D, Berthier-Vergnes O (2001) Ribosomal 18S RNA prevails over glyceraldehyde-3-phosphate dehydrogenase and b-actin genes as internal standard for quantitative comparison of mRNA levels in invasive and noninvasive human melanoma cell subpopulations. Anal Biochem 295:17–21

    Article  PubMed  CAS  Google Scholar 

  • Groettrup M, Pelzer C, Schmidtke G, Hofmann K (2008) Activating the ubiquitin family: UBA6 challenges the field. Trends Biochem Sci 33:230–237

    Article  PubMed  CAS  Google Scholar 

  • Gulli M, Corradi M, Rampino P, Marmiroli N, Perrotta C (2007) Four members of the HSP101 gene family are differently regulated in Triticum durum Desf. FEBS Lett 581:4841–4849

    Article  PubMed  CAS  Google Scholar 

  • Hall AE (2001) Crop responses to environment. CRC Press LLC, Boca Raton

    Google Scholar 

  • Herrera A (2009) Crassulacean acid metabolism and fitness under water deficits stress: if not for carbon gain, what is facultative CAM good for? Ann Bot 103:645–653

    Article  PubMed  CAS  Google Scholar 

  • Hicke L, Schubert HL, Hill CP (2005) Ubiquitin-binding domains. Nature 6:610–621

    CAS  Google Scholar 

  • Hisano H, Kanazawa A, Yoshida M, Humphreys MO, Lizuka M, Kitamura K, Yamada T (2008) Coordinated expression of functionally diverse fructosyltransferase genes is associated with fructan accumulation in response to low temperature in perennial ryegrass. New Phytol 178:766–780

    Article  PubMed  CAS  Google Scholar 

  • Labarga A, Valentin F, Andersson M, Lopez R (2007) Web services at the European Bioinformatics Institute. Nucl Acid Res 35(suppl S):SW6–SW11

    Google Scholar 

  • Luján R, Lledías F, Martínez LM, Barreto R, Cassab GI, Nieto-Sotelo J (2009) Small heat-shock proteins and leaf cooling capacity account for the unusual heat tolerance of the central spike leaves in Agave tequilana var Weber. Plant Cell Environ 32:1791–1803

    Article  PubMed  Google Scholar 

  • Martineau JR, Specht JE, Williams JH, Sullivan CY (1979) Temperature tolerance in soybeans. I. Evaluation of a technique for assessing cellular membrane thermostability. Crop Sci 19:75–78

    Article  Google Scholar 

  • Melnikov EE, Rotanova TV (2010) Molecular chaperones. Russ J Bioorgan Chem 36:1–10

    Article  CAS  Google Scholar 

  • Mittler R, Finka A, Goloubinoff P (2012) How do plants feel the heat? Trends Biochem Sci (in press)

  • Mohnen D (2008) Pectin structure and biosynthesis Curr Op. Plant Biol 11:266–277

    CAS  Google Scholar 

  • Moreira LRS, Filho EXF (2008) An overview of mannan structure and mannan-degrading enzyme systems. Appl Microbiol Biotechnol 79:165–178

    Article  PubMed  CAS  Google Scholar 

  • Murray MG, Thompson WF (1980) Rapid isolation of high molecular-weight plant DNA. Nucl Acid Res 8:4321–4325

    Google Scholar 

  • Nieto-Sotelo J, Kannan KB, Segal MC (1999) Characterization of a maize heat-shock protein 101 gene, HSP101, encoding a ClpB/Hsp100 protein homologue. Gene 230:187–195

    Article  PubMed  CAS  Google Scholar 

  • Nieto-Sotelo J, Martinez LM, Ponce G, Cassab GI, Alagon A, Meeley RB, Ribaut JM, Yang R (2002) Maize HSP101 plays important roles in both induced and basal thermotolerance and primary root growth. Plant Cell 14:1621–1633

    Article  PubMed  CAS  Google Scholar 

  • Ortiz C, Cardemil L (2001) Heat-shock responses in two leguminous plants. A comparative study. J Exp Bot 52:1711–1719

    Article  PubMed  CAS  Google Scholar 

  • Ozkaynak E, Finley D, Solomon MJ, Varshvashky A (1987) The yeast ubiquitin genes: a family of natural genes fusions. EMBO J 6:1427–1439

    Google Scholar 

  • Perales L, Peñarrubia L, Cornejo MJ (2008) Induction of a polyubiquitin gene promoter by dehydration stresses in transformed rice cells. J Plant Physiol 165:159–171

    Google Scholar 

  • Pierce S, Winter K, Grifftihs H (2002) The role of CAM in high rainfall cloud forest: an in situ comparison of photosynthetic pathways in Bromeliaceae. Plant Cell Environ 25:1181–1189

    Article  CAS  Google Scholar 

  • Quevillon E, Silventoinen V, Pillai S, Harte N, Mulder N, Apweiler R, Lopez R (2005) InterProScan: protein domains identifier. Nucl Acid Res 33 (Web Server issue):W116–W120

  • Richter K, Haslbeck M, Buchner J (2010) The heat shock response: life on the verge of death. Mol Cell 40:253–266

    Article  PubMed  CAS  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Schaff DA, Clayberg CD, Milliken GA (1987) Comparison of TTC and electrical conductivity as heat tolerance screening techniques in Phaseolus. Hort Sci 22:642–645

    Google Scholar 

  • Schirmer EC, Glover JR, Singer MA, Lindquist S (1996) HSP lO0/Clp proteins: a common mechanism explains diverse functions. Trends Biochem Sci 21:289–296

    PubMed  CAS  Google Scholar 

  • Sharp PM, Li WH (1987) Ubiquitin genes as a paradigm of concerted evolution of tandem repeats. J Mol Evol 25:58–64

    Article  PubMed  CAS  Google Scholar 

  • Silva H, Sagardía S, Seguel O, Torres C, Tapia C, Franck N, Cardemil L (2010) Effect of water availability on growth and water use efficiency for biomass and gel production in Aloe Vera (Aloe barbadensis M.). Ind Crops Prod 31:20–27

    Article  CAS  Google Scholar 

  • Sivamani E, Qu R (2006) Expression enhancement of a rice polyubiquitin gene promoter. Plant Mol Biol 60:225–239

    Article  PubMed  CAS  Google Scholar 

  • Stürzenbaum S, Kille P (2001) Control genes in quantitative molecular biological techniques: the variability of invariante. Comp Bioch Physiol Part B 130:281–289

    Article  Google Scholar 

  • Sung DY, Vierling E, Guy CL (2001) Comprehensive expression profile analysis of the Arabidopsis hsp70 gene family. Plant Physiol 126:789–800

    Article  PubMed  CAS  Google Scholar 

  • Vaasen A, Begerow D, Rüdiger H (2006) Phosphoenol pyruvate carboxylase genes in C3, crassulacean acid metabolism (CAM) and C3/CAM intermediate species of the genus Clusia: rapid reversible C3/CAM switches are based on the C3 housekeeping gene. Plant Cell Environ 29:2113–2123

    Article  PubMed  CAS  Google Scholar 

  • Valluru R, Van den Ende W (2008) Plant fructans in stress environments: emerging concepts and future prospects. J Exp Bot 59:2905–2916

    Article  PubMed  CAS  Google Scholar 

  • Van den Ende W, De Coninck B, Van Laere A (2004) Plant fructan exohydrolases: a role in signaling and defense? TIBS 9:523–528

    Google Scholar 

  • Vierling E (1997) Hanbook of molecular chaperones and protein folding catalysts. Oxford University Press, Oxford, pp 253–255

    Google Scholar 

  • Wang JL, Jiang JD, Oard JH (2000) Structure, expression and promoter activity of two polyubiquitin genes from rice (Oryza sativa L.). Plant Sci 156:201–211

    Article  PubMed  CAS  Google Scholar 

  • Wang W-J, Li Q–Q, Xu J-D, Cao X–X, Li H-X, Tang F, Chen Q, Yang J-M, Xu Z-D, Liu X-P (2008) Over-expression of ubiquitin carboxy terminal hydrolase-L1 induces apoptosis in breast cancer cells. Int J Oncol 33:1037–1045

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Professor Claudia Stange for advice on RT-PCR amplification. The technical assistance of Angélica Vega is acknowledged. The research was supported by projects FONDECYT N° 1070899 and N° 7080094 and by Dirección de Investigación, Universidad de Chile, Project N° MULT 05/30-2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liliana Cardemil.

Additional information

Communicated by P. Puigdomenech.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huerta, C., Freire, M. & Cardemil, L. Expression of hsp70, hsp100 and ubiquitin in Aloe barbadensis Miller under direct heat stress and under temperature acclimation conditions. Plant Cell Rep 32, 293–307 (2013). https://doi.org/10.1007/s00299-012-1363-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-012-1363-4

Keywords

Navigation